COMPUTER NETWORKS- (20MCA23C)

UNIT-111
“THE DATA LINK LAYER’

DATA LINK LAYER DESIGN ISSUES

B Network layer services
M Framing
M Error control

B Flow control

DATA LINK LAYER

Algorithms for achieving:
B Reliable, +

B Efficient, communication of a whole units — frames (as opposed to bits —
Physical Layer) between two machines.

B Two machines are connected by a communication channel that acts conceptually
like a wire (e.g., telephone line, coaxial cable, or wireless channel).

M Essential property of a channel that makes it “wire-like” connection is that the
bits are delivered in exactly the same order in which they are sent.

M For ideal channel (no distortion, unlimited bandwidth and no delay) the job of
data link layer would be trivial.

M However, limited bandwidth, distortions and delay makes this job very difficult.

DATA LINK LAYER DESIGN ISSUES

B Physical layer delivers bits of information to and from data link layer. The
functions of Data Link Layer are:

M Providing a well-defined service interface to the network layer.

M Dealing with transmission errors.

M Regulating the flow of data so that slow receivers are not swamped by fast senders.
M Data Link layer

M Takes the packets from Physical layer, and

M Encapsulates them into frames.

DATA LINK LAYER DESIGN ISSUES

M Each frame has a
M frame header — a field for holding the packet, and

M frame trailer.
B Frame Management is what Data Link Layer does.

M See figure in the next slide:

PACKETS AND FRAMES

Sending machine

Packet

|

Header

Payload field

Trailler

§

Frame

Receiving machine

Packet

|

Header

Payload field

Trailler

J

SERVICES PROVIDED TO THE NETWORK LAYER

M Principal Service Function of the data link layer is to transfer the data
from the network layer on the source machine to the network layer on
the destination machine.

B Process in the network layer that hands some bits to the data link
layer for transmission.

B Job of data link layer is to transmit the bits to the destination machine
so they can be handed over to the network layer there (see figure in
the next slide).

NETWORK LAYER SERVICES

M (a) Virtual communication. (b) Actual communication.

Host 1 Host 2 Host 1 Host 2
4 4 4 4
3 T T 3 3 [] L] 3
Virtual
dat th
2 L ata pa J 2 2 2
1 1 1 1
Actual

n_ data path _/
(a) (b)

POSSIBLE SERVICES OFFERED

B Unacknowledged connectionless service.
B Acknowledged connectionless service.

M Acknowledged connection-oriented service.

UNACKNOWLEDGED CONNECTIONLESS

SERVICE

M It consists of having the source machine send independent frames to the
destination machine without having the destination machine acknowledge them.

B Example: Ethernet, Voice over IP, etc. in all the communication channel were real
time operation is more important that quality of transmission.

ACKNOWLEDGED CONNECTIONLESS SERVICE

B Each frame send by the Data Link layer is acknowledged and the sender knows if
a specific frame has been received or lost.

M Typically the protocol uses a specific time period that if has passed without
getting acknowledgment it will re-send the frame.

M This service is useful for commutation when an unreliable channel is being
utilized (e.g., 802.1 | WiFi).

B Network layer does not know frame size of the packets and other restriction of
the data link layer. Hence it becomes necessary for data link layer to have some
mechanism to optimize the transmission.

ACKNOWLEDGED CONNECTION ORIENTED

SERVICE

B Source and Destination establish a connection first.
B Each frame sent is numbered

M Data link layer guarantees that each frame sent is indeed received.

M It guarantees that each frame is received only once and that all frames are received in
the correct order.

B Examples:
B Satellite channel communication,

M Long-distance telephone communication, etc.

ACKNOWLEDGED CONNECTION ORIENTED

SERVICE

B Three distinct phases:

B Connection is established by having both side initialize variables and counters needed
to keep track of which frames have been received and which ones have not.

B One or more frames are transmitted.

M Finally, the connection is released — freeing up the variables, buffers, and other
resources used to maintain the connection.

FRAMING

M To provide service to the network layer the data link layer must use the service
provided to it by physical layer.

M Stream of data bits provided to data link layer is not guaranteed to be without
errors.

B Errors could be:

B Number of received bits does not match number of transmitted bits (deletion or
insertion)

B BitValue

M It is up to data link layer to correct the errors if necessary.

FRAMING

B Transmission of the data link layer starts with breaking up the bit stream

M into discrete frames
M Computation of a checksum for each frame, and

B Include the checksum into the frame before it is transmitted.

B Receiver computes its checksum error for a receiving frame and if it is different
from the checksum that is being transmitted will have to deal with the error.

B Framing is more difficult than one could think!

FRAMING METHODS

M Byte count.
B Flag bytes with byte stuffing.
B Flag bits with bit stuffing.

B Physical layer coding violations.

BYTE COUNT FRAMING METHOD

M It uses a field in the header to specify the number of bytes in the frame.

B Once the header information is being received it will be used to determine end
of the frame.

M See figure in the next slide:

B Trouble with this algorithm is that when the count is incorrectly received the
destination will get out of synch with transmission.

M Destination may be able to detect that the frame is in error but it does not have a
means (in this algorithm) how to correct it.

FRAMING (1)

a1y 2345|661 7|8[9|8(0 1234|5687 |8]9|0[1]2]3

i I A AN

Frame 1 Frame 2 Frame 3 Frame 4
5 bytes o bytes 8 bytes 8 bytes
(a)
Error

syt 213(4| 767|898 0(1 2345|687 8|9]0[1[2]3

Frame 1 Frame 2 Mow a byte
(Wrong) count

(b)

FLAG BYTESWITH BYTE STAFFING FRAMING

METHOD

B This methods gets around the boundary detection of the frame by having each
appended by the frame start and frame end special bytes.

