
COMPUTER NETWORKS- (20MCA23C)

UNIT-V

‘TRANSPORT LAYER’

FACULTY:

DR. R. A. ROSELINE, M.SC., M.PHIL., PH.D.,
ASSOCIATE PROFESSOR AND HEAD,

POST GRADUATE AND RESEARCH DEPARTMENT OF COMPUTER

APPLICATIONS,

GOVERNMENT ARTS COLLEGE (AUTONOMOUS), COIMBATORE – 641 018.

TRANSPORT LAYER

 Services

 Elements of transport protocol

 Simple transport protocol

 UDP

 Remote Procedure Call (see Distributed Systems)

 TCP

LAYER OVERVIEW

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical e
nd

-e
nd

 transp
ort

LAYER OVERVIEW

Host 1

Network layer

Application layer

Transport entity

Host 2

Network layer

Application layer

Transport entityTPDU

Transport

addresses

Network

addresses

SERVICES

 To upper layer

 efficient, reliable, cost-effective service

 2 kinds

 Connection oriented

 Connectionless

SERVICES

 needed from network layer

 packet transport between hosts

 relationship network <> transport

 Hosts <> processes

 Transport service

 independent network

more reliable

 Network

 run by carrier

 part of communication subnet for WANs

SIMPLE SERVICE: PRIMITIVES

 Simple primitives:

 connect

 send

 receive

 disconnect

 How to handle incoming connection request in server process?

 Wait for connection request from client!

 listen

SIMPLE SERVICE: PRIMITIVES

listen Wait till a process wants a

connection

connect Try to setup a connection

send Send data packet

receive Wait for arrival of data packet

disconnect Calling side breaks up the

connection

No TPDU

Connection Request

TPDU

Data TPDU

No TPDU

Disconnect TPDU

SIMPLE SERVICE: STATE DIAGRAM

SIMPLE SERVICE: STATE DIAGRAM

SIMPLE SERVICE: STATE DIAGRAM

BERKELEY SERVICE PRIMITIVES

 Used in Berkeley UNIX for TCP

 Addressing primitives:

 Server primitives:

 Client primitives:

socket

bind

listen

accept

send + receive

close

connect

send + receive

close

BERKELEY SERVICE PRIMITIVES

socket create new communication end point

bind attach a local address to a socket

listen announce willingness to accept connections; give queue size

accept block caller until a connection request arrives

connect actively attempt to establish a connection

send send some data over the connection

receive receive some data from the connection

close release the connection

TRANSPORT LAYER

 Services

 Elements of transport protocol

 Simple transport protocol

 UDP

 Remote Procedure Call (see Distributed Systems)

 TCP

ELEMENTS OF TRANSPORT PROTOCOLS (ETP)

 Transport <> Data Link

 Addressing

 Establishing a connection

 Releasing a connection

 Flow control and buffering

 Multiplexing

 Crash recovery

ETP: TRANSPORT <> DATA LINK

Explicit addressing

Connection establishment

Potential existence of storage capacity in subnet

Dynamically varying number of connections

ETP: ADDRESSING

 TSAP = transport service access point

 Internet: IP address + local port

 ATM: AAL-SAPs

 Connection scenario

 Getting TSAP addresses?

 From TSAP address to NSAP address?

ETP: ADDRESSING

 Connection scenario

ETP: ADDRESSING

 Connection scenario

 Host 2 (server)

 Time-of-day server attaches itself to TSAP 1522

 Host 1 (client)

 Connect from TSAP 1208 to TSAP 1522

 Setup network connection to host 2

 Send transport connection request

 Host 2

 Accept connection request

ETP: ADDRESSING

 Getting TSAP addresses?

 Stable TSAP addresses

 For key services

 Not for user processes

 active for a short time

 number of addresses limited

 Name servers

 to find existing servers

 map service name into TSAP address

 Initial connection protocol

ETP: ADDRESSING

 Getting TSAP addresses?

 Initial connection protocol

 to avoid many waiting servers  one process server

 waits on many TSAPs

 creates requested server

ETP: ADDRESSING

 From TSAP address to NSAP address?

 hierarchical addresses

 address = <country> <network> <host> <port>

 Examples: IP address + port

 Telephone numbers (<> number portability?)

 Disadvantages:

 TSAP bound to host!

 flat address space

 Advantages:

 Independent of underlying network addresses

 TSAP address not bound to host

 Mapping to network addresses:

 Name server

 broadcast

ETP: ESTABLISHING A CONNECTION

 Problem: delayed duplicates!

 Scenario:

 Correct bank transaction

 connect

 data transfer

 disconnect

 Problem: same packets are received in same order a second time!

