

20 MCA 2 2 C

Unit – IV

JAVA I/O BASICS

FACULTY

Dr. K. ARTHI MCA, M.Phil., Ph.D.,

Assistant Professor,

Postgraduate Department of Computer Applications,

Government Arts College (Autonomous),

Coimbatore – 641 018.

Java I/O
Java I/O (Input and Output) is used to process the input and produce the output.

Java uses the concept of a stream to make I/O operation fast. The java.io package contains all the classes required for

input and output operations.

We can perform file handling in Java by Java I/O API.

Stream

A stream is a sequence of data. In Java, a stream is composed of bytes. It's called a stream because it is like a stream

of water that continues to flow.

In Java, 3 streams are created for us automatically. All these streams are attached with the console.

1) System.out: standard output stream

2) System.in: standard input stream

3) System.err: standard error stream

Let's see the code to print output and an error message to the console.

1. System.out.println("simple message");

2. System.err.println("error message");

Let's see the code to get input from console.

1. int i=System.in.read();//returns ASCII code of 1st character

2. System.out.println((char)i);//will print the character

OutputStream vs InputStream

The explanation of OutputStream and InputStream classes are given below:

OutputStream

Java application uses an output stream to write data to a destination; it may be a file, an array, peripheral device or

socket.

InputStream

Java application uses an input stream to read data from a source; it may be a file, an array, peripheral device or

socket.

Let's understand the working of Java OutputStream and InputStream by the figure given below.

OutputStream class

OutputStream class is an abstract class. It is the superclass of all classes representing an output stream of bytes. An

output stream accepts output bytes and sends them to some sink.

Useful methods of OutputStream

Method Description

1) public void write(int)throws

IOException

is used to write a byte to the

current output stream.

2) public void

write(byte[])throws

IOException

is used to write an array of byte

to the current output stream.

3) public void flush()throws

IOException

flushes the current output

stream.

4) public void close()throws

IOException

is used to close the current

output stream.

OutputStream Hierarchy

InputStream class

InputStream class is an abstract class. It is the superclass of all classes representing an input stream of bytes.

Useful methods of InputStream

Method Description

1) public abstract int

read()throws IOException
reads the next byte of data from the

input stream. It returns -1 at the end

of the file.

2) public int

available()throws

IOException

returns an estimate of the number of

bytes that can be read from the

current input stream.

3) public void

close()throws IOException

is used to close the current input

stream.

InputStream Hierarchy

Java Applet
Applet is a special type of program that is embedded in the webpage to generate the dynamic content. It runs inside

the browser and works at client side.

Advantage of Applet

There are many advantages of applet. They are as follows:

o It works at client side so less response time. o Secured o It can be executed by

browsers running under many plateforms, including Linux, Windows, Mac Os etc.

Drawback of Applet
 o Plugin is required at client browser to execute applet.

Hierarchy of Applet

As displayed in the above diagram, Applet class extends Panel. Panel class

extends Container which is the subclass of Component.

Lifecycle of Java Applet

1. Applet is initialized.

2. Applet is started.

3. Applet is painted.

4. Applet is stopped.

5. Applet is destroyed.

Lifecycle methods for Applet:

The java.applet.Applet class 4 life cycle methods and java.awt.Component class provides 1 life cycle methods for an

applet.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited. It provides 4 life cycle methods of applet.

1. public void init(): is used to initialized the Applet. It is invoked only once.

2. public void start(): is invoked after the init() method or browser is maximized. It is used to start the

Applet.

3. public void stop(): is used to stop the Applet. It is invoked when Applet is stop or browser is minimized.

4. public void destroy(): is used to destroy the Applet. It is invoked only once. java.awt.Component

class

The Component class provides 1 life cycle method of applet.

1. public void paint(Graphics g): is used to paint the Applet. It provides Graphics class object that can be used

for drawing oval, rectangle, arc etc.

Who is responsible to manage the life cycle of an applet?

Java Plug-in software.

How to run an Applet?