M If they are the same (beginning and ending byte in the frame) they are called flag
byte.

B In the next slide figure this byte is shown as FLAG.

M If the actual data contains a byte that is identical to the FLAG byte (e.g., picture,
data stream, etc.) the convention that can be used is to have escape character
inserted just before the “FLAG” character.

FRAMING (2)

M A frame delimited by flag bytes.

B Four examples of byte sequences before and after byte stuffing.

FLAG| Header Payload field Trailer |FLAG
(a)
Original bytes After stuffing
A FLAG B —_— | A ESC | [FLAG B
A ESC B —_— | A ESC | | ESC B

A ESC | |FLAG B — | A ESC | | ESC | | ESC | |[FLAG B

A ESC | | ESC B — | A ESC | [ESC || ESC | | ESC B

(b)

FLAG BITSWITH BIT STUFFING FRAMING

METHOD

B This methods achieves the same thing as Byte Stuffing method by using Bits (1)
instead of Bytes (8 Bits).

M It was developed for High-level Data Link Control (HDLC) protocol.
B Each frames begins and ends with a special bit patter:
B Ol111110or OX7E <- Flag Byte

B Whenever the sender’s data link layer encounters five consecutive Is in the data it
automatically stuffs a 0 bit into the outgoing bit stream.

B USB uses bit stuffing.

FRAMING (3)

M Bit stuffing. (a) The original data. (b) The data as they appear on

M the line. (c) The data as they are stored in the receiver’s memory after destuffing.

(@) 011011111111111111110010

(b) 011011111011111011111010010

T

Stuffed bits

(¢) 011011111111111111110010

FRAMING

B Many data link protocols use a combination of presented methods for safety. For
example in Ethernet and 802.1| each frame begin with a well-defined pattern
called a preamble.

M Preamble is typically 72 bits long.
M It is then followed by a length filled.

ERROR CONTROL

B After solving the marking of the frame with start and end the data link layer has
to handle eventual errors in transmission or detection.

B Ensuring that all frames are delivered to the network layer at the destination and in
proper order.
B Unacknowledged connectionless service: it is OK for the sender to output

frames regardless of its reception.

B Reliable connection-oriented service: it is NOT OK.

ERROR CONTROL

B Reliable connection-oriented service usually will provide a sender with some
feedback about what is happening at the other end of the line.

B Receiver Sends Back Special Control Frames.

B If the Sender Receives positive Acknowledgment it will know that the frame has
arrived safely.

B Timer and Frame Sequence Number for the Sender is Necessary to handle the
case when there is no response (positive or negative) from the Receiver .

FLOW CONTROL

B Important Design issue for the cases when the sender is running on a fast
powerful computer and receiver is running on a slow low-end machine.

M Two approaches:
B Feedback-based flow control

B Rate-based flow control

FEEDBACK-BASED FLOW CONTROL

B Receiver sends back information to the sender giving it permission to send more
data, or

M Telling sender how receiver is doing.

RATE-BASED FLOW CONTROL

B Built in mechanism that limits the rate at which sender may transmit data,
without the need for feedback from the receiver.

ERROR DETECTION AND CORRECTION

B Two basic strategies to deal with errors:

M Include enough redundant information to enable the receiver to deduce what the
transmitted data must have been.
Error correcting codes.

M Include only enough redundancy to allow the receiver to deduce that an error has
occurred (but not which error).

Error detecting codes.

ERROR DETECTION AND CORRECTION

B Error codes are examined in Link Layer because this is the first place that we
have run up against the problem of reliability transmitting groups of bits.

B Codes are reused because reliability is an overall concern.

B The error correcting code are also seen in the physical layer for noise channels.

B Commonly they are used in link, network and transport layer.

ERROR DETECTION AND CORRECTION

B Error codes have been developed after long fundamental research conducted in
mathematics.

B Many protocol standards get codes from the large field in mathematics.

ERROR DETECTION & CORRECTION CODE (1)

B Hamming codes.
M Binary convolutional codes.
B Reed-Solomon codes.

B Low-Density Parity Check codes.

ERROR DETECTION & CORRECTION CODE

M All the codes presented in previous slide add redundancy to the information that is
being sent.
B A frame consists of

B m data bits (message) and

B r redundant bits (check).
B Block code - the r check bits are computed solely as function of the m data bits with

which they are associated.

B Systemic code — the m data bits are send directly along with the check bits.

B Linear code — the r check bits are computed as a linear function of the m data bits.

ERROR DETECTION & CORRECTION CODE

n — total length of a block (i.e, n =m +r)
(n, m) — code
n — bit codeword containing n bits.

m/n — code rate (range 2 for noisy channel and close to | for high-quality
channel).

ERROR DETECTION & CORRECTION CODE

B Example

B Transmitted: 10001001

B Received: 10110001

B XOR operation gives number of bits that are different.
B XOR: 00111000

M Number of bit positions in which two codewords differ is called Hamming
Distance. It shows that two codes are d distance apart, and it will require d
errors to convert one into the other.

ERROR DETECTION & CORRECTION CODE

B All 2m possible data messages are legal, but due to the way the check bits are
computers not all 2n possible code words are used.

B Only small fraction of 2m/2n=1/2r are possible will be legal codewords.

M The error-detecting and error-correcting codes of the block code depend on
this Hamming distance.

M To reliably detect d error, one would need a distance d+1| code.

B To correct d error, one would need a distance 2d+1| code.

ERROR DETECTION & CORRECTION CODE

B All 2m possible data messages are legal, but due to the way the check bits are
computers not all 2n possible code words are used.

