
OPERATING SYSTEMS

[20MCA15C]

UNIT – IV

“File-System Interface,

Mass-Storage Systems,

File System Implementation”

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer Applications,
Government Arts College (Autonomous), Coimbatore – 641 018.

File-System Interface

 File Concept

 Access Methods

 Directory Structure

 File System Mounting

 File Sharing

 Protection

File Concept

 Contiguous logical address space

 Types:

 Data

 numeric

 character

 binary

 Program

File Structure

 None - sequence of words, bytes

 Simple record structure

 Lines

 Fixed length

 Variable length

 Complex Structures

 Formatted document

 Relocatable load file

 Can simulate last two with first method by inserting appropriate control
characters.

 Who decides:

 Operating system

 Program

File Attributes

 Name – only information kept in human-readable
form.

 Type – needed for systems that support different types.

 Location – pointer to file location on device.

 Size – current file size.

 Protection – controls who can do reading, writing,
executing.

 Time, date, and user identification – data for
protection, security, and usage monitoring.

 Information about files are kept in the directory
structure, which is maintained on the disk.

File Operations

 Create

 Write

 Read

 Reposition within file – file seek

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for

entry Fi, and move the content of entry to memory.

 Close (Fi) – move the content of entry Fi in memory to

directory structure on disk.

File Types – Name, Extension

Access Methods

 Sequential Access

 read next

 write next

 reset

 no read after last write

 (rewrite)

 Direct Access

 read n

 write n

 position to n

 read next

 write next

 rewrite n

 n = relative block number

Sequential-access File

Simulation of Sequential Access

on a Direct-access File

Example of Index and

Relative Files

Directory Structure

 A collection of nodes containing information about all
files.

 Both the directory structure and the files reside on disk.

 Backups of these two structures are kept on tapes.

A Typical File-system

Organization

Information in a Device

Directory

 Name

 Type

 Address

 Current length

 Maximum length

 Date last accessed (for archival)

 Date last updated (for dump)

 Owner ID (who pays)

 Protection information (discuss later)

Operations Performed on

Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

Organize the Directory

(Logically) to Obtain

 Efficiency – locating a file quickly.

 Naming – convenient to users.

 Two users can have same name for different files.

 The same file can have several different names.

 Grouping – logical grouping of files by properties,

(e.g., all Java programs, all games, …)

Single-Level Directory

 A single directory for all users.

Naming problem

Grouping problem

Two-Level Directory

 Separate directory for each user.

•Path name

•Can have the same file name for different user

•Efficient searching
•No grouping capability

Tree-Structured Directories

Tree-Structured Directories

(Cont.)

 Efficient searching

 Grouping Capability

 Current directory (working directory)

 cd /spell/mail/prog

 type list

Tree-Structured Directories

(Cont.)

 Absolute or relative path name

 Creating a new file is done in current directory.

 Delete a file

 rm <file-name>

 Creating a new subdirectory is done in current directory.

 mkdir <dir-name>

 Example: if in current directory /mail

 mkdir count

 Deleting “mail”  deleting the entire subtree rooted by
“mail”.

Acyclic-Graph Directories
Have shared subdirectories and files.

Acyclic-Graph Directories

(Cont.)

 Two different names (aliasing)

 If dict deletes list  dangling pointer.

 Solutions:

 Backpointers, so we can delete all pointers.

Variable size records a problem.

 Backpointers using a daisy chain organization.

 Entry-hold-count solution.

General Graph Directory

General Graph Directory

(Cont.)

 How do we guarantee no cycles?

 Allow only links to file not subdirectories.

 Garbage collection.

 Every time a new link is added use a cycle detection

algorithm to determine whether it is OK.

File System Mounting

 A file system must be mounted before it can be

accessed.

 A unmounted file system (I.e. Fig. 11-11(b)) is mounted

at a mount point.

(a) Existing. (b) Unmounted

Partition

Mount Point

File Sharing

 Sharing of files on multi-user systems is desirable.

 Sharing may be done through a protection scheme.

 On distributed systems, files may be shared across a

network.

 Network File System (NFS) is a common distributed file-

sharing method.

