
COMPUTER NETWORKS- (20MCA23C)

UNIT-III

‘THE DATA LINK LAYER’

FACULTY:

DR. R. A. ROSELINE, M.SC., M.PHIL., PH.D.,
ASSOCIATE PROFESSOR AND HEAD,

POST GRADUATE AND RESEARCH DEPARTMENT OF COMPUTER APPLICATIONS,

GOVERNMENT ARTS COLLEGE (AUTONOMOUS), COIMBATORE – 641 018.

DATA LINK LAYER DESIGN ISSUES

 Network layer services

 Framing

 Error control

 Flow control

DATA LINK LAYER

 Algorithms for achieving:

 Reliable, +

 Efficient, communication of a whole units – frames (as opposed to bits –
Physical Layer) between two machines.

 Two machines are connected by a communication channel that acts conceptually
like a wire (e.g., telephone line, coaxial cable, or wireless channel).

 Essential property of a channel that makes it “wire-like” connection is that the
bits are delivered in exactly the same order in which they are sent.

 For ideal channel (no distortion, unlimited bandwidth and no delay) the job of
data link layer would be trivial.

 However, limited bandwidth, distortions and delay makes this job very difficult.

DATA LINK LAYER DESIGN ISSUES

 Physical layer delivers bits of information to and from data link layer. The

functions of Data Link Layer are:

 Providing a well-defined service interface to the network layer.

 Dealing with transmission errors.

 Regulating the flow of data so that slow receivers are not swamped by fast senders.

 Data Link layer

 Takes the packets from Physical layer, and

 Encapsulates them into frames.

DATA LINK LAYER DESIGN ISSUES

 Each frame has a

 frame header – a field for holding the packet, and

 frame trailer.

 Frame Management is what Data Link Layer does.

 See figure in the next slide:

PACKETS AND FRAMES

 Relationship between packets and frames.

SERVICES PROVIDED TO THE NETWORK LAYER

 Principal Service Function of the data link layer is to transfer the data

from the network layer on the source machine to the network layer on

the destination machine.

 Process in the network layer that hands some bits to the data link

layer for transmission.

 Job of data link layer is to transmit the bits to the destination machine

so they can be handed over to the network layer there (see figure in

the next slide).

NETWORK LAYER SERVICES

 (a) Virtual communication. (b) Actual communication.

POSSIBLE SERVICES OFFERED

 Unacknowledged connectionless service.

 Acknowledged connectionless service.

 Acknowledged connection-oriented service.

UNACKNOWLEDGED CONNECTIONLESS

SERVICE

 It consists of having the source machine send independent frames to the

destination machine without having the destination machine acknowledge them.

 Example: Ethernet, Voice over IP, etc. in all the communication channel were real

time operation is more important that quality of transmission.

ACKNOWLEDGED CONNECTIONLESS SERVICE

 Each frame send by the Data Link layer is acknowledged and the sender knows if

a specific frame has been received or lost.

 Typically the protocol uses a specific time period that if has passed without

getting acknowledgment it will re-send the frame.

 This service is useful for commutation when an unreliable channel is being

utilized (e.g., 802.11WiFi).

 Network layer does not know frame size of the packets and other restriction of

the data link layer. Hence it becomes necessary for data link layer to have some

mechanism to optimize the transmission.

ACKNOWLEDGED CONNECTION ORIENTED

SERVICE

 Source and Destination establish a connection first.

 Each frame sent is numbered

 Data link layer guarantees that each frame sent is indeed received.

 It guarantees that each frame is received only once and that all frames are received in

the correct order.

 Examples:

 Satellite channel communication,

 Long-distance telephone communication, etc.

ACKNOWLEDGED CONNECTION ORIENTED

SERVICE

 Three distinct phases:

 Connection is established by having both side initialize variables and counters needed

to keep track of which frames have been received and which ones have not.

 One or more frames are transmitted.

 Finally, the connection is released – freeing up the variables, buffers, and other

resources used to maintain the connection.

FRAMING

 To provide service to the network layer the data link layer must use the service

provided to it by physical layer.

 Stream of data bits provided to data link layer is not guaranteed to be without

errors.