B Only small fraction of 2m/2n=1/2r are possible will be legal codewords.

M The error-detecting and error-correcting codes of the block code depend on
this Hamming distance.

M To reliably detect d error, one would need a distance d+1| code.

B To correct d error, one would need a distance 2d+1| code.

ERROR DETECTION & CORRECTION CODE

Example:

4 valid codes:
M 0000000000
M 000001111l
m 1111100000
_ B ERRRERERR

B Minimal Distance of this code is 5 => can correct and double errors and it detect
quadruple errors.

M 00000001 I'l => single or double — bit error. Hence the receiving end must assume
the original transmission was 000001 I 1 I'].

B 0000000000 => had triple error that was received as 000000011l it would be
detected in error.

ERROR DETECTION & CORRECTION CODE

B One cannot perform double errors and at the same time detect quadruple
errors.

B Error correction requires evaluation of each candidate codeword which may be
time consuming search.

B Through design this search time can be minimized.

M In theory if n = m + r, this requirement becomes:

M (m+r+1)s2r

HAMMING CODE

M Codeword:bl b2 b3 b4
B Check bits: The bits that are powers of 2 (pl, p2,p4,p8,pl6,...).
B The rest of bits (m3, m5, mé, m7, m9, ...) are filled with m data bits.

B Example of the Hamming code with m = 7 data bits and r = 4 check bits is given
in the next slide.

THE HAMMING CODE

B Consider a message having four data bits (D) which is to be transmitted as a 7-
bit codeword by adding three error control bits. This would be called a (7,4)
code. The three bits to be added are three EVEN Parity bits (P), where the parity
of each is computed on different subsets of the message bits as shown below.

7l6lsl4l31200]

DDDVPDZPP 7-BIT CODEWORD
D-D-D- P (EVEN PARITY)
DD - -DP - (EVEN PARITY)

DDDP - - - (EVEN PARITY)

HAMMING CODE

B Why Those Bits? - The three parity bits (1,2,4) are related to the data bits
(3,5,6,7) as shown at right. In this diagram, each overlapping circle corresponds
to one parity bit and defines the four bits contributing to that parity
computation. For example, data bit 3 contributes to parity bits | and 2. Each
circle (parity bit) encompasses a total of four bits, and each circle must have
EVEN parity. Given four data bits, the three parity bits can easily be chosen to
ensure this condition.

M It can be observed that changing any one bit numbered 1..7 uniquely affects the
three parity bits. Changing bit 7 affects all three parity bits, while an error in bit 6
affects only parity bits 2 and 4, and an error in a parity bit affects only that bit.
The location of any single bit error is determined directly upon checking the
three parity circles.

HAMMING CODE

M For example, the message | 101 would be sent as 1100110, since:

7-BIT CODEWORD
| - 0 - 1 - 0 (EVENPARITY)
(EVEN PARITY)
(EVEN PARITY)

o 1
() 1
1 —
1 —
1 1

HAMMING CODES

B When these seven bits are entered into the parity circles, it can be confirmed
that the choice of these three parity bits ensures that the parity within each
circle is EVEN, as shown here.

HAMMING CODE

It may now be observed that if an error occurs in any of the seven bits, that error will
affect different combinations of the three parity bits depending on the bit position.

For example, suppose the above message 1100110 is sent and a single bit error
occurs such that the codeword 1110110 is received:

transmitted message received message
100110 —mmemmemee > 1110110
BIT:765432 1 BIT:7654321

The above error (in bit 5) can be corrected by examining which of the three parity
bits was affected by the bad bit:

HAMMING CODE

7-BIT CODEWORD

(EVEN PARITY)

I -1 -1 1] - (EVEN PARITY) N?T
I -] - | | I (EVEN PARITY) OK!
NOT

HAMMING CODE

In fact, the bad parity bits labeled 101 point directly to the bad bit since 101
binary equals 5. Examination of the 'parity circles' confirms that any single bit
error could be corrected in this way.

The value of the Hamming code can be summarized:

Detection of 2 bit errors (assuming no correction is attempted);
Correction of single bit errors;

Cost of 3 bits added to a 4-bit message.

The ability to correct single bit errors comes at a cost which is less than sending
the entire message twice. (Recall that simply sending a message twice
accomplishes no error correction.)

ERROR DETECTION CODES (2)

Check
bits

AN

A Pq1 P2 M3 Pg Mg MgMmy pg Mg Myq Mqq
1000001=—-=-0 0100001001

L J
!

Sent
codeword

Message

Syndrome

0101 Flip
bit 5
~w_ Check
1 t3'“%@3%5
error

—_— 00 1 o|1|o 0100 1 +1000001
Channel 1

Recewed Message

codeword

CONVOLUTIONAL CODES

B Not a block code
B There is no natural message size or encoding boundary as in a block code.

M The output depends on the current and previous input bits. Encoder has
memory.

B The number of previous bits on which the output depends is called the
constraint length of the code.

B They are deployed as part of the
M GSM mobile phone system
M Satellite Communications, and

M 802.11 (see example in the previous slide).

ERROR DETECTION CODES (3)

B The NASA binary convolutional code used in 802.1I.

Input
bit

CONVOLUTIONAL ENCODERS

Like any error-correcting code, a convolutional code works by adding some
structured redundant information to the user's data and then correcting errors using
this information.

B A convolutional encoder is a linear system.

B A binary convolutional encoder can be represented as a shift register. The outputs of
the encoder are modulo 2 sums of the values in the certain register's cells. The input
to the encoder is either the unencoded sequence (for non-recursive codes) or the
unencoded sequence added with the values of some register's cells (for recursive
codes).