Recognized?

ETP: ESTABLISHING A CONNECTION

 Unsatisfactory solutions:

 throwaway TSAP addresses

 need unlimited number of addresses?

 process server solution impossible

 connection identifier

 Never reused!

 Maintain state in hosts

 Satisfactory solutions

ETP: ESTABLISHING A CONNECTION

 Satisfactory solutions

 Ensure limited packet lifetime (incl. Acks)

 Mechanisms

 prevent packets from looping + bound congestion delay

 hopcounter in each packet

 timestamp in each packet

 Basic assumption

If we wait a time T after sending a packet all traces of it

(including Acks) are gone

Maximum packet lifetime T

ETP: ESTABLISHING A CONNECTION

 Tomlinson’s method

 requires: clock in each host

 Number of bits > number of bits in sequence number

 Clock keeps running, even when a hosts crashes

 Basic idea:

2 identically numbered TPDUs are

never outstanding at the same time!

ETP: ESTABLISHING A CONNECTION

 Tomlinson’s method

 Problems to solve

 Selection of the initial sequence number for a new connection

 Wrap around of sequence numbers for an active connection

 Handle host crashes

Never reuse a sequence number x within the lifetime T for the packet with x

 Forbidden region

ETP: ESTABLISHING A CONNECTION

 Tomlinson’s method

 Initial sequence number

= lower order bits of clock

 Ensure initial sequence numbers are always OK

 forbidden region

 Wrap around

 Idle

 Resynchronize sequence numbers

ETP: ESTABLISHING A CONNECTION

 Tomlinson - forbidden region

ETP: ESTABLISHING A CONNECTION

 Tomlinson – three-way-handshake

No combination of delayed packets can cause the protocol to fail

ETP: ESTABLISHING A CONNECTION

 Tomlinson – three-way-handshake

ETP: RELEASING A CONNECTION

 2 styles:

 Asymmetric

 Connection broken when one party hangs up

 Abrupt!  may result in data loss

 Symmetric

 Both parties should agree to release connection

 How to reach agreement? Two-army problem

 Solution: three-way-handshake

 Pragmatic approach

 Connection = 2 unidirectional connections

 Sender can close unidirectional connection

ETP: RELEASING A CONNECTION

 Asymmetric: data loss

ETP: RELEASING A CONNECTION

 Symmetric: two-army-problem

Simultaneous attack by blue army

Communication is unreliable

No protocol exists!!

ETP: RELEASING A CONNECTION

 Three-way-handshake + timers

 Send disconnection request

+ start timer RS to resend (at most N times)

the disconnection request

 Ack disconnection request

+ start timer RC to release connection

ETP: RELEASING A CONNECTION

RC

ETP: RELEASING A CONNECTION

RS

ETP: FLOW CONTROL AND BUFFERING

Transport Data link

connections, lines many

varying

few

fixed

(sliding) window size varying fixed

buffer management different sizes? fixed size

ETP: FLOW CONTROL AND BUFFERING

 Buffer organization

ETP: FLOW CONTROL AND BUFFERING

 Buffer management: decouple buffering from Acks

ETP: FLOW CONTROL AND BUFFERING

 Where to buffer?

 datagram network  @ sender

 reliable network

+ Receiver process guarantees free buffers?

 No: for low-bandwidth bursty traffic

 @ sender

 Yes: for high-bandwidth smooth traffic

 @ receiver

ETP: FLOW CONTROL AND BUFFERING

 Window size?

 Goal:

 Allow sender to continuously send packets

 Avoid network congestion

 Approach:

 maximum window size = c * r

 network can handle c TPDUs/sec

 r = cycle time of a packet

 measure c & r and adapt window size

ETP: MULTIPLEXING

Upward: reduce number of network connections to reduce cost

Downward: increase bandwidth to avoid per connection limits

ETP: CRASH RECOVERY

 recovery from network, router crashes?

 No problem

 Datagram network: loss of packet is always handled

 Connection-oriented network: establish new connection + use state to continue service

 recovery from host crash?

 server crashes, restarts: implications for client?

 assumptions:

 no state saved at crashed server

 no simultaneous events

 NOT POSSIBLE

Recovery from a layer N crash can only be done by layer N+1 and only if the higher layer

retains enough status information.

ETP: CRASH RECOVERY

 Illustration of problem: File transfer:

 Sender: 1 bit window protocol: states S0, S1

 packet with seq number 0 transmitted; wait for ack

 Receiver: actions

 Ack packet

 Write data to disk

 Order?

