
OPERATING SYSTEMS

[20MCA15C]

UNIT – III

“Memory Management,

Virtual Memory”

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer Applications,
Government Arts College (Autonomous), Coimbatore – 641 018.

Memory Management

 Background

 Swapping

 Contiguous Allocation

 Paging

 Segmentation

 Segmentation with Paging

Background

 Program must be brought into memory and placed

within a process for it to be run.

 Input queue – collection of processes on the disk that

are waiting to be brought into memory to run the

program.

 User programs go through several steps before being

run.

Binding of Instructions and

Data to Memory

 Address binding of instructions and data to memory

addresses can happen at three different stages.

 Compile time: If memory location known a priori,

absolute code can be generated; must recompile

code if starting location changes.

 Load time: Must generate relocatable code if memory

location is not known at compile time.

 Execution time: Binding delayed until run time if the

process can be moved during its execution from one

memory segment to another. Need hardware support

for address maps (e.g., base and limit registers).

Multistep Processing of a

User Program

Logical vs. Physical Address

Space

 The concept of a logical address space that is bound

to a separate physical address space is central to

proper memory management.

 Logical address – generated by the CPU; also referred to

as virtual address.

 Physical address – address seen by the memory unit.

 Logical and physical addresses are the same in

compile-time and load-time address-binding

schemes; logical (virtual) and physical addresses

differ in execution-time address-binding scheme.

Memory-Management Unit

(MMU)

 Hardware device that maps virtual to physical

address.

 In MMU scheme, the value in the relocation register is

added to every address generated by a user process

at the time it is sent to memory.

 The user program deals with logical addresses; it never

sees the real physical addresses.

Dynamic relocation using a

relocation register

Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is

never loaded.

 Useful when large amounts of code are needed to

handle infrequently occurring cases.

 No special support from the operating system is

required implemented through program design.

Dynamic Linking

 Linking postponed until execution time.

 Small piece of code, stub, used to locate the

appropriate memory-resident library routine.

 Stub replaces itself with the address of the routine, and

executes the routine.

 Operating system needed to check if routine is in

processes’ memory address.

 Dynamic linking is particularly useful for libraries.

Overlays

 Keep in memory only those instructions and data that

are needed at any given time.

 Needed when process is larger than amount of

memory allocated to it.

 Implemented by user, no special support needed from

operating system, programming design of overlay

structure is complex

Overlays for a Two-Pass

Assembler

Swapping

 A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution.

 Backing store – fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access to
these memory images.

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed.

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

 Modified versions of swapping are found on many systems, i.e.,
UNIX, Linux, and Windows.

Schematic View of

Swapping

Contiguous Allocation

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory

with interrupt vector.

 User processes then held in high memory.

 Single-partition allocation

 Relocation-register scheme used to protect user

processes from each other, and from changing

operating-system code and data.

 Relocation register contains value of smallest physical

address; limit register contains range of logical addresses

– each logical address must be less than the limit register.

Hardware Support for Relocation

and Limit Registers

Contiguous Allocation

(Cont.)

 Multiple-partition allocation

 Hole – block of available memory; holes of various size

are scattered throughout memory.

 When a process arrives, it is allocated memory from a

hole large enough to accommodate it.

 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

Dynamic Storage-Allocation

Problem

 How to satisfy a request of size n from a list of free

holes.

 First-fit: Allocate the first hole that is big enough.

 Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size.

Produces the smallest leftover hole.

 Worst-fit: Allocate the largest hole; must also search

entire list. Produces the largest leftover hole.

 First-fit and best-fit better than worst-fit in terms of

speed and storage utilization.

Fragmentation

 External Fragmentation – total memory space exists to
satisfy a request, but it is not contiguous.

 Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size difference
is memory internal to a partition, but not being used.

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together
in one large block.

 Compaction is possible only if relocation is dynamic, and is
done at execution time.

 I/O problem

 Latch job in memory while it is involved in I/O.

 Do I/O only into OS buffers.

Paging

 Logical address space of a process can be
noncontiguous; process is allocated physical memory
whenever the latter is available.

 Divide physical memory into fixed-sized blocks called
frames (size is power of 2, between 512 bytes and 8192
bytes).

 Divide logical memory into blocks of same size called
pages.

 Keep track of all free frames.

 To run a program of size n pages, need to find n free
frames and load program.

 Set up a page table to translate logical to physical
addresses.

 Internal fragmentation.

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table

which contains base address of each page in physical

memory.

 Page offset (d) – combined with base address to define

the physical memory address that is sent to the memory

unit.