There are two ways to run an applet

1. By html file.

2. By appletViewer tool (for testing purpose).

Simple example of Applet by html file:

To execute the applet by html file, create an applet and compile it. After that create an html file and place the applet

code in html file. Now click the html file.

1. //First.java

2. import java.applet.Applet;

3. import java.awt.Graphics; 4. public class First extends Applet{

5.

6. public void paint(Graphics g){

7. g.drawString("welcome",150,150);

8. }

9.

10. }

Note: class must be public because its object is created by Java Plugin software that resides on the browser.

myapplet.html
1. <html>

2. <body>

3. <applet code="First.class" width="300" height="300">

4. </applet>

5. </body>

6. </html>

Simple example of Applet by appletviewer tool:

To execute the applet by appletviewer tool, create an applet that contains applet tag in comment and compile it. After

that run it by: appletviewer First.java. Now Html file is not required but it is for testing purpose only.

1. //First.java

2. import java.applet.Applet;

3. import java.awt.Graphics; 4. public class First extends Applet{

5.

6. public void paint(Graphics g){

7. g.drawString("welcome to applet",150,150);

8. }

9.

10. }

11. /*

12. <applet code="First.class" width="300" height="300">

13. </applet>

14. */

To execute the applet by appletviewer tool, write in command prompt:

c:\>javac First.java c:\>appletviewer

First.java

Java AWT
Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based applications in java.

Java AWT components are platform-dependent i.e. components are displayed according to the view of operating

system. AWT is heavyweight i.e. its components are using the resources of OS.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea, RadioButton,

CheckBox, Choice, List etc.

Java AWT Hierarchy

The hierarchy of Java AWT classes are given below.

https://www.javatpoint.com/package
https://www.javatpoint.com/package
https://www.javatpoint.com/package
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-awt-textfield
https://www.javatpoint.com/java-awt-textfield
https://www.javatpoint.com/java-awt-textfield
https://www.javatpoint.com/java-awt-label
https://www.javatpoint.com/java-awt-label
https://www.javatpoint.com/java-awt-label
https://www.javatpoint.com/java-awt-textarea
https://www.javatpoint.com/java-awt-textarea
https://www.javatpoint.com/java-awt-textarea
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-choice
https://www.javatpoint.com/java-awt-choice
https://www.javatpoint.com/java-awt-choice
https://www.javatpoint.com/java-awt-list
https://www.javatpoint.com/java-awt-list
https://www.javatpoint.com/java-awt-list

Container

The Container is a component in AWT that can contain another components like buttons, textfields, labels etc. The

classes that extends Container class are known as container such as Frame, Dialog and Panel.

Window

The window is the container that have no borders and menu bars. You must use frame, dialog or another window for

creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have other components like button,

textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can have other components like button,

textfield etc.

https://www.javatpoint.com/java-awt-button
https://www.javatpoint.com/java-awt-button
https://www.javatpoint.com/java-awt-button

Useful Methods of Component class

Method Description

public void add(Component c)

inserts a component on this

component.

public void setSize(int width,int

height)

sets the size (width and height)

of the component.

public void

setLayout(LayoutManager m)

defines the layout manager for

the component.

public void setVisible(boolean

status)

changes the visibility of the

component, by default false.

Java AWT Example

To create simple awt example, you need a frame. There are two ways to create a frame in AWT.

o By extending Frame class (inheritance) o By

creating the object of Frame class (association)

AWT Example by Inheritance

Let's see a simple example of AWT where we are inheriting Frame class. Here, we are showing Button component on

the Frame.

1. import java.awt.*;

2. class First extends Frame{

3. First(){

4. Button b=new Button("click me");

5. b.setBounds(30,100,80,30);// setting button position

6. add(b);//adding button into frame

7. setSize(300,300);//frame size 300 width and 300 height

8. setLayout(null);//no layout manager

9. setVisible(true);//now frame will be visible, by default not visible

10. }

11. public static void main(String args[]){

12. First f=new First();

13. }}

The content for this material is taken from the prescribed

Textbooks and Reference books.