Protection

 File owner/creator should be able to control:

 what can be done

 by whom

 Types of access

 Read

 Write

 Execute

 Append

 Delete

 List

Access Lists and Groups

 Mode of access: read, write, execute

 Three classes of users

RWX

 a) owner access 7  1 1 1
RWX

 b) group access 6  1 1 0

RWX

 c) public access 1  0 0 1

 Ask manager to create a group (unique name), say G,
and add some users to the group.

 For a particular file (say game) or subdirectory, define an
appropriate access.

owner group public

chmod 761 gameAttach a group to a file

chgrp G game

Mass-Storage Systems

 Disk Structure

 Disk Scheduling

 Disk Management

 Swap-Space Management

 RAID Structure

 Disk Attachment

 Stable-Storage Implementation

 Tertiary Storage Devices

 Operating System Issues

 Performance Issues

Disk Structure

 Disk drives are addressed as large 1-dimensional

arrays of logical blocks, where the logical block is the

smallest unit of transfer.

 The 1-dimensional array of logical blocks is mapped

into the sectors of the disk sequentially.

 Sector 0 is the first sector of the first track on the

outermost cylinder.

 Mapping proceeds in order through that track, then the

rest of the tracks in that cylinder, and then through the

rest of the cylinders from outermost to innermost.

Disk Scheduling

 The operating system is responsible for using hardware
efficiently — for the disk drives, this means having a fast
access time and disk bandwidth.

 Access time has two major components

 Seek time is the time for the disk are to move the heads to
the cylinder containing the desired sector.

 Rotational latency is the additional time waiting for the disk
to rotate the desired sector to the disk head.

 Minimize seek time

 Seek time  seek distance

 Disk bandwidth is the total number of bytes transferred,
divided by the total time between the first request for
service and the completion of the last transfer.

Disk Scheduling (Cont.)

 Several algorithms exist to schedule the servicing of

disk I/O requests.

 We illustrate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

 Head pointer 53

FCFS
Illustration shows total head movement of 640 cylinders.

SSTF

 Selects the request with the minimum seek time from

the current head position.

 SSTF scheduling is a form of SJF scheduling; may cause

starvation of some requests.

 Illustration shows total head movement of 236

cylinders.

SSTF (Cont.)

SCAN

 The disk arm starts at one end of the disk, and moves

toward the other end, servicing requests until it gets to

the other end of the disk, where the head movement is

reversed and servicing continues.

 Sometimes called the elevator algorithm.

 Illustration shows total head movement of 208

cylinders.

SCAN (Cont.)

C-SCAN

 Provides a more uniform wait time than SCAN.

 The head moves from one end of the disk to the other.

servicing requests as it goes. When it reaches the

other end, however, it immediately returns to the

beginning of the disk, without servicing any requests

on the return trip.

 Treats the cylinders as a circular list that wraps around

from the last cylinder to the first one.

C-SCAN (Cont.)

C-LOOK

 Version of C-SCAN

 Arm only goes as far as the last request in each

direction, then reverses direction immediately, without

first going all the way to the end of the disk.

C-LOOK (Cont.)

Selecting a Disk-Scheduling

Algorithm

 SSTF is common and has a natural appeal

 SCAN and C-SCAN perform better for systems that
place a heavy load on the disk.

 Performance depends on the number and types of
requests.

 Requests for disk service can be influenced by the file-
allocation method.

 The disk-scheduling algorithm should be written as a
separate module of the operating system, allowing it
to be replaced with a different algorithm if necessary.

 Either SSTF or LOOK is a reasonable choice for the
default algorithm.

Disk Management

 Low-level formatting, or physical formatting — Dividing a
disk into sectors that the disk controller can read and
write.

 To use a disk to hold files, the operating system still needs
to record its own data structures on the disk.

 Partition the disk into one or more groups of cylinders.

 Logical formatting or “making a file system”.

 Boot block initializes system.

 The bootstrap is stored in ROM.

 Bootstrap loader program.

 Methods such as sector sparing used to handle bad
blocks.

MS-DOS Disk Layout

Swap-Space Management

 Swap-space — Virtual memory uses disk space as an
extension of main memory.

