PYTHON PROGRAMMING
(20MCA21C)

UNIT -V
Classes and Objects

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head,
Post Graduate and Research Department of Computer Applications,
Government Arts College (Autonomous), Coimbatore - 641 018.

Python Object Oriented
‘Programming

1 In this unit, we’ll learn about Object-Oriented Programming (OOP) in Python
and its fundamental concept with the help of examples.

(1 Object Oriented Programming

1 Python is a multi-paradigm programming language. It supports different
programming approaches. One of the popular approaches to solve a
programming problem is by creating objects. This is known as Object-
Oriented Programming (OOP).

1 An object has two characteristics:

[1 Attributes
[1 behavior

) Let's take an example:

1 A parrot is can be an object, as it has the following properties:
[l name, age, color as attributes
O singing, dancing as behavior

I The concept of OOP in Python focuses on creating reusable code. This
concept 1s also known as DRY (Don't Repeat Yourself).

Class

[1 A class 1s a blueprint for the object.

e can think of class as a sketch of a parrot with labels. It
contains all the details about the name, colors, size etc. Based
on these descriptions, we can study about the parrot. Here, a
paryot is an object.

example for class of parrot can be:

class Fruit:

Pass

Here, we use the class keyword to define an empty class fruit
From class, we construct instances. An instance 1s a specific
object created from a particular class.

class attzibute
srecies = "bird”

2 instance attribute

jef init (self, name, age):
2e1f.nare = name
selr.age = age

instantiate the Parrot class
blu = Parxct("Dlu", 10)
woo = Parrct("Weca", 15)

accessz the classz atrtraikutas
print("Slu 23 & {}".format(blu._class__ .speciz2s))
print ("Woo a2 180 = (}'.fornac(woc.__class__.spec;es))

m
3t

access the inatance attributes
princ{"{} i=s |} y=ars nlc".formar
rint ("{) is {) ye=azrs 0ld".fozmmts

blu.name, blu.ag=2))
woo.name, woo.ag=))

Object

An object (instance) is an instantiation of a class. When class is defined, only the description for the object s defined. Therefore, no memoryor storage is allocated.
The example for object of parrotclass can be:
obj = Parrot()
Here, objis an object of class Parrot.
Suppose we have details of parrots. Now, we are going to show how to build the class and objects of parrots.

Example 1: Creating Class and Object in Python

v — b A
C:/Users/VICKY/App

L Lt

Fnle Edt Format Run Options Window Help

$ instance attributes

£ _init_ (self, name, age):
self.name = name
self.age = age

instance method
ief sing(self, song):
recurn "{)} sings {(}".format (self.name, song) .
«f dance(self):
recurn "{) is now dancing®.format (self.name)
instantiate the ocbject
blu = Parrot("Siu", 10)
$§ call ocur instance methods
print (blu.sing (" 'Happy'"™))
print (blu.dance())
e 21 Colk0

Methods

Methods are functions defined inside the body of a class. They are used to define the behaviors of an object.

In the program, we define two methods i.e sing() and dance(). These are called instance methods because they are called on an instance object
1.e blu.

File Edt Format Run Options Wmndow

lass Computer:

def _ init_ (self):
self. maxprice = 3500

ief sell(self):
print ("Selling Price: ({)".format(self. maxprice))

ief setMaxPrice(self, price):
self. maxprice = price

¢ = Computezr() [
c.sell()
$ change the price
Cc.__maxprice = 1000
c.sell()
§ using secter function
c.setMaxPrice (1000)
c.sell()

1?2 Cakn

Encapsulation

Using OOP in Python, we can restrict access to methods and variables. This prevents data from direct modification which is called encapsulation. In Python, we denote private attributes using underscore as
the prefix i.e single _ or double

We used init () method to store the maximum selling price of Computer. We tried to modify the price. However, we can't change it because Python treats the maxprice as private attributes.