 Errors could be:

 Number of received bits does not match number of transmitted bits (deletion or

insertion)

 BitValue

 It is up to data link layer to correct the errors if necessary.

FRAMING

 Transmission of the data link layer starts with breaking up the bit stream

 into discrete frames

 Computation of a checksum for each frame, and

 Include the checksum into the frame before it is transmitted.

 Receiver computes its checksum error for a receiving frame and if it is different

from the checksum that is being transmitted will have to deal with the error.

 Framing is more difficult than one could think!

FRAMING METHODS

 Byte count.

 Flag bytes with byte stuffing.

 Flag bits with bit stuffing.

 Physical layer coding violations.

BYTE COUNT FRAMING METHOD

 It uses a field in the header to specify the number of bytes in the frame.

 Once the header information is being received it will be used to determine end

of the frame.

 See figure in the next slide:

 Trouble with this algorithm is that when the count is incorrectly received the

destination will get out of synch with transmission.

 Destination may be able to detect that the frame is in error but it does not have a

means (in this algorithm) how to correct it.

FRAMING (1)

 A byte stream. (a) Without errors. (b) With one error.

FLAG BYTES WITH BYTE STAFFING FRAMING

METHOD

 This methods gets around the boundary detection of the frame by having each

appended by the frame start and frame end special bytes.

 If they are the same (beginning and ending byte in the frame) they are called flag

byte.

 In the next slide figure this byte is shown as FLAG.

 If the actual data contains a byte that is identical to the FLAG byte (e.g., picture,

data stream, etc.) the convention that can be used is to have escape character

inserted just before the “FLAG” character.

FRAMING (2)

 A frame delimited by flag bytes.

 Four examples of byte sequences before and after byte stuffing.

FLAG BITS WITH BIT STUFFING FRAMING

METHOD

 This methods achieves the same thing as Byte Stuffing method by using Bits (1)

instead of Bytes (8 Bits).

 It was developed for High-level Data Link Control (HDLC) protocol.

 Each frames begins and ends with a special bit patter:

 01111110 or 0x7E <- Flag Byte

 Whenever the sender’s data link layer encounters five consecutive 1s in the data it

automatically stuffs a 0 bit into the outgoing bit stream.

 USB uses bit stuffing.

FRAMING (3)

 Bit stuffing. (a) The original data. (b) The data as they appear on

 the line. (c) The data as they are stored in the receiver’s memory after destuffing.

FRAMING

 Many data link protocols use a combination of presented methods for safety. For

example in Ethernet and 802.11 each frame begin with a well-defined pattern

called a preamble.

 Preamble is typically 72 bits long.

 It is then followed by a length filled.

ERROR CONTROL

 After solving the marking of the frame with start and end the data link layer has

to handle eventual errors in transmission or detection.

 Ensuring that all frames are delivered to the network layer at the destination and in

proper order.

 Unacknowledged connectionless service: it is OK for the sender to output

frames regardless of its reception.

 Reliable connection-oriented service: it is NOT OK.

ERROR CONTROL

 Reliable connection-oriented service usually will provide a sender with some

feedback about what is happening at the other end of the line.

 Receiver Sends Back Special Control Frames.

 If the Sender Receives positive Acknowledgment it will know that the frame has

arrived safely.

 Timer and Frame Sequence Number for the Sender is Necessary to handle the

case when there is no response (positive or negative) from the Receiver .

FLOW CONTROL

 Important Design issue for the cases when the sender is running on a fast

powerful computer and receiver is running on a slow low-end machine.

 Two approaches:

 Feedback-based flow control

 Rate-based flow control

FEEDBACK-BASED FLOW CONTROL

 Receiver sends back information to the sender giving it permission to send more

data, or

 Telling sender how receiver is doing.

RATE-BASED FLOW CONTROL

 Built in mechanism that limits the rate at which sender may transmit data,

without the need for feedback from the receiver.

ERROR DETECTION AND CORRECTION

 Two basic strategies to deal with errors:

 Include enough redundant information to enable the receiver to deduce what the

transmitted data must have been.

Error correcting codes.

 Include only enough redundancy to allow the receiver to deduce that an error has

occurred (but not which error).

Error detecting codes.

ERROR DETECTION AND CORRECTION

 Error codes are examined in Link Layer because this is the first place that we

have run up against the problem of reliability transmitting groups of bits.