B Convolutional codes can be systematic and non-systematic. Systematic codes are
those where an unencoded sequence is a part of the output sequence. Systematic
codes are almost always recursive, conversely, non-recursive codes are almost always
non-systematic.

CONVOLUTIONAL ENCODERS

B A combination of register's cells that forms one of the output streams (or that is
added with the input stream for recursive codes) is defined by a polynomial. Let

m be the maximum degree of the polynomials constituting a code, then K=m+|
is a constraint length of the code.
>, » out 1

R A0 {

o
R ANE S A

Figure 1. A standard NASA convolutional
encoder with polynomials (171,133).

CONVOLUTIONAL ENCODERS

For example, for the decoder on the Figure |, the polynomials are:
gl(z)=1+z+z2+z3+z6

g2(z)=1+z2+z3+z5+z6

A code rate is an inverse number of output polynomials.

For the sake of clarity, in this article we will restrict ourselves to the codes with rate
R=1/2. Decoding procedure for other codes is similar.

Encoder polynomials are usually denoted in the octal notation. For the above
example, these designationsare“l 1 1 1001” = 171 and“I1011011” = 133.

The constraint length of this code is 7.

An example of a recursive convolutional encoder is on the Figure 2.

EXAMPLE OF THE CONVOLUTIONAL ENCODER

>,—>c:uf1’

in —

= out 2

Figure 2. A recursive convolutional encoder.

TRELLIS DIAGRAM

M A convolutional encoder is often seen as a finite state machine. Each state
corresponds to some value of the encoder's register. Given the input bit value,
from a certain state the encoder can move to two other states. These state
transitions constitute a diagram which is called a trellis diagram.

B A trellis diagram for the code on the Figure 2 is depicted on the Figure 3. A solid
line corresponds to input 0, a dotted line — to input | (note that encoder states
are designated in such a way that the rightmost bit is the newest one).

B Each path on the trellis diagram corresponds to a valid sequence from the
encoder's output. Conversely, any valid sequence from the encoder's output can
be represented as a path on the trellis diagram. One of the possible paths is
denoted as red (as an example).

2
<
o2
)
<
a
)
—
—
L
o
T

BEEEEEEE:

ﬁmf) _,go) m
ﬂmﬁwwww

PRI
@MWWMMMVQ

e
2‘5’

Figure 3. Atrellis diagram corresponding to the encoder on the Figure 2.

TRELLIS DIAGRAM

B Note that each state transition on the diagram corresponds to a pair of output
bits. There are only two allowed transitions for every state, so there are two
allowed pairs of output bits, and the two other pairs are forbidden. If an error
occurs, it is very likely that the receiver will get a set of forbidden pairs, which
don't constitute a path on the trellis diagram. So, the task of the decoder is to
find a path on the trellis diagram which is the closest match to the received

sequence.

TRELLIS DIAGRAM

M Let's define a free distance df as a minimal Hamming distance between two
different allowed binary sequences (a Hamming distance is defined as a nhumber

of differing bits).

B A free distance is an important property of the convolutional code. It influences
a number of closely located errors the decoder is able to correct.

VITERBIALGORITHM

M Viterbi algorithm reconstructs the maximume-likelihood path for a given input
sequence.

ERROR-DETECTING CODES (1)

M Linear, systematic block codes

M Parity.

M Checksums.

M Cyclic Redundancy Checks (CRCs).

ERROR-DETECTING CODES (2)

— Transmit

1001110
1100101
1110100
1110111
1101111
1110010
1101011
TYYYYYY
1011110

T

Parity bits

order

e
Channel

=0 —0 Z

1001110
1100011

«— DBurst
error

1107100
1110111
1101111
1110010
1101011
222242,
1011110

Aol

Parity errors

minus remainder

1100 1 0=— Frame with four zeros appended

1

1

=
Q
=]
c
[14]
[<}
&
—_
7 w
g o
=
s 5
g e
= £ M
..m. = c
> =
= @©
= £
= D
g w o
r *
OO = e e -0 0o
— |0 - m e mEm = - -0 —|— o~
el = T e i -0 | —|oo
B = e [=E=I[=E=)
— O = e —————— -—— O D oD oo D
— O =2 - O Of— O|— —
— O™ === ———— - O [an] o [=]h i
- O = =——-- - O~ O|T O~ O~ —
— | e QO QO Q0 Q0 O
o = T || —|oDooo|joo
- - — —|o oo oo o
o o o ojooo o
—_ o — Q| -
—_— —
S
g = -
g 2 —
@ =)
] o
“ 5
o
o

@)
wn
L
a
O
O
9,
<
T
O
LUl
T
LU
-
O
a'd
a'd
L

M Example calculation of the CRC

11010

Transmitted frame:

ELEMENTARY DATA LINK PROTOCOLS (1)

B Utopian Simplex Protocol
M Simplex Stop-and-Wiait Protocol
M Error-Free Channel

M Simplex Stop-and-Wait Protocol
M Noisy Channel

ELEMENTARY DATA LINK PROTOCOLS (2)

M Implementation of the physical, data link, and network layers.

Application

«— Computer

4— Operating System
Network
' Driver
Link
Link Network Interface

________ _— _ Card(NIC)

~— Cable (medium)

ELEMENTARY DATA LINK PROTOCOLS (3)

#define MAX PKT 1024

typedef enum {false, true} boolean;

typedef unsigned int seq nr;

typedef struct {unsigned char data[MAX PKT];} packet;
typedef enum {data, ack, nak} frame kind;

typedef struct {
frame kind kind:
seq nrseq;
seq nrack;
packet info;

} frame;

/* determines packet size in bytes #/

/* boolean type #*/

/* sequence or ack numbers */
/* packet definition */

[* frame kind definition */

/* frames are transported in this layer */
[* what kind of frame is it? #/

[* sequence number */

/* acknowledgement number */

[* the network layer packet */

ELEMENTARY DATA LINK PROTOCOLS (4)

B Some definitions needed in the protocols to follow. These definitions are located
in the file protocol.h.