File Edit Format Run Options
~laxz Parrot:
def fly(self):
print ("Parrot
ief swim(self)
print ("Parrot can't swaim")
-lass Penguin:
ef fly(self):
print ("Penguin can't £
jef swim(self): ‘
print ("Penguin can swim") =
$ common interface
ief flying test(bixd):
bird.fly()
$instantiate objects
blu = Parrot()
peggy = Penguin()
$ passing the object
flying_ tesc (blu)
flying test (peggy)

|
Ln: 20 Cok0
e i

0
W
4 |
”
[3R
~
3
-

(¥
)

-‘-»)

Polymorphism

Polymorphismis an ability (in OOP) to use a common interface for multiple forms (data types).
Suppose, we need to color a shape, there are multiple shape options (rectangle, square, circle). However we could use the same method to color any shape. This concept s called Polymorphism.

To use polymorphism, we created a common interface1.e flying_test(function that takes any object and calls the object's fly) method. Thus, when we passed the blu and peggy objects in the flying_test(function, it ran effectively.

4 Debug Options Window Help

.' 6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.151
/ 1 win32
', "copyright"”, "credits" or "license()" for more information.

C:/Users/VICKY/AppData/Local/Programs/Python/Python37/cbjet &

Lxrd

) & birxd

/ears old
jears old

nnnnnnnnn

'i—"*lyt‘-'—'

\ppData/Local/Programs/Python/Python37/object as argu...

it Run Optlons Window Help
/gram to illustrate functions
ated as cbjects

XT) :

rn text.upper|()

*tHello"))

L M
w
’.‘
(R
Q

—
—

eturning Multiple Values 1n
,Python

va W’]W-’?«"V/mhr T
”l)‘l"ﬂ#’vvt‘.’nl.’u\-o ki

hlc Edie F-:unn fun Opnons Window Help

§ A Pychoen program to et

lges from a method

Anit__ (melf):
self.scy = "Department of MCA™
self.x = 20

rL'S Col 38

Fth Edlt M Debug Options Window Help
Python 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) ([MS5C v.1916 64 bit -
(AMD€4)] on wan32

Type "help™, "copyright™, "creditsa®™ or "license ()™ for more information.

>»>

= RESTART: C:/Users/VICKY/AppData/Local/Programs/Pychon/Pychon37/object as recur

n values.py
Department of MCR

L7 Cokd

Build-in Class Attributes

[Every Python class keeps following built-in attributes and
they can be accessed using dot operator like any other
attribute —

0 dict — Dictionary containing the class's namespace.

1 doc — Class documentation string or none, if
undefined.

] name —. This gives us the class name

1 module — Class nameModule name in which the class is
defined. This attribute is " main " in interactive

mode.
| bases — A possibly empty tuple containing the

base classes, in the order of their occurrence in the base
class list.

___doc__ class attribute

"1 Program:

class
class Awesome:

‘Government Arts College,coimbatore.'

def init (self):
print("Hello from init method.")

class built-in attribute print(Awesome. doc)

The above code will give us the following output.

Government Arts College,coimbatore.

The name class attribute

% In the following example we are printing the name of the class.

[l #class
1 class Example:

1 '"This is a sample class called Awesome.'

1 def init _ (self):
[print("Hello from init method.")

[l # class built-in attribute
print(Example._name _)

1 Output:

1 Example

The module class attribute

[In the following example we are printing the module of the class.

class
class Example: def init (self):

print("Hello from init method.")

class built-in attribute print(Example. module)

Output:

main

Python

& Inheritance allows us to define a cIass that inherits all the methods and properties from another

class Inheritanc

% Parent class is the class being inherited from, also called base class.
hild class is the class that inherits from another class, also called derived class.

/« Python Inheritance Syntax

class BaseClass:

Body of base class
class DerivedClass(BaseClass):
Body of derived class

Types Of Inheritance

. . Single inheritance:
Types of inheritance depends upon the 5

,number of child and parent classes One base class and one derived class calls
involved. single inheritance.

[1 There are five types of
Inheritance in python

[0 Single inheritance

[J Multiple inheritance

[] Multilevel inheritance

[1 Hierarchical
inheritance

[0 Hybrid inheritance

2.Mu1tv_ip‘1e inheritance:

+* One derived class and two or more base classes

Itilevel inheritance:

% One base class(A),one derived class(B) which in
turn serves as a base class for
one or more derived(C)class.

Multiple Inheritance

Base class

Intermediary
class

Derived class

0 e— 0 &=— >»

4 .Hierarchical inheritance:

< One base class and one or more derived classes.