 Codes are reused because reliability is an overall concern.

 The error correcting code are also seen in the physical layer for noise channels.

 Commonly they are used in link, network and transport layer.

ERROR DETECTION AND CORRECTION

 Error codes have been developed after long fundamental research conducted in

mathematics.

 Many protocol standards get codes from the large field in mathematics.

ERROR DETECTION & CORRECTION CODE (1)

 Hamming codes.

 Binary convolutional codes.

 Reed-Solomon codes.

 Low-Density Parity Check codes.

ERROR DETECTION & CORRECTION CODE

 All the codes presented in previous slide add redundancy to the information that is

being sent.

 A frame consists of

 m data bits (message) and

 r redundant bits (check).

 Block code - the r check bits are computed solely as function of the m data bits with

which they are associated.

 Systemic code – the m data bits are send directly along with the check bits.

 Linear code – the r check bits are computed as a linear function of the m data bits.

ERROR DETECTION & CORRECTION CODE

 n – total length of a block (i.e., n = m + r)

 (n, m) – code

 n – bit codeword containing n bits.

 m/n – code rate (range ½ for noisy channel and close to 1 for high-quality

channel).

ERROR DETECTION & CORRECTION CODE

 Example

 Transmitted: 10001001

 Received: 10110001

 XOR operation gives number of bits that are different.

 XOR: 00111000

 Number of bit positions in which two codewords differ is called Hamming

Distance. It shows that two codes are d distance apart, and it will require d

errors to convert one into the other.

ERROR DETECTION & CORRECTION CODE

 All 2m possible data messages are legal, but due to the way the check bits are

computers not all 2n possible code words are used.

 Only small fraction of 2m/2n=1/2r are possible will be legal codewords.

 The error-detecting and error-correcting codes of the block code depend on

this Hamming distance.

 To reliably detect d error, one would need a distance d+1 code.

 To correct d error, one would need a distance 2d+1 code.

ERROR DETECTION & CORRECTION CODE

 All 2m possible data messages are legal, but due to the way the check bits are

computers not all 2n possible code words are used.

 Only small fraction of 2m/2n=1/2r are possible will be legal codewords.

 The error-detecting and error-correcting codes of the block code depend on

this Hamming distance.

 To reliably detect d error, one would need a distance d+1 code.

 To correct d error, one would need a distance 2d+1 code.

ERROR DETECTION & CORRECTION CODE

 Example:

 4 valid codes:

 0000000000

 0000011111

 1111100000

 1111111111

 Minimal Distance of this code is 5 => can correct and double errors and it detect
quadruple errors.

 0000000111 => single or double – bit error. Hence the receiving end must assume
the original transmission was 0000011111.

 0000000000 => had triple error that was received as 0000000111 it would be
detected in error.

ERROR DETECTION & CORRECTION CODE

 One cannot perform double errors and at the same time detect quadruple

errors.

 Error correction requires evaluation of each candidate codeword which may be

time consuming search.

 Through design this search time can be minimized.

 In theory if n = m + r, this requirement becomes:

 (m + r + 1) ≤ 2r

HAMMING CODE

 Codeword: b1 b2 b3 b4 ….

 Check bits:The bits that are powers of 2 (p1, p2, p4, p8, p16, …).

 The rest of bits (m3, m5, m6, m7, m9, …) are filled with m data bits.

 Example of the Hamming code with m = 7 data bits and r = 4 check bits is given

in the next slide.

THE HAMMING CODE

 Consider a message having four data bits (D) which is to be transmitted as a 7-

bit codeword by adding three error control bits. This would be called a (7,4)

code. The three bits to be added are three EVEN Parity bits (P), where the parity

of each is computed on different subsets of the message bits as shown below.

7 6 5 4 3 2 1

D D D P D P P 7-BIT CODEWORD

D - D - D - P (EVEN PARITY)

D D - - D P - (EVEN PARITY)

D D D P - - - (EVEN PARITY)

HAMMING CODE

 Why Those Bits? - The three parity bits (1,2,4) are related to the data bits

(3,5,6,7) as shown at right. In this diagram, each overlapping circle corresponds

to one parity bit and defines the four bits contributing to that parity

computation. For example, data bit 3 contributes to parity bits 1 and 2. Each

circle (parity bit) encompasses a total of four bits, and each circle must have

EVEN parity. Given four data bits, the three parity bits can easily be chosen to

ensure this condition.