 Swap-space can be carved out of the normal file
system,or, more commonly, it can be in a separate
disk partition.

 Swap-space management

 4.3BSD allocates swap space when process starts; holds
text segment (the program) and data segment.

 Kernel uses swap maps to track swap-space use.

 Solaris 2 allocates swap space only when a page is
forced out of physical memory, not when the virtual
memory page is first created.

4.3 BSD Text-Segment Swap

Map

4.3 BSD Data-Segment Swap

Map

RAID Structure

 RAID – multiple disk drives provides reliability via

redundancy.

 RAID is arranged into six different levels.

RAID (cont)

 Several improvements in disk-use techniques involve

the use of multiple disks working cooperatively.

 Disk striping uses a group of disks as one storage unit.

 RAID schemes improve performance and improve the

reliability of the storage system by storing redundant

data.

 Mirroring or shadowing keeps duplicate of each disk.

 Block interleaved parity uses much less redundancy.

RAID Levels

RAID (0 + 1) and (1 + 0)

Disk Attachment

 Disks may be attached one of two ways:

 Host attached via an I/O port

 Network attached via a network connection

Network-Attached Storage

Storage-Area Network

Stable-Storage

Implementation

 Write-ahead log scheme requires stable storage.

 To implement stable storage:

 Replicate information on more than one nonvolatile

storage media with independent failure modes.

 Update information in a controlled manner to ensure that

we can recover the stable data after any failure during

data transfer or recovery.

Tertiary Storage Devices

 Low cost is the defining characteristic of tertiary

storage.

 Generally, tertiary storage is built using removable

media

 Common examples of removable media are floppy

disks and CD-ROMs; other types are available.

Removable Disks

 Floppy disk — thin flexible disk coated with magnetic

material, enclosed in a protective plastic case.

 Most floppies hold about 1 MB; similar technology is used

for removable disks that hold more than 1 GB.

 Removable magnetic disks can be nearly as fast as hard

disks, but they are at a greater risk of damage from

exposure.

Removable Disks (Cont.)

 A magneto-optic disk records data on a rigid platter

coated with magnetic material.

 Laser heat is used to amplify a large, weak magnetic

field to record a bit.

 Laser light is also used to read data (Kerr effect).

 The magneto-optic head flies much farther from the disk

surface than a magnetic disk head, and the magnetic

material is covered with a protective layer of plastic or

glass; resistant to head crashes.

 Optical disks do not use magnetism; they employ

special materials that are altered by laser light.

WORM Disks

 The data on read-write disks can be modified over
and over.

 WORM (“Write Once, Read Many Times”) disks can be
written only once.

 Thin aluminum film sandwiched between two glass or
plastic platters.

 To write a bit, the drive uses a laser light to burn a small
hole through the aluminum; information can be
destroyed by not altered.

 Very durable and reliable.

 Read Only disks, such ad CD-ROM and DVD, com from
the factory with the data pre-recorded.

Tapes

 Compared to a disk, a tape is less expensive and holds
more data, but random access is much slower.

 Tape is an economical medium for purposes that do not
require fast random access, e.g., backup copies of disk
data, holding huge volumes of data.

 Large tape installations typically use robotic tape
changers that move tapes between tape drives and
storage slots in a tape library.

 stacker – library that holds a few tapes

 silo – library that holds thousands of tapes

 A disk-resident file can be archived to tape for low cost
storage; the computer can stage it back into disk storage
for active use.

Operating System Issues

 Major OS jobs are to manage physical devices and to

present a virtual machine abstraction to applications

 For hard disks, the OS provides two abstraction:

 Raw device – an array of data blocks.

 File system – the OS queues and schedules the

interleaved requests from several applications.

Application Interface

 Most OSs handle removable disks almost exactly like
fixed disks — a new cartridge is formatted and an empty
file system is generated on the disk.

 Tapes are presented as a raw storage medium, i.e., and
application does not not open a file on the tape, it opens
the whole tape drive as a raw device.

 Usually the tape drive is reserved for the exclusive use of
that application.

 Since the OS does not provide file system services, the
application must decide how to use the array of blocks.

