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Memory Management

 Background

 Swapping 

 Contiguous Allocation

 Paging

 Segmentation

 Segmentation with Paging



Background

 Program must be brought into memory and placed 

within a process for it to be run.

 Input queue – collection of processes on the disk that 

are waiting to be brought into memory to run the 

program.

 User programs go through several steps before being 

run. 



Binding of Instructions and 

Data to Memory

 Address binding of instructions and data to memory 

addresses can happen at three different stages.

 Compile time:  If memory location known a priori, 

absolute code can be generated; must recompile 

code if starting location changes.

 Load time:  Must generate relocatable code if memory 

location is not known at compile time.

 Execution time:  Binding delayed until run time if the 

process can be moved during its execution from one 

memory segment to another.  Need hardware support 

for address maps (e.g., base and limit registers).



Multistep Processing of a 

User Program 



Logical vs. Physical Address 

Space

 The concept of a logical address space that is bound 

to a separate physical address space is central to 

proper memory management.

 Logical address – generated by the CPU; also referred to 

as virtual address.

 Physical address – address seen by the memory unit.

 Logical and physical addresses are the same in 

compile-time and load-time address-binding 

schemes; logical (virtual) and physical addresses 

differ in execution-time address-binding scheme.



Memory-Management Unit 

(MMU)

 Hardware device that maps virtual to physical 

address.

 In MMU scheme, the value in the relocation register is 

added to every address generated by a user process 

at the time it is sent to memory.

 The user program deals with logical addresses; it never 

sees the real physical addresses.



Dynamic relocation using a 

relocation register



Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is 

never loaded.

 Useful when large amounts of code are needed to 

handle infrequently occurring cases.

 No special support from the operating system is 

required implemented through program design.



Dynamic Linking

 Linking postponed until execution time.

 Small piece of code, stub, used to locate the 

appropriate memory-resident library routine.

 Stub replaces itself with the address of the routine, and 

executes the routine.

 Operating system needed to check if routine is in 

processes’ memory address.

 Dynamic linking is particularly useful for libraries.



Overlays

 Keep in memory only those instructions and data that 

are needed at any given time.

 Needed when process is larger than amount of 

memory allocated to it.

 Implemented by user, no special support needed from 

operating system, programming design of overlay 

structure is complex



Overlays for a Two-Pass 

Assembler



Swapping

 A process can be swapped temporarily out of memory to a 
backing store, and then brought back into memory for continued 
execution.

 Backing store – fast disk large enough to accommodate copies 
of all memory images for all users; must provide direct access to 
these memory images.

 Roll out, roll in – swapping variant used for priority-based 
scheduling algorithms; lower-priority process is swapped out so 
higher-priority process can be loaded and executed.

 Major part of swap time is transfer time; total transfer time is 
directly proportional to the amount of memory swapped.

 Modified versions of swapping are found on many systems, i.e., 
UNIX, Linux, and Windows.



Schematic View of 

Swapping



Contiguous Allocation

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory 

with interrupt vector.

 User processes then held in high memory.

 Single-partition allocation

 Relocation-register scheme used to protect user 

processes from each other, and from changing 

operating-system code and data.

 Relocation register contains value of smallest physical 

address; limit register contains range of logical addresses 

– each logical address must be less than the limit register. 



Hardware Support for Relocation 

and Limit Registers



Contiguous Allocation 

(Cont.)

 Multiple-partition allocation

 Hole – block of available memory; holes of various size 

are scattered throughout memory.

 When a process arrives, it is allocated memory from a 

hole large enough to accommodate it.

 Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)



Dynamic Storage-Allocation 

Problem

 How to satisfy a request of size n from a list of free 

holes.

 First-fit:  Allocate the first hole that is big enough.

 Best-fit:  Allocate the smallest hole that is big enough; 

must search entire list, unless ordered by size.  

Produces the smallest leftover hole.

 Worst-fit:  Allocate the largest hole; must also search 

entire list.  Produces the largest leftover hole.