ETP: CRASH RECOVERY

 Illustration of problem: File transfer

TRANSPORT LAYER

 Services

 Elements of transport protocol

 Simple transport protocol

 UDP

 Remote Procedure Call (see Distributed Systems)

 TCP

SIMPLE TRANSPORT PROTOCOL

 Service primitives:

 connum = LISTEN (local)

 Caller is willing to accept connection

 Blocked till request received

 connum = CONNECT (local, remote)

 Tries to establish connection

 Returns identifier (nonnegative number)

 status = SEND (connum, buffer, bytes)

 Transmits a buffer

 Errors returned in status

 status = RECEIVE (connum, buffer, bytes)

 Indicates caller’s desire to get data

 status = DISCONNECT (connum)

 Terminates connection

SIMPLE TRANSPORT PROTOCOL

 Transport entity

 Uses a connection-oriented reliable network

 Programmed as a library package

 Network interface

 ToNet(…)

 FromNet(…)

 Parameters:

 Connection identifier (connum = VC)

 Q bit: 1 = control packet

 M bit: 1 = more data packets to come

 Packet type

 Pointer to data

 Number of bytes of data

SIMPLE TRANSPORT PROTOCOL

 Transport entity: packet types

Network packet Meaning

Call request Sent to establish a connection

Call accepted Response to Call Request

Clear Request Sent to release connection

Clear confirmation Response to Clear request

Data Used to transport data

Credit Control packet to manage window

SIMPLE TRANSPORT PROTOCOL

 Transport entity: state of a connection

State Meaning

Idle Connection not established

Waiting CONNECT done; Call Request sent

Queued Call Request arrived; no LISTEN yet

Established

Sending Waiting for permission to send a

packet

Receiving RECEIVE has been done

Disconnecting DISCONNECT done locally

SIMPLE TRANSPORT PROTOCOL

 Transport entity: code

 See fig 6-20, p. 514 – 517

 To read and study at home!

 Questions?

 Is it acceptable not to use a transport header?

 How easy would it be to use another network protocol?

EXAMPLE TRANSPORT ENTITY (1)

EXAMPLE TRANSPORT ENTITY (2)

EXAMPLE TRANSPORT ENTITY (3)

EXAMPLE TRANSPORT ENTITY (4)

EXAMPLE TRANSPORT ENTITY (5)

EXAMPLE TRANSPORT ENTITY (6)

EXAMPLE TRANSPORT ENTITY (7)

EXAMPLE TRANSPORT ENTITY (8)

TRANSPORT LAYER

 Services

 Elements of transport protocol

 Simple transport protocol

 UDP

 Remote Procedure Call (see Distributed Systems)

 TCP

UDP

 User Data Protocol

 Datagram service between processes

 No connection overhead

 UDP header:

 Ports = identification of end points

UDP

 Some characteristics

 Supports broadcasting, multicasting

(not in TCP)

 Packet oriented

(TCP gives byte stream)

 Simple protocol

 Why needed above IP?

TRANSPORT LAYER

 Services

 Elements of transport protocol

 Simple transport protocol

 UDP

 Remote Procedure Call (see Distributed Systems)

 TCP

TCP SERVICE MODEL

 point-to-point

 one sender, one receiver

 reliable, in-order byte stream

 no message/packet boundaries

 pipelined & flow controlled

 window size set by TCP congestion and flow control algorithms

 connection-oriented

 handshaking to get at initial state

 full duplex data

 bi-directional data flow in same connection

TCP SERVICE MODEL

 …

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

TCP PROTOCOL

 Three-way handshake to set up connections

 Every byte has its own 32-bit sequence number

 Wrap around

 32-bit Acks; window size in bytes

 Segment = unit of data exchange

 20-byte header + options + data

 Limits for size

 64Kbyte

 MTU, agreed upon for each direction

 Data from consecutive writes may be accumulated in a single segment

 Fragmentation possible

 Sliding window protocol

TCP HEADER

TCP HEADER

 source & destination ports (16 bit)

 sequence number (32 bit)

 Acknowledgement number (32 bit)

 Header length (4 bits) in 32-bit words

 6 flags (1 bit)

 window size (16 bit): number of bytes the sender is allowed to send starting at

byte acknowledged

 checksum (16 bit)

 urgent pointer (16 bit) : byte position of urgent data

TCP HEADER

 Flags:

 URG: urgent pointer in use

 ACK: valid Acknowledgement number

 PSH: receiver should deliver data without delay to user

 RST: reset connection

 SYN: used when establishing connections

 FIN: used to release connection

 Options:

 Maximum payload a host is willing to receive

 Scale factor window size

 Use selective repeat instead of go back n

TCP CONNECTION MANAGEMENT

 Three-way handshake

 Initial sequence number: clock based

 No reboot after crash for T (maximum packet lifetime=120 sec)

 Wrap around?