 Since every application makes up its own rules for how to
organize a tape, a tape full of data can generally only be
used by the program that created it.

Tape Drives

 The basic operations for a tape drive differ from those

of a disk drive.

 locate positions the tape to a specific logical block,

not an entire track (corresponds to seek).

 The read position operation returns the logical block

number where the tape head is.

 The space operation enables relative motion.

 Tape drives are “append-only” devices; updating a

block in the middle of the tape also effectively erases

everything beyond that block.

 An EOT mark is placed after a block that is written.

File Naming

 The issue of naming files on removable media is

especially difficult when we want to write data on a

removable cartridge on one computer, and then use

the cartridge in another computer.

 Contemporary OSs generally leave the name space

problem unsolved for removable media, and depend

on applications and users to figure out how to access

and interpret the data.

 Some kinds of removable media (e.g., CDs) are so

well standardized that all computers use them the

same way.

Hierarchical Storage

Management (HSM)

 A hierarchical storage system extends the storage
hierarchy beyond primary memory and secondary
storage to incorporate tertiary storage — usually
implemented as a jukebox of tapes or removable
disks.

 Usually incorporate tertiary storage by extending the
file system.

 Small and frequently used files remain on disk.

 Large, old, inactive files are archived to the jukebox.

 HSM is usually found in supercomputing centers and
other large installations that have enormous volumes
of data.

Speed

 Two aspects of speed in tertiary storage are bandwidth

and latency.

 Bandwidth is measured in bytes per second.

 Sustained bandwidth – average data rate during a large

transfer; # of bytes/transfer time.

Data rate when the data stream is actually flowing.

 Effective bandwidth – average over the entire I/O time,

including seek or locate, and cartridge switching.

Drive’s overall data rate.

Speed (Cont.)

 Access latency – amount of time needed to locate data.

 Access time for a disk – move the arm to the selected
cylinder and wait for the rotational latency; < 35 milliseconds.

 Access on tape requires winding the tape reels until the
selected block reaches the tape head; tens or hundreds of
seconds.

 Generally say that random access within a tape cartridge is
about a thousand times slower than random access on disk.

 The low cost of tertiary storage is a result of having many
cheap cartridges share a few expensive drives.

 A removable library is best devoted to the storage of
infrequently used data, because the library can only
satisfy a relatively small number of I/O requests per hour.

Reliability

 A fixed disk drive is likely to be more reliable than a

removable disk or tape drive.

 An optical cartridge is likely to be more reliable than a

magnetic disk or tape.

 A head crash in a fixed hard disk generally destroys

the data, whereas the failure of a tape drive or optical

disk drive often leaves the data cartridge unharmed.

Cost

 Main memory is much more expensive than disk storage

 The cost per megabyte of hard disk storage is
competitive with magnetic tape if only one tape is used
per drive.

 The cheapest tape drives and the cheapest disk drives
have had about the same storage capacity over the
years.

 Tertiary storage gives a cost savings only when the
number of cartridges is considerably larger than the
number of drives.

Price per Megabyte of

DRAM, From 1981 to 2000

Price per Megabyte of Magnetic

Hard Disk, From 1981 to 2000

Price per Megabyte of a

Tape Drive, From 1984-2000

File System Implementation

 File System Structure

 File System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 Log-Structured File Systems

 NFS

File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage (disks).

 File system organized into layers.

 File control block – storage structure consisting of

information about a file.

Layered File System

A Typical File Control Block

In-Memory File System

Structures

 The following figure illustrates the necessary file system

structures provided by the operating systems.

 Figure 12-3(a) refers to opening a file.

 Figure 12-3(b) refers to reading a file.

In-Memory File System

Structures

Virtual File Systems

 Virtual File Systems (VFS) provide an object-oriented

way of implementing file systems.

 VFS allows the same system call interface (the API) to

be used for different types of file systems.

 The API is to the VFS interface, rather than any specific

type of file system.

Schematic View of Virtual

File System

Directory Implementation

 Linear list of file names with pointer to the data blocks.

 simple to program

 time-consuming to execute

 Hash Table – linear list with hash data structure.

 decreases directory search time

 collisions – situations where two file names hash to the

same location

 fixed size

Allocation Methods

 An allocation method refers to how disk blocks are

allocated for files:

 Contiguous allocation

 Linked allocation

 Indexed allocation

Contiguous Allocation

 Each file occupies a set of contiguous blocks on the
disk.