 First-fit and best-fit better than worst-fit in terms of 

speed and storage utilization.



Fragmentation

 External Fragmentation – total memory space exists to 
satisfy a request, but it is not contiguous.

 Internal Fragmentation – allocated memory may be 
slightly larger than requested memory; this size difference 
is memory internal to a partition, but not being used.

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together 
in one large block.

 Compaction is possible only if relocation is dynamic, and is 
done at execution time.

 I/O problem

 Latch job in memory while it is involved in I/O.

 Do I/O only into OS buffers.



Paging

 Logical address space of a process can be 
noncontiguous; process is allocated physical memory 
whenever the latter is available.

 Divide physical memory into fixed-sized blocks called 
frames (size is power of 2, between 512 bytes and 8192 
bytes).

 Divide logical memory into blocks of same size called 
pages.

 Keep track of all free frames.

 To run a program of size n pages, need to find n free 
frames and load program.

 Set up a page table to translate logical to physical 
addresses. 

 Internal fragmentation.



Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table 

which contains base address of each page in physical 

memory.

 Page offset (d) – combined with base address to define 

the physical memory address that is sent to the memory 

unit.



Address Translation 

Architecture 



Paging Example 



Paging Example



Free Frames



Implementation of Page 

Table

 Page table is kept in main memory.

 Page-table base register (PTBR) points to the page 
table.

 Page-table length register (PRLR) indicates size of the 
page table.

 In this scheme every data/instruction access requires 
two memory accesses.  One for the page table and 
one for the data/instruction.

 The two memory access problem can be solved by 
the use of a special fast-lookup hardware cache 
called associative memory or translation look-aside 
buffers (TLBs)



Associative Memory

 Associative memory – parallel search 

 Address translation (A´, A´´)

 If A´ is in associative register, get frame # out. 

 Otherwise get frame # from page table in memory

Page # Frame #



Paging Hardware With TLB



Effective Access Time

 Associative Lookup =  time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio – percentage of times that a page number is 

found in the associative registers; ration related to 

number of associative registers.

Hit ratio = 

 Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 



Memory Protection

 Memory protection implemented by associating 

protection bit with each frame.

 Valid-invalid bit attached to each entry in the page 

table:

 “valid” indicates that the associated page is in the 

process’ logical address space, and is thus a legal page.

 “invalid” indicates that the page is not in the process’ 

logical address space.



Valid (v) or Invalid (i) Bit In A 

Page Table



Page Table Structure

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables



Hierarchical Page Tables

 Break up the logical address space into multiple page 

tables.

 A simple technique is a two-level page table.



Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided into:

 a page number consisting of 20 bits.

 a page offset consisting of 12 bits.

 Since the page table is paged, the page number is further divided into:

 a 10-bit page number. 

 a 10-bit page offset.

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within 
the page of the outer page table.

page number page offset

pi p2 d

10 10 12



Two-Level Page-Table 

Scheme



Address-Translation Scheme
Address-translation scheme for a two-level 32-bit paging architecture



Hashed Page Tables

 Common in address spaces > 32 bits.

 The virtual page number is hashed into a page table. 

This page table contains a chain of elements hashing 

to the same location.

 Virtual page numbers are compared in this chain 

searching for a match. If a match is found, the 

corresponding physical frame is extracted.



Hashed Page Table



Inverted Page Table

 One entry for each real page of memory.

 Entry consists of the virtual address of the page stored 

in that real memory location, with information about 

the process that owns that page.

 Decreases memory needed to store each page table, 

but increases time needed to search the table when a 

page reference occurs.

 Use hash table to limit the search to one — or at most 

a few — page-table entries.



Inverted Page Table 

Architecture



Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems). 

 Shared code must appear in same location in the logical 

address space of all processes.

 Private code and data 

 Each process keeps a separate copy of the code and 

data.

 The pages for the private code and data can appear 

anywhere in the logical address space.