Address Translation

Architecture

Paging Example

Paging Example

Free Frames

Implementation of Page

Table

 Page table is kept in main memory.

 Page-table base register (PTBR) points to the page
table.

 Page-table length register (PRLR) indicates size of the
page table.

 In this scheme every data/instruction access requires
two memory accesses. One for the page table and
one for the data/instruction.

 The two memory access problem can be solved by
the use of a special fast-lookup hardware cache
called associative memory or translation look-aside
buffers (TLBs)

Associative Memory

 Associative memory – parallel search

 Address translation (A´, A´´)

 If A´ is in associative register, get frame # out.

 Otherwise get frame # from page table in memory

Page # Frame #

Paging Hardware With TLB

Effective Access Time

 Associative Lookup =  time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio – percentage of times that a page number is

found in the associative registers; ration related to

number of associative registers.

Hit ratio = 

 Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

Memory Protection

 Memory protection implemented by associating

protection bit with each frame.

 Valid-invalid bit attached to each entry in the page

table:

 “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal page.

 “invalid” indicates that the page is not in the process’

logical address space.

Valid (v) or Invalid (i) Bit In A

Page Table

Page Table Structure

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

Hierarchical Page Tables

 Break up the logical address space into multiple page

tables.

 A simple technique is a two-level page table.

Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided into:

 a page number consisting of 20 bits.

 a page offset consisting of 12 bits.

 Since the page table is paged, the page number is further divided into:

 a 10-bit page number.

 a 10-bit page offset.

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within
the page of the outer page table.

page number page offset

pi p2 d

10 10 12

Two-Level Page-Table

Scheme

Address-Translation Scheme
Address-translation scheme for a two-level 32-bit paging architecture

Hashed Page Tables

 Common in address spaces > 32 bits.

 The virtual page number is hashed into a page table.

This page table contains a chain of elements hashing

to the same location.

 Virtual page numbers are compared in this chain

searching for a match. If a match is found, the

corresponding physical frame is extracted.

Hashed Page Table

Inverted Page Table

 One entry for each real page of memory.

 Entry consists of the virtual address of the page stored

in that real memory location, with information about

the process that owns that page.

 Decreases memory needed to store each page table,

but increases time needed to search the table when a

page reference occurs.

 Use hash table to limit the search to one — or at most

a few — page-table entries.

Inverted Page Table

Architecture

Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical

address space of all processes.

 Private code and data

 Each process keeps a separate copy of the code and

data.

 The pages for the private code and data can appear

anywhere in the logical address space.

Shared Pages Example

Segmentation

 Memory-management scheme that supports user view of
memory.

 A program is a collection of segments. A segment is a logical
unit such as:

 main program,

 procedure,

 function,

 method,

 object,

 local variables, global variables,

 common block,

 stack,

 symbol table, arrays

User’s View of a Program

Logical View of

Segmentation

Segmentation Architecture

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical
addresses; each table entry has:

 base – contains the starting physical address where the
segments reside in memory.

 limit – specifies the length of the segment.

 Segment-table base register (STBR) points to the segment
table’s location in memory.

 Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR.

Segmentation Architecture

(Cont.)

 Relocation.

 dynamic

 by segment table

 Sharing.

 shared segments

 same segment number

 Allocation.

 first fit/best fit

 external fragmentation

Segmentation Architecture

(Cont.)

 Protection. With each entry in segment table

associate:

 validation bit = 0  illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing

occurs at segment level.

 Since segments vary in length, memory allocation is a

dynamic storage-allocation problem.

 A segmentation example is shown in the following

diagram

Segmentation Hardware

Example of Segmentation

Sharing of Segments

Segmentation with Paging –

MULTICS

 The MULTICS system solved problems of external

fragmentation and lengthy search times by paging the

segments.

 Solution differs from pure segmentation in that the

segment-table entry contains not the base address of

the segment, but rather the base address of a page

table for this segment.

MULTICS Address Translation

Scheme

Segmentation with Paging –

Intel 386

 As shown in the following diagram, the Intel 386 uses

segmentation with paging for memory management

with a two-level paging scheme.

Intel 30386 Address

Translation

Virtual Memory

 Background

 Demand Paging

 Process Creation

 Page Replacement

 Allocation of Frames

 Thrashing

 Operating System Examples

Background

 Virtual memory – separation of user logical memory from
physical memory.

 Only part of the program needs to be in memory for
execution.

 Logical address space can therefore be much larger than
physical address space.