 It can be observed that changing any one bit numbered 1..7 uniquely affects the

three parity bits. Changing bit 7 affects all three parity bits, while an error in bit 6

affects only parity bits 2 and 4, and an error in a parity bit affects only that bit.

The location of any single bit error is determined directly upon checking the

three parity circles.

HAMMING CODE

HAMMING CODE

 For example, the message 1101 would be sent as 1100110, since:

7 6 5 4 3 2 1

1 1 0 0 1 1 0 7-BIT CODEWORD

1 - 0 - 1 - 0 (EVEN PARITY)

1 1 - - 1 1 - (EVEN PARITY)

1 1 0 0 - - - (EVEN PARITY)

HAMMING CODES

 When these seven bits are entered into the parity circles, it can be confirmed

that the choice of these three parity bits ensures that the parity within each

circle is EVEN, as shown here.

HAMMING CODE

 It may now be observed that if an error occurs in any of the seven bits, that error will
affect different combinations of the three parity bits depending on the bit position.

 For example, suppose the above message 1100110 is sent and a single bit error
occurs such that the codeword 1110110 is received:

 transmitted message received message

 1 1 0 0 1 1 0 ------------> 1 1 1 0 1 1 0

 BIT: 7 6 5 4 3 2 1 BIT: 7 6 5 4 3 2 1

 The above error (in bit 5) can be corrected by examining which of the three parity
bits was affected by the bad bit:

HAMMING CODE

7 6 5 4 3 2 1

1 1 1 0 1 1 0 7-BIT CODEWORD

1 - 1 - 1 - 0 (EVEN PARITY)
NOT

!
1

1 1 - - 1 1 - (EVEN PARITY) OK! 0

1 1 1 0 - - - (EVEN PARITY)
NOT

!
1

HAMMING CODE

 In fact, the bad parity bits labeled 101 point directly to the bad bit since 101

binary equals 5. Examination of the 'parity circles' confirms that any single bit

error could be corrected in this way.

 The value of the Hamming code can be summarized:

 Detection of 2 bit errors (assuming no correction is attempted);

 Correction of single bit errors;

 Cost of 3 bits added to a 4-bit message.

 The ability to correct single bit errors comes at a cost which is less than sending

the entire message twice. (Recall that simply sending a message twice

accomplishes no error correction.)

ERROR DETECTION CODES (2)

 Example of an (11, 7) Hamming code

correcting a single-bit error.

CONVOLUTIONAL CODES

 Not a block code

 There is no natural message size or encoding boundary as in a block code.

 The output depends on the current and previous input bits. Encoder has
memory.

 The number of previous bits on which the output depends is called the
constraint length of the code.

 They are deployed as part of the

 GSM mobile phone system

 Satellite Communications, and

 802.11 (see example in the previous slide).

ERROR DETECTION CODES (3)

 The NASA binary convolutional code used in 802.11.

CONVOLUTIONAL ENCODERS

 Like any error-correcting code, a convolutional code works by adding some
structured redundant information to the user's data and then correcting errors using
this information.

 A convolutional encoder is a linear system.

 A binary convolutional encoder can be represented as a shift register. The outputs of
the encoder are modulo 2 sums of the values in the certain register's cells. The input
to the encoder is either the unencoded sequence (for non-recursive codes) or the
unencoded sequence added with the values of some register's cells (for recursive
codes).

 Convolutional codes can be systematic and non-systematic. Systematic codes are
those where an unencoded sequence is a part of the output sequence. Systematic
codes are almost always recursive, conversely, non-recursive codes are almost always
non-systematic.

CONVOLUTIONAL ENCODERS

 A combination of register's cells that forms one of the output streams (or that is

added with the input stream for recursive codes) is defined by a polynomial. Let

m be the maximum degree of the polynomials constituting a code, then K=m+1

is a constraint length of the code.

Figure 1. A standard NASA convolutional

encoder with polynomials (171,133).