 Simple – only starting location (block #) and length
(number of blocks) are required.

 Random access.

 Wasteful of space (dynamic storage-allocation
problem).

 Files cannot grow.

Contiguous Allocation of

Disk Space

Extent-Based Systems

 Many newer file systems (I.e. Veritas File System) use a

modified contiguous allocation scheme.

 Extent-based file systems allocate disk blocks in

extents.

 An extent is a contiguous block of disks. Extents are

allocated for file allocation. A file consists of one or

more extents.

Linked Allocation

 Each file is a linked list of disk blocks: blocks may be

scattered anywhere on the disk.

pointerblock =

Linked Allocation (Cont.)

 Simple – need only starting address

 Free-space management system – no waste of space

 No random access

 Mapping

 Block to be accessed is the Qth block in the linked chain
of blocks representing the file.

 Displacement into block = R + 1

 File-allocation table (FAT) – disk-space allocation used
by MS-DOS and OS/2.

LA/511

Q

R

Linked Allocation

File-Allocation Table

Indexed Allocation

 Brings all pointers together into the index block.

 Logical view.

Example of Indexed

Allocation

Indexed Allocation (Cont.)

 Need index table

 Random access

 Dynamic access without external fragmentation, but
have overhead of index block.

 Mapping from logical to physical in a file of maximum
size of 256K words and block size of 512 words. We
need only 1 block for index table.

 Q = displacement into index table

 R = displacement into block

LA/512

Q

R

Indexed Allocation –

Mapping (Cont.)

 Mapping from logical to physical in a file of

unbounded length (block size of 512 words).

 Linked scheme – Link blocks of index table (no limit on

size).

 Q1 = block of index table

 R1 is used as follows:

 Q2 = displacement into block of index table

 R2 displacement into block of file:

LA / (512 x 511)

Q1

R1

R1 / 512

Q2

R2

Indexed Allocation –

Mapping (Cont.)

 Two-level index (maximum file size is 5123)

 Q1 = displacement into outer-index

 R1 is used as follows:

 Q2 = displacement into block of index table

 R2 displacement into block of file:

LA / (512 x 512)

Q1

R1

R1 / 512

Q2

R2

Indexed Allocation –

Mapping (Cont.)



outer-index

index table file

Combined Scheme: UNIX

(4K bytes per block)

Free-Space Management

 Bit vector (n blocks)

 Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

…

0 1 2 n-1

bit[i] =



 0  block[i] free

1  block[i] occupied

Free-Space Management

(Cont.)

 Bit map requires extra space. Example:

 block size = 212 bytes

 disk size = 230 bytes (1 gigabyte)

 n = 230/212 = 218 bits (or 32K bytes)

 Easy to get contiguous files

 Linked list (free list)

 Cannot get contiguous space easily

 No waste of space

 Grouping

 Counting

Free-Space Management

(Cont.)

 Need to protect:

 Pointer to free list

 Bit map

 Must be kept on disk

 Copy in memory and disk may differ.

 Cannot allow for block[i] to have a situation where bit[i] = 1 in
memory and bit[i] = 0 on disk.

 Solution:

 Set bit[i] = 1 in disk.

 Allocate block[i]

 Set bit[i] = 1 in memory

Linked Free Space List on

Disk

Efficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for

frequently used blocks

 free-behind and read-ahead – techniques to optimize

sequential access

 improve PC performance by dedicating section of

memory as virtual disk, or RAM disk.

Various Disk-Caching

Locations

Page Cache

 A page cache caches pages rather than disk blocks

using virtual memory techniques.

 Memory-mapped I/O uses a page cache.

 Routine I/O through the file system uses the buffer

(disk) cache.

 This leads to the following figure.

I/O Without a Unified Buffer

Cache

Unified Buffer Cache

 A unified buffer cache uses the same page cache to

cache both memory-mapped pages and ordinary file

system I/O.