/* Wait for an event to happen; return its type in event. */
void wait for event(event type *event);

/* Fetch a packet from the network layer for transmission on the channel. */
void from network layer(packet *p);

/* Deliver information from an inbound frame to the network layer. */
void to network layer(packet *p);

/* Go get an inbound frame from the physical layer and copy it tor. =/
void from physical layer(frame =#r);

/* Pass the frame to the physical layer for transmission. */
void to physical layer(frame *s);

/* Start the clock running and enable the timeout event. =/
void start timer(seq nr k);

/* Stop the clock and disable the timeout event. */
void stop timer(seq nr k);

ELEMENTARY DATA LINK PROTOCOLS (5)

B Some definitions needed in the protocols to follow. These definitions are located
in the file protocol.h.

/* Start an auxiliary timer and enable the ack timeout event. */
void start ack timer(void);

[+ Stop the auxiliary timer and disable the ack timeout event. */
void stop ack timer(void);

/* Allow the network layer to cause a network layer ready event. =/
void enable network layer(void);

/* Forbid the network layer from causing a network layer ready event. */
void disable network layer(void);

/* Macro inc is expanded in-line: increment k circularly. */
#define inc(k) if (k <MAX SEQ)k=k+ 1;elsek=0

UTOPIAN SIMPLEX PROTOCOL ()

B A utopian simplex protocol.

[* Protocol 1 (Utopia) provides for data transmission in one direction only, from
sender to receiver. The communication channel is assumed to be error free
and the receiver is assumed to be able to process all the input infinitely quickly.
Consequently, the sender just sits in a loop pumping data out onto the line as
fast as it can. */

typedef enum {frame arrival} event type;
#include "protocol.h"

void sender1(void)

{

frame s; /% buffer for an outbound frame #/
packet buffer; [* buffer for an outhound packet */

while (true) {

from network layer(&buffer); [* go get something to send */
s.info = buffer; [* copy it into s for transmission */
to physical layer(&s); [* send it on its way */
} /* Tomorrow, and tomorrow, and tomorrow,

Creeps in this petty pace from day to day
To the last syllable of recorded time.
— Macbeth, V, v */

UTOPIAN SIMPLEX PROTOCOL (2)

void receiver1(void)

{

framer;
event type event; [* filled in by wait, but not used here */

while (true) {

wait for event(&event); [* only possibility is frame arrival */
from physical layer(&r); [* go get the inbound frame */
to network layer(&r.info); [* pass the data to the network layer */

SIMPLEX STOP-AND-WAIT PROTOCOL

FOR A NOISY CHANNEL (1)

B A simplex stop-and-wait protocol.

/* Protocol 2 (Stop-and-wait) also provides for a one-directional flow of data from
sender to receiver. The communication channel is once again assumed to be error
free, as in protocol 1. However, this time the receiver has only a finite buffer
capacity and a finite processing speed, so the protocol must explicitly prevent
the sender from flooding the receiver with data faster than it can be handled. %/

typedef enum {frame arrival} event type;
#include "protocol.h"

void sender2(void)

{
frame s: [+ buffer for an outbound frame */
packet buffer; /* buffer for an outbound packet */
event type event; /* frame arrival is the only possibility */

while (true) {

from network layer(&buffer); /* go get something to send */
" s.info = buffer; /% copy it into s for transmission */
to physical layer(&s); /* bye-bye little frame */
wait for event(&event); /* do not proceed until given the go ahead */

SIMPLEX STOP-AND-WAIT PROTOCOL

FOR A NOISY CHANNEL (2)

void receiver2(void)
{
framer, s;
event type event;
while (true) {
wait for event(&event);
from physical layer(&r);
to network layer(&r.info);
to physical layer(&s);

/* buffers for frames */
[* frame arrival is the only possibility */

/% only possibility is frame arrival */

/* go get the inbound frame */

/* pass the data to the network layer */

/* send a dummy frame to awaken sender */

SLIDING WINDOW PROTOCOLS (1)

/* Protocol 3 (PAR) allows unidirectional data flow over an unreliable channel. */

#define MAX SEQ 1 /+ must be 1 for protocol 3 #/

typedef enum {frame arrival, cksum err, timeout} event type;
#include "protocol.h”

void sender3(void)

{
seq nr next frame to send; /* seq number of next outgoing frame */
frame s; [+ scratch variable */
packet buffer; I+ buffer for an outbhound packet */

event type event;

SLIDING WINDOW PROTOCOLS (2)

M A positive acknowledgement with retransmission protocol.

next frame to send = 0; /% initialize outbound sequence numbers */
from network layer(&buffer); /% fetch first packet */
while (true) {
s.info = buffer; [+ construct a frame for transmission */
s.seq = next frame to send; /* insert sequence number in frame */
to physical layer(&s); /% send it on its way */
start timer(s.seq); /% if answer takes too long, time out */
wait for event(&event); /* frame arrival, cksum err, timeout */
if (event == frame arrival) {
from physical layer(&s); /% get the acknowledgement */
if (s.ack == next frame to send) {
stop timer(s.ack); /% turn the timer off */
from network layer(&buffer); /+ get the next one to send */
inc(next frame to send); /% invert next frame to send */
}
}
}

SLIDING WINDOW PROTOCOLS (3)