Hierarchical Inheritance

5.Hybrid inheritance:

< Combination of two or more inheritance. O

Hybrid Inheritance

Example : PYTHON INHERITANCE

Output:

-\.,-_,'.\‘.(_.‘)-, “T‘\'. g
A L ULLEA L A !

ormat Run Options Window Help

a/env python
/ artment:

:
m
|

1
o
0
)
)

print('Hello ")
instance
artment ()
2 method
()
» method with a
('Deparcment of

parameter

MCA'!

METHOD OVERLOADING

Method Overloading s the class having methods that are the same name with different arguments.
Arguments different will be based on a number of arguments and types of arguments.

It is used in a single class. It is also used to write the code cl

ity as well as red

"EXAMPLES

EXAMPLE1: SINGLE
 INHERITANCE

G - oG o o\~ — N T ~
%lwm-“ sers\VIC “ \'"*T"“lr* \Programs\Python\Python37

fie Edt Format Run Optioms Window Help

base:
cal sum(self,a,b):
(a+d)
Derived(base):
cal mul(self,a b):
(a*b)
/ nl=int (inpot {("ente:
nZwint (input (Yent
duDerived()
print (" (frocm base ci) is:%,d.cal_sum(ni,n2))
print (" (from Dezived classimultiplication is:",d.cal mul(nl,n2))

@ Python 376 Shetl.
File Edit Shel Debug Options Window Help

(AMDE4)) on win32

>>> |

Iype "help"™, "copyrzight®™, “"credits™ or "license()® for more information.

Python 3.7.6 (tags/v3.7.6:433¢64a7ae0, Dec 19 2019, 00:42:30) [MSC v.1916 64 bic - |

>5>
= RESTART: C:\Users\VICEKY\AppData\lLocal\Programs\Pythen\Python37\single inherits
ace.py

enter first number:45

enter second number: 62

(from base class)iddtion is: 107

(from rived class)multiplication 1a: 27990

L9 Cotd

EXAMPLE2: MULTIPLE
~INHERITANCE

Wittt eip

22t (self piece):

piece * 1300

computer = int (inpu :
printes = iat(i=nput(“entes prisves pleces:®))

a~Denler()
total ¢

gring (™2

+getTotallost (computer, princer)
*,to%al cosg)

Python 174

=t D

file Edt Shet Debug Optons Wedow Help
yehon 3.7.6 (Cage/v3. 7. €t43564aTac0, Det 19 2058, 00:42:30) [MIC v.i1916 &4 bpac -
(AMDE4)) o windd

Iype "help®, “copyright™, "credita® or “license ()" for sore iaformatias,

>

& RESTART: C:\Useza\VICEY\ipplata\local\Prograss\Pychon\PyeiendTinulicsiple inberl

pileces:ds
sepilds

Lull Cotd

EXAMPLE2: MULTILEVEL
INHERITANCE

gecldezatlsfself) !
self.Unane =

*,eelf . Unane)

e (% *,2elf . GRID)

gt (Universicy

3Ty
igDetails (sell)
cHame = inpot

+CRID = ingut|(
getldetailnl)

“.2elf . cRID)

college):

dietalls (pelf)
Lalane = Lrput(”
+SRell = npus (™

Szanch * input

ecClgDecails()
udbetails (sel?

pelf.slane)

1 *«elf sBranch)

1#

1f.showCigDecails |
wdent ()
udDetaila()
. ahovitudDetaslin ()]

File Edit Format Run Options Window

czla==s Base:
a=io
b=20

ciz==z Deriwvedl (Base):
=f sum(self):
add=self.a+self.b

£

DerivedR (Base):
i=f mual (self):

mul=sslif.a%*self.b
print("multipliica

dh=Derivedi()

dB=Deriveds ()

dia.sum()

dS.mul ()]

¢ Python 376 Shell

| File Edit Shell Debug Options

print ("Addtion is",add)

ot

Window Help

| (AMD&4)] on win32
Type "help™, "copyright",
>>>

hexitance.py
Addtion is 30
multiplication i=s 200
| >>>|

Python 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.1916 64 bit
"credits" or "license ()" for moxre information.

= RESTART: C:\Users\VICXY\&ppData\Local\Programs\Python\Python37\hierarchical in

Thank you

The Content in this Material are from the Textbooks and
Reference books given in the Syllabus