 Connection identification

 Pair of ports of end points

 Connection release

 Both sides are closed separately

 No response to FIN: release after 2*T

 Both sides closed: wait for time 2 * T

TCP CONNECTION MANAGEMENT

TCP CONNECTION MANAGEMENT

State Description

Closed No connection is active or pending

Listen The server is waiting for an incoming call

SYN rcvd A connection request has arrived; wait for ACK

SYN sent The application has started to open a connection

Established The normal data transfer state

FIN wait 1 The application has said it is finished

FIN wait 2 The other side has agreed to release

Timed wait Wait for all packets to die off

Closing Both sides have tried to close simultaneously

Close wait The other side has initiated a release

Last Ack Wait for all packets to die off

TCP TRANSMISSION POLICY

 Window size decoupled from Acks (ex. next slides)

 Window = 0  no packets except for

 Urgent data

 1 byte segment to send Ack & window size

 Incoming user data may be buffered

 May improve performance: less segments to send

 Ways to improve performance:

 Delay acks and window updates for 500 msec

 Nagle’s algorithm

 Silly window syndrome

TCP TRANSMISSION POLICY

TCP TRANSMISSION POLICY

 Telnet scenario: interactive editor reacting on each keystroke: One character typed

 21 byte segment or 41 byte IP packet

 (packet received) 20 byte segment with Ack

 (editor has read byte) 20 byte segment with window update

 (editor has processed byte; sends echo) 21 byte segment

 (client gets echo) 20 byte segment with Ack

 Solutions:

 delay acks + window updates for 500 msec

 Nagle’s algorithm:

 Receive one byte from user; send it in segment

 Buffer all other chars till Ack for first char arrives

 Send other chars in a single segment

 Disable algorithm for X-windows applications (do not delay sending of mouse
movements)

TCP TRANSMISSION POLICY

 Silly window syndrome

 Problem:

 Sender transmits data in large blocks

 Receiver reads data 1 byte at a time

 Scenario: next slide

 Solution:

 Do not send window update for 1 byte

 Wait for window update till

 Receiver can accept MTU

 Buffer is half empty

TCP TRANSMISSION POLICY

TCP TRANSMISSION POLICY

 General approach:

 Sender should not send small segments

 Nagle: buffer data in TCP send buffer

 Receiver should not ask for small segments

 Silly window: do window updates in large units

PRINCIPLES OF CONGESTION

CONTROL

Congestion:

 informally: “too many sources sending too much data too fast for network to

handle”

 different from flow control!

= end-to-end issue!

 manifestations:

 lost packets (buffer overflow at routers)

 long delays (queue-ing in router buffers)

 a top-10 problem!

CAUSES/COSTS OF CONGESTION:

SCENARIO

 two senders, two receivers

 one router, infinite buffers

 no retransmission

 large delays

when congested

 maximum

achievable

throughput

APPROACHES TOWARDS CONGESTION

CONTROL

 end-to-end congestion control:

 no explicit feedback from

network

 congestion inferred from end-

system observed loss, delay

 approach taken by TCP

 Network-assisted congestion

control:

 routers provide feedback to end

systems

 single bit indicating

congestion (SNA, ATM)

 explicit rate sender should

send at

Two broad approaches towards congestion control:

TCP CONGESTION CONTROL

 How to detect congestion?

 Timeout caused by packet loss: reasons

 Transmission errors

 Packed discarded at congested router

: Rare

Packet loss

Hydraulic example illustrating two limitations

for sender!

for wired networks

TCP CONGESTION CONTROL

TCP CONGESTION CONTROL

 How to detect congestion?

 Timeout caused by packet loss: reasons

 Transmission errors

 Packed discarded at congested router

: Rare

Packet loss  congestion

Approach: 2 windows for sender

Receiver window

Congestion window

Minimum of 

TCP CONGESTION CONTROL

 end-end control (no network assistance)

 transmission rate limited by congestion window size, Congwin, over segments:

 w segments, each with MSS bytes sent in one RTT:

throughput = w * MSS
RTT Bytes/sec

Congwin

TCP CONGESTION CONTROL:

 “probing” for usable

bandwidth:

 ideally: transmit as fast as
possible (Congwin as large as

possible) without loss

 increase Congwin until loss

(congestion)

 loss: decrease Congwin, then

begin probing (increasing) again

 two “phases”

 slow start

 congestion avoidance

 important variables:

 Congwin

 threshold: defines

threshold between two

phases:

 slow start phase

 congestion control phase

TCP SLOW START

 exponential increase (per RTT)

in window size (not so slow!)