M A positive acknowledgement with retransmission protocol.

void receiver3(void)

{
seq nr frame expected;
framer, s:
event type event;

frame expected = 0;
while (true) {
wait for event(&event);
if (event == frame arrival) {
from physical layer(&r);
if (r.seq == frame expected) {
to network layer(&r.info);
inc(frame expected);
}
s.ack = 1 - frame expected;
to physical layer(&s);

/* possibilities: frame arrival, cksum err */
/* a valid frame has arrived */

/* go get the newly arrived frame */

/* this is what we have been waiting for */
/* pass the data to the network layer */

/% next time expect the other sequence nr */

/% tell which frame is being acked */
/* send acknowledgement #/

SLIDING WINDOW PROTOCOLS (4)

M A sliding window of size |, with a 3-bit sequence number.
(2) Initially. (b) After the first frame has been sent.

SLIDING WINDOW PROTOCOLS (5)

M A sliding window of size |, with a 3-bit sequence number

B (c) After the first frame has been received. (d) After the first acknowledgement
has been received.

S d 7 0 7+0
enaer
5w2 5K+/2
4 3 4 3

7 0 T 0

6/Z1 sf(2_\ 1
Receiver 5\}4_?/2 5\g+)/2
(c)

(d)

ONE-BIT SLIDING WINDOW PROTOCOL (1)

M A |-bit sliding window protocol.

/* Protocol 4 (Sliding window) is bidirectional. */

#define MAX SEQ 1

/% must be 1 for protocol 4 */

typedef enum {frame arrival, cksum err, timeout} event type;

#include "protocol.h"
void protocol4 (void)

{
seq nr next frame to send;
seq nr frame expected;
framer, s;
packet buffer;
event type event;

next frame to send = 0;
frame expected = 0;

from network layer(&buffer);
s.info = buffer;

s.seq = next frame to send;
s.ack = 1 - frame expected;
to physical layer(&s);

start timer(s.seq);

/* 0 or1only */

/+ 0 or 1 only */

[* scratch variables */

/% current packet being sent */

/* next frame on the outbound stream */
/* frame expected next */

/* fetch a packet from the network layer */
/+ prepare to send the initial frame */

/* insert sequence number into frame */
[+ piggybacked ack */

/* transmit the frame */

/% start the timer running =/

ONE-BIT SLIDING WINDOW PROTOCOL (2)

while (true) {
wait for event(&event);
if (event == frame arrival) {
from physical layer(&r);
if (r.seq == frame expected) {
to network layer(&r.info);
inc(frame expected);

}

if (r.ack == next frame to send) {
stop timer(r.ack);
from network layer(&buffer);
inc(next frame to send);

/* frame arrival, cksum err, or timeout */
/* a frame has arrived undamaged */

/* go get it */

/* handle inbound frame stream */

/% pass packet to network layer */

/* invert seq number expected next */

/* handle outbound frame stream */

/% turn the timer off /

/% fetch new pkt from network layer */
/* invert sender’s sequence number */

ONE-BIT SLIDING WINDOW PROTOCOL (3)

s.info = buffer:; [+ construct outbound frame =/

s.seq = next frame to send; /* insert sequence number into it */
s.ack = 1 — frame expected; /% seq number of last received frame */
to physical layer(&s); /% transmit a frame */

start timer(s.seq); /% start the timer running */

ONE-BIT SLIDING WINDOW PROTOCOL (4)

B Two scenarios for protocol 4. (a) Normal case. (b) Abnormal

B case. The notation is (seq, ack, packet number). An asterisk indicates where a
network layer accepts a packet

A sends (0, 1, AD) \
A gets (0, 0, BO)* —

Asends (1,0, A1) —_ 6 et (1 0, ATy
Agets (1.1, B1)" — B sends (1, 1, B1)
Asends (0,1, AZ)—__ B gets (0, 1, A2)*
A gets (0, 0, B2)" — B sends (0, 0, B2)

Asends(1,0,A3)-—-.________‘ B gets (1. 0, A3)"
gets (1, 0,
B sends (1, 1, B3)

B gets (0, 1, AD)*
B sends (0, 0, BO)

(a)

Time

B sends (0, 1, BO)
B gets (0, 1, AD)*
B sends (0, 0, BO)

Asends (0, 1, AD)7

A gets (0, 1, BO)*
A sends (0, 0, AD)

A gets (0, 0, BO)
Asends (1,0, Al)

Agets (1,0, B1)*

Asends (L1 AD—_ 5 gets (1.1, A1)
B sends (0, 1, B2)

B gets (0, 0, AD)
B sends (1,0, B1)

B gets (1, 0, A1)
B sends (1, 1, B1)

(b)

PROTOCOL USING GO-BACK-N (I)

<— Timeout interval——

5 Er

SRR

W

Ermr Frames discarded by data link Iayer

'h.