CONVOLUTIONAL ENCODERS

 For example, for the decoder on the Figure 1, the polynomials are:

 g1(z)=1+z+z2+z3+z6

 g2(z)=1+z2+z3+z5+z6

 A code rate is an inverse number of output polynomials.

 For the sake of clarity, in this article we will restrict ourselves to the codes with rate
R=1/2. Decoding procedure for other codes is similar.

 Encoder polynomials are usually denoted in the octal notation. For the above
example, these designations are “1111001” = 171 and “1011011” = 133.

 The constraint length of this code is 7.

 An example of a recursive convolutional encoder is on the Figure 2.

EXAMPLE OF THE CONVOLUTIONAL ENCODER

Figure 2. A recursive convolutional encoder.

TRELLIS DIAGRAM

 A convolutional encoder is often seen as a finite state machine. Each state

corresponds to some value of the encoder's register. Given the input bit value,

from a certain state the encoder can move to two other states. These state

transitions constitute a diagram which is called a trellis diagram.

 A trellis diagram for the code on the Figure 2 is depicted on the Figure 3. A solid

line corresponds to input 0, a dotted line – to input 1 (note that encoder states

are designated in such a way that the rightmost bit is the newest one).

 Each path on the trellis diagram corresponds to a valid sequence from the

encoder's output. Conversely, any valid sequence from the encoder's output can

be represented as a path on the trellis diagram. One of the possible paths is

denoted as red (as an example).

TRELLIS DIAGRAM

Figure 3. A trellis diagram corresponding to the encoder on the Figure 2.

TRELLIS DIAGRAM

 Note that each state transition on the diagram corresponds to a pair of output

bits. There are only two allowed transitions for every state, so there are two

allowed pairs of output bits, and the two other pairs are forbidden. If an error

occurs, it is very likely that the receiver will get a set of forbidden pairs, which

don't constitute a path on the trellis diagram. So, the task of the decoder is to

find a path on the trellis diagram which is the closest match to the received

sequence.

TRELLIS DIAGRAM

 Let's define a free distance df as a minimal Hamming distance between two

different allowed binary sequences (a Hamming distance is defined as a number

of differing bits).

 A free distance is an important property of the convolutional code. It influences

a number of closely located errors the decoder is able to correct.

VITERBI ALGORITHM

 Viterbi algorithm reconstructs the maximum-likelihood path for a given input

sequence.

ERROR-DETECTING CODES (1)

 Linear, systematic block codes

 Parity.

 Checksums.

 Cyclic Redundancy Checks (CRCs).

ERROR-DETECTING CODES (2)

 Interleaving of parity bits to detect a burst error.

ERROR-DETECTING CODES (3)

 Example calculation of the CRC

ELEMENTARY DATA LINK PROTOCOLS (1)

 Utopian Simplex Protocol

 Simplex Stop-and-Wait Protocol

 Error-Free Channel

 Simplex Stop-and-Wait Protocol

 Noisy Channel

ELEMENTARY DATA LINK PROTOCOLS (2)

 Implementation of the physical, data link, and network layers.

ELEMENTARY DATA LINK PROTOCOLS (3)

 Some definitions needed in the protocols to follow. These definitions are located

in the file protocol.h.

. . .

ELEMENTARY DATA LINK PROTOCOLS (4)

 Some definitions needed in the protocols to follow. These definitions are located

in the file protocol.h.

ELEMENTARY DATA LINK PROTOCOLS (5)

 Some definitions needed in the protocols to follow. These definitions are located

in the file protocol.h.

UTOPIAN SIMPLEX PROTOCOL (1)

 A utopian simplex protocol.

UTOPIAN SIMPLEX PROTOCOL (2)

 A utopian simplex protocol.

SIMPLEX STOP-AND-WAIT PROTOCOL

FOR A NOISY CHANNEL (1)

 A simplex stop-and-wait protocol.

. . .

SIMPLEX STOP-AND-WAIT PROTOCOL

FOR A NOISY CHANNEL (2)

 A simplex stop-and-wait protocol.

SLIDING WINDOW PROTOCOLS (1)

 A positive acknowledgement with retransmission protocol.

SLIDING WINDOW PROTOCOLS (2)

 A positive acknowledgement with retransmission protocol.