 loss event: timeout (Tahoe TCP)

and/or three duplicate ACKs

(Reno TCP)

initialize: Congwin = 1

for (each segment ACKed)

Congwin++

until (loss event OR

CongWin > threshold)

Slow start algorithm
Host A

R
T

T

Host B

time

TCP CONGESTION AVOIDANCE

/* slowstart is over */

/* Congwin > threshold */

Until (loss event) {

every w segments ACKed:

Congwin++

}

threshold = Congwin/2

Congwin = 1

perform slowstart

Congestion avoidance

1

1: TCP Reno skips slowstart (fast
recovery) after three duplicate ACKs

TCP CONGESTION CONTROL

TCP TIMER MANAGEMENT

 How long should the timeout interval be?

 Data link: expected delay predictable

 Transport: different environment; impact of

 Host

 Network (routers, lines)

unpredictable

 Consequences

 Too small: unnecessary retransmissions

 Too large: poor performance

 Solution: adjust timeout interval based on continuous measurements of network

performance

TCP TIMER MANAGEMENT

Data link layer Transport layer

TCP TIMER MANAGEMENT

 Algorithm of Jacobson:

 RTT = best current estimate of the round-trip time

 D = mean deviation (cheap estimator of the standard variance)

 4?

 Less than 1% of all packets come in more than 4 standard deviations late

 Easy to compute

Timeout = RTT + 4 * D

TCP TIMER MANAGEMENT

 Algorithm of Jacobson:

 RTT =  RTT + (1 -) M  = 7/8

M = last measurement of round-trip time

 D =  D + (1 - ) RTT - M

 Karn’s algorithm: how handle retransmitted segments?

 Do not update RTT for retransmitted segments

 Double timeout

Timeout = RTT + 4 * D

TCP TIMER MANAGEMENT

 Other timers:

 Persistence timer

 Problem: lost window update packet when window is 0

 Sender transmits probe; receivers replies with window size

 Keep alive timer

 Check whether other side is still alive if connection is idle for a long time

 No response: close connection

 Timed wait

 Make sure all packets are died off when connection is closed

 = 2 T

WIRELESS TCP & UDP

 Transport protocols

 Independent of underlying network layer

 BUT: carefully optimized for wired networks

 Assumption:

 Packet loss caused by congestion

 Invalid for wireless networks: always loss of packets

 Congestion algorithm:

 Timeout (= congestion)  slowdown

 Solution for wireless networks:

 Retransmit asap

Wireless: Lower throughput – same loss  NO solution

WIRELESS TCP

 Heterogeneous networks

 Solutions?

 Retransmissions can cause congestion in wired network

WIRELESS TCP

WIRELESS TCP

 Solutions for heterogeneous networks

 Snooping agent at base station

 Cashes segments for mobile host

 Retransmits segment if ack is missing

 Removes duplicate acks

 Generates selective repeat requests for segments originating at mobile host

Snooping agent

Congestion algorithm may be invoked

WIRELESS UDP

 UDP = datagram service  loss permitted

no problems?

 Programs using UDP expect it to be

highly reliable

 Wireless UDP: far from perfect!!!

 Implications for programs recovering from lost UDP messages

TRANSACTIONAL TCP

 How to implement RPC?

 On top of UDP?

 Yes if

 Request and reply fit in a single packet

 Operations are idempotent

 Otherwise

 Reimplementation of reliability

 On top of TCP?

TRANSACTIONAL TCP

How to implement RPC?

 On top of UDP?

 Yes if

 Request and reply fit in a single packet

 Operations are idempotent

 Otherwise

 Reimplementation of reliability

 On top of TCP?

 Unattractive because of connection set up

 Solution: transactional TCP

TRANSACTIONAL TCP

How to implement RPC?

 On top of UDP?

 Problems withreliability

 On top of TCP?

 Overhead of connection set up

 Solution: transactional TCP

 Allow data transfer during setup

 Immediate close of stream

APPLICATION LAYER

 The three concepts

 Service model

 Protocol

 Interface

 Network application is more than
application level protocols

 Client site

 Server site

 Application level protocol

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

CLIENT/SERVER PARADIGM

 Client

 Initiates contact with server (speak first)

 Typically request service from server

 Question: identify who is/implements client in

 Web?

 Email?

 Server

 Provides requested service to clients

 Question: identify who is/implements the
server counterpart in

 Web?

 Email?

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

request

reply

WHICH TRANSPORT SERVICE DOES APPLICATION NEED?