-

Time

(a)

PROTOCOL USING GO-BACK-N (2)

Error Frames buﬁered
by data link layer

(b)

PROTOCOL USING GO-BACK-N (3)

/* Protocol 5 (Go-back-n) allows multiple outstanding frames. The sender may transmit up
to MAX SEQ frames without waiting for an ack. In addition, unlike in the previous
protocols, the network layer is not assumed to have a new packet all the time. Instead,
the network layer causes a network layer ready event when there is a packet to send. */

#define MAX SEQ7
typedef enum {frame arrival, cksum err, timeout, network layer ready} event type;
#include "protocol.h”

static boolean between(seq nr a, seq nr b, seq nrc)
{
[+ Return true if a <= b < ¢ circularly; false otherwise. #/
if((a<=b)&& (b<c))|[((c<a)d&&(a<=h)) | ((b<c)&&(c<a))
return(true);
else °
return(false);

PROTOCOL USING GO-BACK-N (4)

static void send data(seq nr frame nr, seq nr frame expected, packet buffer[])

{

/* Construct and send a data frame. */

frame s; [+ scratch variable */

s.info = buffer[frame nr]; /% insert packet into frame */

s.seq = frame nr; [* insert sequence number into frame */
s.ack = (frame expected + MAX SEQ) % (MAX SEQ + 1);/* piggyback ack */

to physical layer(&s); [* transmit the frame */

start timer(frame nr); /% start the timer running */

PROTOCOL USING GO-BACK-N (5)

void protocol5(void)
{
seq nr next frame to send;
seq nr ack expected;
seq nr frame expected;
frame r;
packet bufferMAX SEQ + 1];
seq nr nbuffered;
seq nri;
event type event;

[* MAX SEQ > 1; used for outbound stream */
[+ oldest frame as yet unacknowledged */

[+ next frame expected on inbound stream */
/* scratch variable */

/* buffers for the outbound stream */

[+ number of output buffers currently in use */
/* used to index into the buffer array */

PROTOCOL USING GO-BACK-N (6)

enable network layer();
ack expected =0;
next frame to send =0;

frame expected = 0;
nbuffered = 0;

while (true) {

wait for event(&event);

[+ allow network layer ready events */
[* next ack expected inbound */

[+ next frame going out */

[* number of frame expected inbound */
I+ initially no packets are buffered +/

/* four possibilities: see event type above */

PROTOCOL USING GO-BACK-N (7)

switch(event) {

case network layer ready: /* the network layer has a packet to send */
/* Accept, save, and transmit a new frame. #/

from network layer(&buffer[next frame to send]); /* fetch new packet */

nbuffered = nbuffered + 1; [+ expand the sender’'s window */
send data(next frame to send, frame expected, buffer);/* transmit the frame */
inc(next frame to send); [+ advance sender’s upper window edge */
break;

case frame arrival: /* a data or control frame has arrived #/
from physical layer(&r); [+ get incoming frame from physical layer */

if (r.seq == frame expected) {
/* Frames are accepted only in order. */
to network layer(&r.info); [+ pass packet to network layer */
inc(frame expected); /* advance lower edge of receiver's window */

PROTOCOL USING GO-BACK-N (8)

B A sliding window protocol using go-back-n.

[+ Ack nimplies n— 1, n - 2, etc. Check for this. */
while (between(ack expected, r.ack, next frame to send)) {
[+ Handle piggybacked ack. #/

nbuffered = nbuffered — 1; /* one frame fewer buffered */
stop timer(ack expected); [+ frame arrived intact; stop timer */
inc(ack expected); [* contract sender’s window */
}
break;
case cksum err: break; /* just ignore bad frames */
case timeout: /* trouble; retransmit all outstanding frames */

next frame to send = ack expected; [+ start retransmitting here */

for (i = 1; i <= nbuffered; i++) {
send data(next frame to send, frame expected, buffer);/* resend frame */
inc(next frame to send); /* prepare to send the next one */

PROTOCOL USING GO-BACK-N (9)

M A sliding window protocol using go-back-n.

if (nbuffered < MAX SEQ)
enable network layer();
else

disable network layer();

PROTOCOL USING GO-BACK-N (10)

Real

/time
10:00:00.000 10:00:00.005

L51—--—:32—--—53 Laz—-—es
\\ Pointer to next timeout
Frame being timed
Ticks to go

(a) (b)

PROTOCOL USING SELECTIVE REPEAT (1)

/* Protocol 6 (Selective repeat) accepts frames out of order but passes packets to the
network layer in order. Associated with each outstanding frame is a timer. WWhen the timer
expires, only that frame is retransmitted, not all the outstanding frames, as in protocol 5. */

#define MAX SEQ 7 [* should be 2'n — 1 #/

#define NR BUFS ((MAX SEQ + 1)/2)

typedef enum {frame arrival, cksum err, timeout, network layer ready, ack timeout} event type;
#include "protocol.h”

boolean no nak = true; /* no nak has been sent yet */

seq nroldest frame = MAX SEQ + 1; [* initial value is only for the simulator */

static boolean between(seq nr a, seq nr b, seq nrc)

{

[+ Same as between in protocol 5, but shorter and more obscure. */
return ((a<=b)&& (b <c)) || ((c<a)&& (a<=hb)) || (b <c) && (c < a));

}

PROTOCOL USING SELECTIVE REPEAT (2)

static void send frame(frame kind fk, seq nr frame nr, seq nr frame expected, packet buffer[])

{

[* Construct and send a data, ack, or nak frame. */

frame s; [+ scratch variable =/

s.kind = fk: [+ kind == data, ack, or nak */

if (fk == data) s.info = buffer[frame nr % NR BUFS];

s.seq = frame nr; [+ only meaningful for data frames */
s.ack = (frame expected + MAX SEQ) % (MAX SEQ + 1);

if (fk == nak) no nak = false; [+ one nak per frame, please #/

to physical layer(&s); [* transmit the frame */

if (fk == data) start timer(frame nr % NR BUFS);

stop ack timer(); [* no need for separate ack frame */

PROTOCOL USING SELECTIVE REPEAT (3)

void protocol6(void)

{

seq nr ack expected;

seq nr next frame to send;
seq nr frame expected:;
seq nrtoo far;

int i;

frame r;

packet out buf[NR BUFS];
packet in buf[NR BUFS];
boolean arrived[NR BUFS];
seq nr nbuffered;

event type event;