Shared Pages Example



Segmentation

 Memory-management scheme that supports user view of 
memory. 

 A program is a collection of segments.  A segment is a logical 
unit such as:

 main program,

 procedure, 

 function,

 method,

 object,

 local variables, global variables,

 common block,

 stack,

 symbol table, arrays



User’s View of a Program



Logical View of 

Segmentation



Segmentation Architecture 

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical 
addresses; each table entry has:

 base – contains the starting physical address where the 
segments reside in memory.

 limit – specifies the length of the segment.

 Segment-table base register (STBR) points to the segment 
table’s location in memory.

 Segment-table length register (STLR) indicates number of 
segments used by a program;

segment number s is legal if s < STLR.



Segmentation Architecture 

(Cont.)

 Relocation.

 dynamic

 by segment table 

 Sharing.

 shared segments

 same segment number 

 Allocation.

 first fit/best fit

 external fragmentation



Segmentation Architecture 

(Cont.)

 Protection.  With each entry in segment table 

associate:

 validation bit = 0  illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing 

occurs at segment level.

 Since segments vary in length, memory allocation is a 

dynamic storage-allocation problem.

 A segmentation example is shown in the following 

diagram



Segmentation Hardware



Example of Segmentation



Sharing of Segments



Segmentation with Paging –

MULTICS

 The MULTICS system solved problems of external 

fragmentation and lengthy search times by paging the 

segments.

 Solution differs from pure segmentation in that the 

segment-table entry contains not the base address of 

the segment, but rather the base address of a page 

table for this segment.



MULTICS Address Translation 

Scheme



Segmentation with Paging –

Intel 386

 As shown in the following diagram, the Intel 386 uses 

segmentation with paging for memory management 

with a two-level paging scheme.



Intel 30386 Address 

Translation



Virtual Memory

 Background

 Demand Paging

 Process Creation

 Page Replacement

 Allocation of Frames 

 Thrashing

 Operating System Examples



Background

 Virtual memory – separation of user logical memory from 
physical memory.

 Only part of the program needs to be in memory for 
execution.

 Logical address space can therefore be much larger than 
physical address space.

 Allows address spaces to be shared by several processes.

 Allows for more efficient process creation.

 Virtual memory can be implemented via:

 Demand paging 

 Demand segmentation



Virtual Memory That is Larger 

Than Physical Memory



Demand Paging

 Bring a page into memory only when it is needed.

 Less I/O needed

 Less memory needed 

 Faster response

 More users

 Page is needed  reference to it

 invalid reference  abort

 not-in-memory  bring to memory



Transfer of a Paged Memory 

to Contiguous Disk Space



Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(1  in-memory, 0  not-in-memory)

 Initially valid–invalid but is set to 0 on all entries.

 Example of a page table snapshot.

 During address translation, if valid–invalid bit in page table entry is 0  page fault.



Page Table When Some Pages 

Are Not in Main Memory



Page Fault

 If there is ever a reference to a page, first reference will trap to 
OS  page fault

 OS looks at another table to decide:

 Invalid reference  abort.

 Just not in memory.

 Get empty frame.

 Swap page into frame.

 Reset tables, validation bit = 1.

 Restart instruction:  Least Recently Used 

 block move

 auto increment/decrement location



Steps in Handling a Page 

Fault



What happens if there is no 

free frame?

 Page replacement – find some page in memory, but 

not really in use, swap it out.

 algorithm

 performance – want an algorithm which will result in 

minimum number of page faults.

 Same page may be brought into memory several 

times.



Performance of Demand 

Paging

 Page Fault Rate 0  p  1.0

 if p = 0 no page faults 

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ [swap page out ]

+ swap page in

+ restart overhead)



Demand Paging Example

 Memory access time = 1 microsecond

 50% of the time the page that is being replaced has 

been modified and therefore needs to be swapped 

out.