 Allows address spaces to be shared by several processes.

 Allows for more efficient process creation.

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

Virtual Memory That is Larger

Than Physical Memory

Demand Paging

 Bring a page into memory only when it is needed.

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed  reference to it

 invalid reference  abort

 not-in-memory  bring to memory

Transfer of a Paged Memory

to Contiguous Disk Space

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(1  in-memory, 0  not-in-memory)

 Initially valid–invalid but is set to 0 on all entries.

 Example of a page table snapshot.

 During address translation, if valid–invalid bit in page table entry is 0  page fault.

Page Table When Some Pages

Are Not in Main Memory

Page Fault

 If there is ever a reference to a page, first reference will trap to
OS  page fault

 OS looks at another table to decide:

 Invalid reference  abort.

 Just not in memory.

 Get empty frame.

 Swap page into frame.

 Reset tables, validation bit = 1.

 Restart instruction: Least Recently Used

 block move

 auto increment/decrement location

Steps in Handling a Page

Fault

What happens if there is no

free frame?

 Page replacement – find some page in memory, but

not really in use, swap it out.

 algorithm

 performance – want an algorithm which will result in

minimum number of page faults.

 Same page may be brought into memory several

times.

Performance of Demand

Paging

 Page Fault Rate 0  p  1.0

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ [swap page out]

+ swap page in

+ restart overhead)

Demand Paging Example

 Memory access time = 1 microsecond

 50% of the time the page that is being replaced has

been modified and therefore needs to be swapped

out.

 Swap Page Time = 10 msec = 10,000 msec

EAT = (1 – p) x 1 + p (15000)

1 + 15000P (in msec)

Process Creation

 Virtual memory allows other benefits during process

creation:

 - Copy-on-Write

 - Memory-Mapped Files

Copy-on-Write

 Copy-on-Write (COW) allows both parent and child

processes to initially share the same pages in memory.

If either process modifies a shared page, only then is

the page copied.

 COW allows more efficient process creation as only

modified pages are copied.

 Free pages are allocated from a pool of zeroed-out

pages.

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as
routine memory access by mapping a disk block to a
page in memory.

 A file is initially read using demand paging. A page-sized
portion of the file is read from the file system into a
physical page. Subsequent reads/writes to/from the file
are treated as ordinary memory accesses.

 Simplifies file access by treating file I/O through memory
rather than read() write() system calls.

 Also allows several processes to map the same file
allowing the pages in memory to be shared.

Memory Mapped Files

Page Replacement

 Prevent over-allocation of memory by modifying

page-fault service routine to include page

replacement.

 Use modify (dirty) bit to reduce overhead of page

transfers – only modified pages are written to disk.

 Page replacement completes separation between

logical memory and physical memory – large virtual

memory can be provided on a smaller physical

memory.

Need For Page Replacement

Basic Page Replacement

 Find the location of the desired page on disk.

 Find a free frame:

- If there is a free frame, use it.

- If there is no free frame, use a page replacement

algorithm to select a victim frame.

 Read the desired page into the (newly) free frame.

Update the page and frame tables.

 Restart the process.

Page Replacement

Page Replacement

Algorithms

 Want lowest page-fault rate.

 Evaluate algorithm by running it on a particular string

of memory references (reference string) and

computing the number of page faults on that string.

 In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Graph of Page Faults Versus

The Number of Frames

First-In-First-Out (FIFO)

Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 FIFO Replacement – Belady’s Anomaly

 more frames  less page faults

FIFO Page Replacement

FIFO Illustrating Belady’s

Anamoly

Optimal Algorithm

 Replace page that will not be used for longest period of
time.

 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Used for measuring how well your algorithm performs.

Optimal Page Replacement

Least Recently Used (LRU)

Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation

 Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the
counter.

 When a page needs to be changed, look at the counters to
determine which are to change.

LRU Page Replacement

LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page

numbers in a double link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 No search for replacement

Use Of A Stack to Record The

Most Recent Page References

LRU Approximation

Algorithms

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1.

 Replace the one which is 0 (if one exists). We do not know
the order, however.

 Second chance

 Need reference bit.

 Clock replacement.

 If page to be replaced (in clock order) has reference bit = 1.
then:

 set reference bit 0.

 leave page in memory.

 replace next page (in clock order), subject to same rules.

Second-Chance (clock) Page-

Replacement Algorithm

Counting Algorithms

 Keep a counter of the number of references that have

been made to each page.

 LFU Algorithm: replaces page with smallest count.