I/O Using a Unified Buffer

Cache

Recovery

 Consistency checking – compares data in directory

structure with data blocks on disk, and tries to fix

inconsistencies.

 Use system programs to back up data from disk to

another storage device (floppy disk, magnetic tape).

 Recover lost file or disk by restoring data from backup.

Log Structured File Systems

 Log structured (or journaling) file systems record each
update to the file system as a transaction.

 All transactions are written to a log. A transaction is
considered committed once it is written to the log.
However, the file system may not yet be updated.

 The transactions in the log are asynchronously written to
the file system. When the file system is modified, the
transaction is removed from the log.

 If the file system crashes, all remaining transactions in the
log must still be performed.

The Sun Network File System

(NFS)

 An implementation and a specification of a software

system for accessing remote files across LANs (or

WANs).

 The implementation is part of the Solaris and SunOS

operating systems running on Sun workstations using

an unreliable datagram protocol (UDP/IP protocol and

Ethernet.

NFS (Cont.)

 Interconnected workstations viewed as a set of
independent machines with independent file systems,
which allows sharing among these file systems in a
transparent manner.

 A remote directory is mounted over a local file system
directory. The mounted directory looks like an integral
subtree of the local file system, replacing the subtree
descending from the local directory.

 Specification of the remote directory for the mount operation
is nontransparent; the host name of the remote directory has
to be provided. Files in the remote directory can then be
accessed in a transparent manner.

 Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory.

NFS (Cont.)

 NFS is designed to operate in a heterogeneous

environment of different machines, operating systems,

and network architectures; the NFS specifications

independent of these media.

 This independence is achieved through the use of RPC

primitives built on top of an External Data

Representation (XDR) protocol used between two

implementation-independent interfaces.

 The NFS specification distinguishes between the

services provided by a mount mechanism and the

actual remote-file-access services.

Three Independent File

Systems

Mounting in NFS

Mounts Cascading mounts

NFS Mount Protocol

 Establishes initial logical connection between server and client.

 Mount operation includes name of remote directory to be
mounted and name of server machine storing it.

 Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine.

 Export list – specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them.

 Following a mount request that conforms to its export list, the
server returns a file handle—a key for further accesses.

 File handle – a file-system identifier, and an inode number to
identify the mounted directory within the exported file system.

 The mount operation changes only the user’s view and does not
affect the server side.

NFS Protocol

 Provides a set of remote procedure calls for remote file
operations. The procedures support the following operations:

 searching for a file within a directory

 reading a set of directory entries

 manipulating links and directories

 accessing file attributes

 reading and writing files

 NFS servers are stateless; each request has to provide a full set of
arguments.

 Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching).

 The NFS protocol does not provide concurrency-control
mechanisms.

Three Major Layers of NFS

Architecture

 UNIX file-system interface (based on the open, read,
write, and close calls, and file descriptors).

 Virtual File System (VFS) layer – distinguishes local files
from remote ones, and local files are further
distinguished according to their file-system types.

 The VFS activates file-system-specific operations to
handle local requests according to their file-system
types.

 Calls the NFS protocol procedures for remote requests.

 NFS service layer – bottom layer of the architecture;
implements the NFS protocol.

Schematic View of NFS

Architecture

NFS Path-Name Translation

 Performed by breaking the path into component

names and performing a separate NFS lookup call for

every pair of component name and directory vnode.

 To make lookup faster, a directory name lookup

cache on the client’s side holds the vnodes for remote

directory names.

NFS Remote Operations

 Nearly one-to-one correspondence between regular
UNIX system calls and the NFS protocol RPCs (except
opening and closing files).

 NFS adheres to the remote-service paradigm, but
employs buffering and caching techniques for the sake of
performance.

 File-blocks cache – when a file is opened, the kernel
checks with the remote server whether to fetch or
revalidate the cached attributes. Cached file blocks are
used only if the corresponding cached attributes are up
to date.

 File-attribute cache – the attribute cache is updated
whenever new attributes arrive from the server.

 Clients do not free delayed-write blocks until the server
confirms that the data have been written to disk.

Thank you
The content in this Material are from the Textbooks

and Reference books given in the Syllabus