 Swap Page Time = 10 msec = 10,000 msec

EAT = (1 – p) x 1 + p (15000)

1 + 15000P      (in msec)



Process Creation

 Virtual memory allows other benefits during process 

creation:

 - Copy-on-Write

 - Memory-Mapped Files



Copy-on-Write

 Copy-on-Write (COW) allows both parent and child 

processes to initially share the same pages in memory.

If either process modifies a shared page, only then is 

the page copied.

 COW allows more efficient process creation as only 

modified pages are copied.

 Free pages are allocated from a pool of zeroed-out 

pages.



Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as 
routine memory access by mapping a disk block to a 
page in memory.

 A file is initially read using demand paging. A page-sized 
portion of the file is read from the file system into a 
physical page. Subsequent reads/writes to/from the file 
are treated as ordinary memory accesses.

 Simplifies file access by treating file I/O through memory 
rather than read() write() system calls.

 Also allows several processes to map the same file 
allowing the pages in memory to be shared.



Memory Mapped Files



Page Replacement

 Prevent over-allocation of memory by modifying 

page-fault service routine to include page 

replacement.

 Use modify (dirty) bit to reduce overhead of page 

transfers – only modified pages are written to disk.

 Page replacement completes separation between 

logical memory and physical memory – large virtual 

memory can be provided on a smaller physical 

memory.



Need For Page Replacement



Basic Page Replacement

 Find the location of the desired page on disk.

 Find a free frame:

- If there is a free frame, use it.

- If there is no free frame, use a page replacement 

algorithm to select a victim frame.

 Read the desired page into the (newly) free frame. 

Update the page and frame tables.

 Restart the process.



Page Replacement



Page Replacement 

Algorithms

 Want lowest page-fault rate.

 Evaluate algorithm by running it on a particular string 

of memory references (reference string) and 

computing the number of page faults on that string.

 In all our examples, the reference string is 

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.



Graph of Page Faults Versus 

The Number of Frames



First-In-First-Out (FIFO) 

Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 FIFO Replacement – Belady’s Anomaly

 more frames  less page faults



FIFO Page Replacement



FIFO Illustrating Belady’s 

Anamoly



Optimal Algorithm

 Replace page that will not be used for longest period of 
time.

 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Used for measuring how well your algorithm performs.



Optimal Page Replacement



Least Recently Used (LRU) 

Algorithm

 Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation

 Every page entry has a counter; every time page is 
referenced through this entry, copy the clock into the 
counter.

 When a page needs to be changed, look at the counters to 
determine which are to change.



LRU Page Replacement



LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page 

numbers in a double link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 No search for replacement



Use Of A Stack to Record The 

Most Recent Page References



LRU Approximation 

Algorithms

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1.

 Replace the one which is 0 (if one exists).  We do not know 
the order, however.

 Second chance

 Need reference bit.

 Clock replacement.

 If page to be replaced (in clock order) has reference bit = 1.  
then:

 set reference bit 0.

 leave page in memory.

 replace next page (in clock order), subject to same rules.



Second-Chance (clock) Page-

Replacement Algorithm



Counting Algorithms

 Keep a counter of the number of references that have 

been made to each page.

 LFU Algorithm:  replaces page with smallest count.

 MFU Algorithm: based on the argument that the page 

with the smallest count was probably just brought in 

and has yet to be used.



Allocation of Frames

 Each process needs minimum number of pages.

 Example:  IBM 370 – 6 pages to handle SS MOVE 

instruction:

 instruction is 6 bytes, might span 2 pages.

 2 pages to handle from.

 2 pages to handle to.

 Two major allocation schemes.

 fixed allocation

 priority allocation



Fixed Allocation

 Equal allocation – e.g., 

if 100 frames and 5 

processes, give each 

20 pages.

 Proportional allocation 

– Allocate according to 

the size of process.



Priority Allocation

 Use a proportional allocation scheme using priorities 

rather than size.

 If process Pi generates a page fault,

 select for replacement one of its frames.

 select for replacement a frame from a process with lower 

priority number.