 MFU Algorithm: based on the argument that the page

with the smallest count was probably just brought in

and has yet to be used.

Allocation of Frames

 Each process needs minimum number of pages.

 Example: IBM 370 – 6 pages to handle SS MOVE

instruction:

 instruction is 6 bytes, might span 2 pages.

 2 pages to handle from.

 2 pages to handle to.

 Two major allocation schemes.

 fixed allocation

 priority allocation

Fixed Allocation

 Equal allocation – e.g.,

if 100 frames and 5

processes, give each

20 pages.

 Proportional allocation

– Allocate according to

the size of process.

Priority Allocation

 Use a proportional allocation scheme using priorities

rather than size.

 If process Pi generates a page fault,

 select for replacement one of its frames.

 select for replacement a frame from a process with lower

priority number.

Global vs. Local Allocation

 Global replacement – process selects a replacement

frame from the set of all frames; one process can take

a frame from another.

 Local replacement – each process selects from only its

own set of allocated frames.

Thrashing

 If a process does not have “enough” pages, the page-

fault rate is very high. This leads to:

 low CPU utilization.

 operating system thinks that it needs to increase the

degree of multiprogramming.

 another process added to the system.

 Thrashing  a process is busy swapping pages in and

out.

Thrashing

 Why does paging work?

Locality model

 Process migrates from

one locality to

another.

 Localities may

overlap.

 Why does thrashing

occur?

 size of locality > total

memory size

Locality In A Memory-

Reference Pattern

Working-Set Model

   working-set window  a fixed number of page
references
Example: 10,000 instruction

 WSSi (working set of Process Pi) =
total number of pages referenced in the most recent 
(varies in time)

 if  too small will not encompass entire locality.

 if  too large will encompass several localities.

 if  =   will encompass entire program.

 D =  WSSi  total demand frames

 if D > m  Thrashing

 Policy if D > m, then suspend one of the processes.

Working-set model

Keeping Track of the

Working Set

 Approximate with interval timer + a reference bit

 Example:  = 10,000

 Timer interrupts after every 5000 time units.

 Keep in memory 2 bits for each page.

 Whenever a timer interrupts copy and sets the values of

all reference bits to 0.

 If one of the bits in memory = 1  page in working set.

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time

units.

Page-Fault Frequency

Scheme

 Establish “acceptable”

page-fault rate.

 If actual rate too low,

process loses frame.

 If actual rate too high,

process gains frame.

Other Considerations

 Prepaging

 Page size selection

 fragmentation

 table size

 I/O overhead

 locality

Other Considerations (Cont.)

 TLB Reach - The amount of memory accessible from

the TLB.

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the

TLB. Otherwise there is a high degree of page faults.

Increasing the Size of the TLB

 Increase the Page Size. This may lead to an increase in

fragmentation as not all applications require a large

page size.

 Provide Multiple Page Sizes. This allows applications

that require larger page sizes the opportunity to use

them without an increase in fragmentation.

Other Considerations (Cont.)

 Program structure

 int A[][] = new int[1024][1024];

 Each row is stored in one page

 Program 1 for (j = 0; j < A.length; j++)
for (i = 0; i < A.length; i++)

A[i,j] = 0;
1024 x 1024 page faults

 Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;



1024 page faults

Other Considerations (Cont.)

 I/O Interlock – Pages must sometimes be locked into

memory.

 Consider I/O. Pages that are used for copying a file

from a device must be locked from being selected for

eviction by a page replacement algorithm.

Reason Why Frames Used

For I/O Must Be In Memory

Operating System Examples

 Windows NT

 Solaris 2

Windows NT

 Uses demand paging with clustering. Clustering brings in
pages surrounding the faulting page.

 Processes are assigned working set minimum and
working set maximum.

 Working set minimum is the minimum number of pages
the process is guaranteed to have in memory.

 A process may be assigned as many pages up to its
working set maximum.

 When the amount of free memory in the system falls
below a threshold, automatic working set trimming is
performed to restore the amount of free memory.

 Working set trimming removes pages from processes that
have pages in excess of their working set minimum.

Solaris 2

 Maintains a list of free pages to assign faulting processes.

 Lotsfree – threshold parameter to begin paging.

 Paging is peformed by pageout process.

 Pageout scans pages using modified clock algorithm.

 Scanrate is the rate at which pages are scanned. This
ranged from slowscan to fastscan.

 Pageout is called more frequently depending upon the
amount of free memory available.

Solar Page Scanner

Thank you
The content in this Material are from the Textbooks

and Reference books given in the Syllabus