- PARAMETERS

 Data Loss

 Loss-tolerant applications, e.g. audio/video

 other app such as file transfer, telnet requires 100% reliable transmission

 Bandwidth

 Bandwidth-sensitive applications, such as multimedia, require a maximum amount of
bandwidth

 Elastic applications: can use whatever bandwidth available

 Timing

 Some apps such as internet telephone requires “low delay” to be effective

TRANSPORT SERVICE REQUIRED BY COMMON

APPLICATIONS

Application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

financial apps

Data loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

loss-tolerant

no loss

Bandwidth

elastic

elastic

elastic

audio: 5Kb-1Mb

video:10Kb-5Mb

same as above

few Kbps up

elastic

Time Sensitive

no

no

no

yes, 100’s msec

yes, few secs

yes, 100’s msec

yes and no

INTERNET APPS AND THEIR TRANSPORT LAYER

PROTOCOLS

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

remote file server

Internet telephony

Application

layer protocol

smtp [RFC 821]

telnet [RFC 854]

http [RFC 2068]

ftp [RFC 959]

proprietary

(e.g. RealNetworks)

NFS

Proprietary (private)

(e.g., Vocaltec)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

TCP or UDP

typically UDP

DNS – DOMAIN NAME SYSTEM

Name: panda.ece.utk.edu

IP: 160.36.30.108

DNS: MAPPING NAME TO ADDRESS

 Name: panda.ece.utk.edu is used by human

 IP address: a 32-bit numerical value used by machine

 DNS

 A distributed database, implemented by a hierarchy of name servers

 Application level protocols used by hosts, routers and name servers

 Internet intelligence is on the edge

DNS NAME SPACE

biz, info, name, pro

aero, coop, museum
ICANN

http://www.icann.org/

DNS – WHY NOT CENTRIC?

 Single point of failure

 Traffic volume

 Distant name server means slow response

 Scalability

 History: ARPANET begins with a single hosts.txt.

DNS – HIERARCHICAL VIEW

 Local DNS server

 Authoritative DNS server

 Root DNS server

•

DNS: WHERE ARE ROOT SERVERS?

•

DNS: AN EXAMPLE

 Case: Root server knows

authoritative DNS server

requesting host
panda.ece.utk.edu

worf.mcnc.org

root name
server

local name server
dns.ece.utk.edu

1

2
3

4

5

6

Authoritative DNS server
dns.mcnc.org

DNS: AN EXAMPLE

 Case: Root server doesn’t

know immediate

authoritative DNS server,

but know the

intermediate one

requesting host
panda.ece.utk.edu

people.anr.mcnc.org

root name
server

local name server
dns.ece.utk.edu

1

2
3

6

7

8

Intermediate server
dns.mcnc.org

Authoritative server
dns.anr.mcnc.org

5

4

DNS: ITERATED QUERY

 Root server replies with

the name of intermediate

server

 Iterated query vs.

recursive query

requesting host
panda.ece.utk.edu

people.anr.mcnc.org

root name
server

local name server
dns.ece.utk.edu

1

2

3

8

Intermediate server
dns.mcnc.org

Authoritative server
dns.anr.mcnc.org

6

5

4

7

Iterated
query

DNS CACHING

 Once (any) server learns new mapping, it caches it

 The cache will expire after some time

 Update/notify mechanism is defined by IETF RFC 2136

DNS SERVER AND SERVICE

 Running on top of UDP

 Port number: 53

 Frequently used by other applications such as SMTP, FTP, HTTP

 Important services

 Host aliasing

 Mail server aliasing

 Load distribution (DNS rotation)

 User utilities: dig, http://www.netliner.com/dig.html

 More DNS information: see DNS NET http://www.dns.net/dnsrd/docs/

http://www.netliner.com/dig.html

*DNS RESOURCE RECORD

DNS: distributed database storing resource records (RR)

RR format: (domain_name, ttl, class, type, value)

*DNS: MESSAGE FORMAT

DNS protocol : query and reply messages, both with same message format

message header

• identification: 16 bit # for query, reply

to query uses same #

• flags:

• query or reply

• recursion desired

• recursion available

• reply is authoritative

*DNS PROTOCOL MESSAGE

Name, type fields
for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

ELECTRONIC MAIL

Three major components:

 user agents

 mail servers

 simple mail transfer

protocol: smtp

User Agent

 “mail reader”

 composing, editing, reading

mail messages

 e.g., Eudora, Outlook, elm,

Netscape Messenger

 outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

ELECTRONIC MAIL: MAIL SERVER

 mailbox contains incoming messages (yet to be read) for user

 message queue of outgoing (to be sent) mail messages

 Common Mail Server:

 Sendmail

 MS Exchange

SMTP: RFC 821

 Use TCP for reliable transfer, use port number 25

 Message must be 7-bit ASCII

[hqi@aicip hqi]$ telnet panda.ece.utk.edu 25

Trying 160.36.30.108...