Global vs. Local Allocation

 Global replacement – process selects a replacement 

frame from the set of all frames; one process can take 

a frame from another.

 Local replacement – each process selects from only its 

own set of allocated frames.



Thrashing

 If a process does not have “enough” pages, the page-

fault rate is very high.  This leads to:

 low CPU utilization.

 operating system thinks that it needs to increase the 

degree of multiprogramming.

 another process added to the system.

 Thrashing  a process is busy swapping pages in and 

out.



Thrashing 

 Why does paging work?

Locality model

 Process migrates from 

one locality to 

another.

 Localities may 

overlap.

 Why does thrashing 

occur?

 size of locality > total 

memory size



Locality In A Memory-

Reference Pattern



Working-Set Model

   working-set window  a fixed number of page 
references 
Example:  10,000 instruction

 WSSi (working set of Process Pi) =
total number of pages referenced in the most recent 
(varies in time)

 if  too small will not encompass entire locality.

 if  too large will encompass several localities.

 if  =   will encompass entire program.

 D =  WSSi  total demand frames 

 if D > m  Thrashing

 Policy if D > m, then suspend one of the processes.



Working-set model



Keeping Track of the 

Working Set

 Approximate with interval timer + a reference bit

 Example:  = 10,000

 Timer interrupts after every 5000 time units.

 Keep in memory 2 bits for each page.

 Whenever a timer interrupts copy and sets the values of 

all reference bits to 0.

 If one of the bits in memory = 1  page in working set.

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time 

units.



Page-Fault Frequency 

Scheme

 Establish “acceptable” 

page-fault rate.

 If actual rate too low, 

process loses frame.

 If actual rate too high, 

process gains frame.



Other Considerations

 Prepaging 

 Page size selection

 fragmentation

 table size 

 I/O overhead

 locality



Other Considerations (Cont.)

 TLB Reach - The amount of memory accessible from 

the TLB.

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the 

TLB. Otherwise there is a high degree of page faults.



Increasing the Size of the TLB

 Increase the Page Size. This may lead to an increase in 

fragmentation as not all applications require a large 

page size.

 Provide Multiple Page Sizes. This allows applications 

that require larger page sizes the opportunity to use 

them without an increase in fragmentation.



Other Considerations (Cont.)

 Program structure

 int A[][] = new int[1024][1024];

 Each row is stored in one page 

 Program 1 for (j = 0; j < A.length; j++)
for (i = 0; i < A.length; i++)

A[i,j] = 0;
1024 x 1024 page faults 

 Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;



1024 page faults



Other Considerations (Cont.)

 I/O Interlock – Pages must sometimes be locked into 

memory.

 Consider I/O. Pages that are used for copying a file 

from a device must be locked from being selected for 

eviction by a page replacement algorithm.



Reason Why Frames Used 

For I/O Must Be In Memory



Operating System Examples

 Windows NT

 Solaris 2



Windows NT

 Uses demand paging with clustering. Clustering brings in 
pages surrounding the faulting page.

 Processes are assigned working set minimum and 
working set maximum.

 Working set minimum is the minimum number of pages 
the process is guaranteed to have in memory.

 A process may be assigned as many pages up to its 
working set maximum.

 When the amount of free memory in the system falls 
below a threshold, automatic working set trimming is 
performed to restore the amount of free memory.

 Working set trimming removes pages from processes that 
have pages in excess of their working set minimum.



Solaris 2

 Maintains a list of free pages to assign faulting processes.

 Lotsfree – threshold parameter to begin paging.

 Paging is peformed by pageout process.

 Pageout scans pages using modified clock algorithm.

 Scanrate is the rate at which pages are scanned. This 
ranged from slowscan to fastscan.

 Pageout is called more frequently depending upon the 
amount of free memory available.



Solar Page Scanner



Thank you
The content in this Material are from the Textbooks 

and Reference books  given in the Syllabus