[+ lower edge of sender’s window */

[* upper edge of sender’'s window + 1 */

/% lower edge of receiver's window #/

[* upper edge of receiver's window + 1 */

/% index into buffer pool */

/* scratch variable #/

[+ buffers for the outbound stream */

/* buffers for the inbound stream */

[+ inbound bit map */

[* how many output buffers currently used #/

PROTOCOL USING SELECTIVE REPEAT (4)

enable network layer(); [+ initialize */
ack expected =0; /* next ack expected on the inbound stream */
next frame to send =0; /* number of next outgoing frame */

frame expected = 0;

too far = NR BUFS;

nbuffered = 0; /* initially no packets are buffered */
for (i=0;i < NR BUFS; i++) arrived[i] = false;

PROTOCOL USING SELECTIVE REPEAT (5)

while (true) {

wait for event(&event); /* five possibilities: see event type above */
switch(event) {
case network layer ready: /* accept, save, and transmit a new frame */
nbuffered = nbuffered + 1; [+ expand the window */

from network layer(&out buf[next frame to send % NR BUFS]); /* fetch new packet */
send frame(data, next frame to send, frame expected, out buf);/* transmit the frame */

inc(next frame to send); /* advance upper window edge */
break:

PROTOCOL USING SELECTIVE REPEAT (6)

case frame arrival: /* a data or control frame has arrived */
from physical layer(&r); [+ fetch incoming frame from physical layer #/
if (r.kind == data) {
[+ An undamaged frame has arrived. */
if ((r.seq = frame expected) && no nak)
send frame(nak, 0, frame expected, out buf); else start ack timer();
if (between(frame expected,r.seq.too far) && (arrived[r.seq’NR BUFS]==false)) {
[+ Frames may be accepted in any order. */
arrived[r.seq % NR BUFS] = true; /* mark buffer as full */
in buf[r.seq % NR BUFS] = r.info; /* insert data into buffer =/

PROTOCOL USING SELECTIVE REPEAT (7)

while (arrived[frame expected % NR BUFS]) {
/* Pass frames and advance window. */

to network layer(&in buf[frame expected % NR BUFS]);
no nak = true;

arrived[frame expected % NR BUFS] = false;
inc(frame expected); /* advance lower edge of receiver’'s window */

inc(too far); /+* advance upper edge of receiver’'s window */
start ack timer(); /* to see if a separate ack is needed */

PROTOCOL USING SELECTIVE REPEAT (8)

if((r.kind==nak) && between(ack expected,(r.ack+1)%(MAX SEQ+1),next frame to send))
send frame(data, (r.ack+1) % (MAX SEQ + 1), frame expected, out buf);

while (between(ack expected, r.ack, next frame to send)) {

nbuffered = nbuffered - 1; [* handle piggybacked ack */

stop timer(ack expected % NR BUFS); /+ frame arrived intact */

inc(ack expected); [+ advance lower edge of sender’s window */
}
break:

case cksum err:
if (no nak) send frame(nak, 0, frame expected, out buf); /* damaged frame */
break:

PROTOCOL USING SELECTIVE REPEAT (9)

case timeout:
send frame(data, oldest frame, frame expected, out buf); /* we timed out */
break;

case ack timeout:
send frame(ack,0.frame expected, out buf); /* ack timer expired; send ack */
}

if (nbuffered < NR BUFS) enable network layer(); else disable network layer();

PROTOCOL USING SELECTIVE REPEAT (10)

M Initial situation with a window of size7
B After 7 frames sent and received but not acknowledged.
M Initial situation with a window size of 4.

M After 4 frames sent and received but not acknowledged.

Sender 0123456|7 0123456|7 0123|4567 (0123|4567

Receiver |01 2 3 45 6|7 0123456 0123|4567 0123|4567

(@) (b) (c) (d)

EXAMPLE DATA LINK PROTOCOLS

M Packet over SONET
B ADSL (Asymmetric Digital Subscriber Loop)

PACKET OVER SONET (I)

Router

T

PPP

SONET

PPP

Optical SONET

| IP packet
A

Li

PPP frame

|
Y

]

SONET payload

| SONET payload

/ fiber —

(@)

(b)

PACKET OVER SONET (2)

M PPP Features

M Separate packets, error detection
M Link Control Protocol

B Network Control Protocol

PACKET OVER SONET (3)

M The PPP full frame format for unnumbered mode operation

Bytes 1 1 1 1or2 Variable 2or4 1
((

)

Protocol | Payload | Checksum
((
1]

Flag Address Control
01111110 | 11111111 | 00000011

Flag
01111110

PACKET OVER SONET (4)

M State diagram for bringing a PPP link up and down

Carrier Both sides Authentication
detected agree on options successful

\/—'— ESTABLISH +——=AUTHENTICATE /

Failed
DEAD METWORK
I Failed
/; TERMINATE */— OPEN
Carrier Done NCP

dropped configuration

ADSL (ASYMMETRIC DIGITAL

SUBSCRIBER LOOP) (1)

i P DSLAM
DSL :
PPP /mc:dem PPP /(wﬂh router)
/PC AALS AALS5
Ethernet Link T~
ATM ATM
Ethernet Local Internet /?
p ADSL / loop ADSL -m___,_/
N~ - N
\ J k J
! Y

Customer’'s home ISP’'s office

ADSL (ASYMMETRIC DIGITAL

SUBSCRIBER LOOP) (1)

M AALS frame carrying PPP data

Bytes l1or2 Variable 0to 47 2 2 4

PPP protocol PPP payload Pad Unused Length CRC

T ¥
AALS payload AALS trailer

Thank you

The content in this material are from the textbooks and reference books
given in the syllabus.