Connected to panda.ece.utk.edu.

Escape character is '^]'.

220 panda.ece.utk.edu ESMTP Sendmail 8.11.6/8.11.6; Thu, 21 Nov 2002

09:54:04 -0500

HELO panda.ece.utk.edu

250 panda.ece.utk.edu Hello pegasus.ece.utk.edu [160.36.30.110], pleased

to meet you

MAIL FROM: <hqi@aicip.ece.utk.edu>

250 2.1.0 <hqi@aicip.ece.utk.edu>... Sender ok

RCPT TO: <hqi@panda.ece.utk.edu>

250 2.1.5 <hqi@panda.ece.utk.edu>... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

do you like ketchup?

how about pickles?

.

250 2.0.0 gALEt5U25932 Message accepted for delivery

QUIT

221 2.0.0 panda.ece.utk.edu closing connection

Connection closed by foreign host.

MAIL ACCESS PROTOCOL – FINAL DELIVERY

 SMTP: delivery/storage to receiver’s server

 Mail access protocol: retrieval from server

– POP: Post Office Protocol [RFC 1939] (port 110)

o authorization (agent <-->server) and download

o Does not maintain state across POP sessions

o Cannot manipulate emails at the server side

– IMAP: Internet Mail Access Protocol [RFC 1730]

o more features (more complex)

o manipulation of stored msgs on server

o Maintain state for the user

– HTTP: Hotmail , Yahoo! Mail, etc.

– Slow

user
agentsender’s mail server

user
agent

SMTP
SMTP

POP3,
IMAP, or

HTTP

receiver’s mail server

http

SUMMARY

 Application

 Client

 Server

 Protocol

 What type of service

 Through what interface

 Which port

 DNS

 Aliasing vs. load distribution

 “nslookup” and “dig”

 Email

 SMTP

 Mail access protocol

 POP3

 IMAP

 HTTP

WEB: TERMINOLOGY

 Web page

 Consists of “objects”

 Addressed by “url” (universal
resource locator)

 Most of web page

 One base web page

 Several referenced “objects”

 URL has two components

 A host name and a path

 http://panda.ece.utk.edu/~hqi/teac
hing.html

 Web client

 Netscape communicator

 Mozilla

 Microsoft IE browser

 Web server

 Apache

 Microsoft Internet Information

Server (IIS)

WEB: THE HTTP PROTOCOL

 Web application layer protocol: a
hyper text transfer protocol, http

 Defined by

 HTTP 1.0, RFC 1945

 HTTP 1.1, RFC 2068

 Client/Server Mode

 Client: browser asks for objects, and
display it

 Request

 Display

 Server: provide objects in response
to requests

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

WEB: HTTP OPERATION FLOW

 HTTP utilizes TCP transport services

 HTTP client initiates TCP connection
(create socket) to server, at port 80

 Server accepts this connection from
client

 HTTP messages (defined by HTTP
protocol) are exchanged between http
client and http server

 TCP connection closed

 HTTP is stateless

 Server doesn’t maintain the state

of past requests

 ‘back’?

HTTP EXAMPLE

Suppose user enters URL www.someSchool.edu/someDepartment/home.index

1a. http client initiates

TCP connection to http

server (process) at

www.someSchool.edu. Port 80

is default for http

server.

2. http client sends http request message

(containing URL) into TCP connection

socket

(plus another acknowledge

message)

1b. http server at host

www.someSchool.edu waiting for TCP

connection at port 80. “accepts”

connection, notifying client

3. http server receives request message,

forms response message containing

requested object

(someDepartment/home.index), sends

message into socket

(conta ins text,

references to 10

jpeg images)

time

HTTP EXAMPLE (CONT’D)

5. http client receives

response message

containing html file,

displays html. Parsing

html file, finds 10

referenced jpeg objects

6. Steps 1-5 repeated for each of 10

jpeg objects

4. http server closes TCP connection.

time
• Two RTT (Round-trip time)

• Slow start

• Place burden on the Web server

HTTP: PERSISTENT AND NON-PERSISTENT

CONNECTION

 Non-persistent

 HTTP 1.0

 Server parses request, responds, then closes TCP connection

 Each object requires 2 RTT

 Each object suffers slow start

 Persistent

 HTTP 1.1

 On the same TCP connection, server parses request, responds, and parses new
requests

SMTP VS. HTTP

 HTTP: Direct connection, no intermediate mail servers

 Both use persistent connection

 HTTP is a pull protocol, while SMTP is a push protocol

 SMTP: 7-bit ASCII format, message ended with a line consisting of only a period

*HTTP MESSAGE FORMAT

 two types of http messages: request, response

 http request message:

 ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0

User-agent: Mozilla/4.0

Accept: text/html,image/gif,image/jpeg

Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

*HTTP REQUEST: GENERAL FORMAT

*HTTP MESSAGE FORMAT: RESPONSE

HTTP/1.0 200 OK

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

*HTTP RESPONSE: STATUS CODE

200 OK

 request succeeded, requested object later in this message

301 Moved Permanently

 requested object moved, new location specified later in this message
(Location:)

400 Bad Request

 request message not understood by server

404 Not Found

 requested document not found on this server

505 HTTP Version Not Supported

TRY OUT HTTP (CLIENT SIDE) FOR YOURSELF

 Telnet to your favorite web site

telnet

panda.ece.utk.edu 80

open TCP connection to
panda port 80, anything
you type be sent to
panda port 80 socket

 Type in request, and look at the response

GET /~hqi/index.html HTTP/1.0

[hqi@com779 hqi]$ telnet panda.ece.utk.edu 80

Trying 160.36.30.108...

Connected to panda.ece.utk.edu.

Escape character is '^]'.

get /~hqi/index.html http/1.0

HTTP/1.1 501 Method Not Implemented

Date: Sun, 02 Sep 2001 21:03:28 GMT

Server: Apache/1.3.19 (Unix) (Red-Hat/Linux) PHP/4.0.4pl1

Allow: GET, HEAD, POST, PUT, DELETE, CONNECT,

OPTIONS, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY,

MOVE, LOCK, UNLOCK, TRACE

Connection: close

Content-Type: text/html; charset=iso-8859-1

[hqi@com779 hqi]$ telnet panda.ece.utk.edu 80

Trying 160.36.30.108...

Connected to panda.ece.utk.edu.

Escape character is '^]'.

GET /~hqi/index.html http/1.0

HTTP/1.1 200 OK

Date: Sun, 02 Sep 2001 21:05:43 GMT

Server: Apache/1.3.19 (Unix) (Red-Hat/Linux) PHP/4.0.4pl1

Last-Modified: Sat, 07 Jul 2001 15:42:14 GMT

ETag: "1f222e-df9-3b472dd6"

Accept-Ranges: bytes

Content-Length: 3577

Connection: close

Content-Type: text/html

<HTML>

……

</HTML>

Connection closed by foreign host.

ADD-ON FEATURES: AUTHENTICATION

 Purpose of authentication: control
access to document

 Means: user name and password

 User must present password on
each request, Authorization:line

 Server asks for it by giving it the
response with WWW authenticate:

client server

usual http request msg

401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization:line

usual http response msg

usual http request msg
+ Authorization:line

usual http response msg time

ADD-ON FEATURE: COOKIES

 Server sends user cookie in
response message:

 Set-cookie:

1678453

 Client presents cookie in later
request

 cookie: 1678453

 Server matches cookies with
stored information: such as
user preference, password etc

client server

usual http request msg

usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

cookie-
spectific

action

ADD-ON FEATURE: WEB CACHES OR PROXY

SERVERS

 Goal: to satisfy user request

without invoking origin server

 User makes request, the object

requested has been cached, then

proxy server will reply, else proxy

server request the object for

client and then response

client

Proxy
server

client
origin
server

origin
server

WHY WEB CACHING?

 Cache should be closer to the

clients

 Faster response

 Reduce traffic (pay less money)

 Web cache:

 Cost is low

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

FTP: FILE TRANSFER PROTOCOL

 transfer file to/from remote host

 client/server model

– client: initiates transfer (either to/from remote)

– server: remote host

 ftp: RFC 959

file transfer
FTP

server

FTP
user

interface

FTP
client

local file
system

remote file
systemuser

at host

FTP: OPERATION FLOW

 ftp client contacts ftp server at port 21,
specifying TCP as transport protocol

 two parallel TCP connections opened:

 control: exchange commands,
responses between client, server

“out of band control”

 data: file data to/from server

 ftp server maintains “state”: current
directory, earlier authentication

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

Data connection is closed

whenever it finished

transferring one file.

FTP: COMMAND AND RESPONSE

Sample commands:

 sent as ASCII text over

control channel

 USER username

 PASS password

 LIST return list of file

in current directory

 RETR filename retrieves

(gets) file

 STOR filename stores

(puts) file onto remote

host

Sample return codes

 status code and phrase

(as in http)

 331 Username OK,

password required

 125 data connection

already open; transfer

starting

 425 Can’t open data

connection

 452 Error writing file

Thank you
The content in this material are from the textbooks and reference books

given in the syllabus.