SLIDING WINDOW PROTOCOLS (3)

 A positive acknowledgement with retransmission protocol.

SLIDING WINDOW PROTOCOLS (4)

 A sliding window of size 1, with a 3-bit sequence number.

(a) Initially. (b) After the first frame has been sent.

SLIDING WINDOW PROTOCOLS (5)

 A sliding window of size 1, with a 3-bit sequence number

 (c) After the first frame has been received. (d) After the first acknowledgement

has been received.

ONE-BIT SLIDING WINDOW PROTOCOL (1)

 A 1-bit sliding window protocol.

ONE-BIT SLIDING WINDOW PROTOCOL (2)

 A 1-bit sliding window protocol.

ONE-BIT SLIDING WINDOW PROTOCOL (3)

 A 1-bit sliding window protocol.

ONE-BIT SLIDING WINDOW PROTOCOL (4)

 Two scenarios for protocol 4. (a) Normal case. (b) Abnormal

 case. The notation is (seq, ack, packet number). An asterisk indicates where a

network layer accepts a packet

PROTOCOL USING GO-BACK-N (1)

 Pipelining and error recovery. Effect of an error when

 (a) receiver’s window size is 1

PROTOCOL USING GO-BACK-N (2)

 Pipelining and error recovery. Effect of an error when

 (b) receiver’s window size is large.

PROTOCOL USING GO-BACK-N (3)

 A sliding window protocol using go-back-n.

. . .

PROTOCOL USING GO-BACK-N (4)

 A sliding window protocol using go-back-n.

PROTOCOL USING GO-BACK-N (5)

 A sliding window protocol using go-back-n.

PROTOCOL USING GO-BACK-N (6)

 A sliding window protocol using go-back-n.

PROTOCOL USING GO-BACK-N (7)

 A sliding window protocol using go-back-n.

PROTOCOL USING GO-BACK-N (8)

 A sliding window protocol using go-back-n.

PROTOCOL USING GO-BACK-N (9)

 A sliding window protocol using go-back-n.

PROTOCOL USING GO-BACK-N (10)

 Simulation of multiple timers in software. (a) The queued

timeouts (b) The situation after the first timeout has expired.

PROTOCOL USING SELECTIVE REPEAT (1)

 A sliding window protocol using selective repeat.

PROTOCOL USING SELECTIVE REPEAT (2)

 A sliding window protocol using selective repeat.

PROTOCOL USING SELECTIVE REPEAT (3)

 A sliding window protocol using selective repeat.

PROTOCOL USING SELECTIVE REPEAT (4)

 A sliding window protocol using selective repeat.

PROTOCOL USING SELECTIVE REPEAT (5)

 A sliding window protocol using selective repeat.

PROTOCOL USING SELECTIVE REPEAT (6)

 A sliding window protocol using selective repeat.

PROTOCOL USING SELECTIVE REPEAT (7)

 A sliding window protocol using selective repeat.

PROTOCOL USING SELECTIVE REPEAT (8)

 A sliding window protocol using selective repeat.

PROTOCOL USING SELECTIVE REPEAT (9)

 A sliding window protocol using selective repeat.

PROTOCOL USING SELECTIVE REPEAT (10)

 Initial situation with a window of size7

 After 7 frames sent and received but not acknowledged.

 Initial situation with a window size of 4.

 After 4 frames sent and received but not acknowledged.

EXAMPLE DATA LINK PROTOCOLS

 Packet over SONET

 ADSL (Asymmetric Digital Subscriber Loop)

PACKET OVER SONET (1)

 Packet over SONET. (a) A protocol stack. (b) Frame relationships

PACKET OVER SONET (2)

 PPP Features

 Separate packets, error detection

 Link Control Protocol

 Network Control Protocol

PACKET OVER SONET (3)

 The PPP full frame format for unnumbered mode operation

PACKET OVER SONET (4)

 State diagram for bringing a PPP link up and down

ADSL (ASYMMETRIC DIGITAL

SUBSCRIBER LOOP) (1)

 ADSL protocol stacks.

ADSL (ASYMMETRIC DIGITAL

SUBSCRIBER LOOP) (1)

 AAL5 frame carrying PPP data

Thank you
The content in this material are from the textbooks and reference books
given in the syllabus.

