
POSTGRADUATE DEPARTMENT OF COMPUTER 

APPLICATIONS,

GOVERNMENT ARTS COLLEGE(AUTONOMOUS),

COIMBATORE 641018.

DATA STRUCTURES AND 

ALGORITHMS

The contents in this E material are from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed

“Fundamentals of Data Structures in C”,

Computer Science Press, 1992.



FACULTY

Dr.R.A.ROSELINE M.Sc.M.Phil.,Ph.D,
Associate Professor and Head,

Postgraduate Department of Computer Applications,

Government Arts College(Autonomous),

Coimbatore 641018.

UNIT 1



Introduction

• The methods of algorithm design form one of the core 
practical technologies of computer science.

• The main aim of this lecture is to familiarize the student 
with the framework we shall use through the course 
about the design and analysis of algorithms.

• We start with a discussion of the algorithms needed to 
solve computational problems. The problem of  sorting is 
used as a running example.

• We introduce  a pseudocode to show how we shall 
specify the algorithms.



Algorithms

• The word algorithm comes from the name of a Persian 
mathematician Abu Ja’far Mohammed ibn-i Musa al 
Khowarizmi. 

• In computer science, this word refers to a special 
method useable by a computer for solution of a problem. 
The statement of the problem specifies in general terms 
the desired input/output relationship.

• For example, sorting a given sequence of numbers into 
nondecreasing order provides fertile ground for 
introducing many standard design techniques and 
analysis tools.  



Analysis of algorithms

Why study algorithms and performance?

• Algorithms help us to understand scalability.

• Performance often draws the line between what is feasible 

and what is impossible.

• Algorithmic mathematics provides a language for talking 

about program behavior.

• The lessons of program performance generalize to other 

computing resources.

• Speed is fun!



Running Time

• The running time depends on the input: an already 

sorted sequence is easier to sort.

• Parameterize the running time by the size of the 

input, since short sequences are easier to sort than 

long ones.

• Generally, we seek upper bounds on the running 

time, because everybody likes a guarantee.



Kinds of analyses

Worst-case: (usually)

• T(n) = maximum time of algorithm on any input of 

size n.

Average-case: (sometimes)

• T(n) = expected time of algorithm over all inputs of 

size n.

• Need assumption of statistical distribution of inputs.

Best-case:

• Cheat with a slow algorithm that works fast on some 

input.



Growth of Functions

Although we can sometimes determine the exact 

running time of an algorithm, the extra precision is not 

usually worth the effort of computing it.

For large inputs, the multiplicative constants and lower 

order terms of an exact running time are dominated by 

the effects of the input size itself. 
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Measurements

• Criteria

– Is it correct?

– Is it readable?

– …

• Performance Analysis (machine 

independent)

– space complexity: storage requirement

– time complexity: computing time

• Performance Measurement (machine 

dependent)
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Space Complexity

S(P)=C+SP(I)
• Fixed Space Requirements (C)

Independent of the characteristics of the 

inputs and outputs

– instruction space

– space for simple variables, fixed-size structured 

variable, constants

• Variable Space Requirements (SP(I))

depend on the instance characteristic I

– number, size, values of inputs and outputs 

associated with I

– recursive stack space, formal parameters, local 

variables, return address
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*Program 1.9: Simple arithmetic function (p.19)

float abc(float a, float b, float c)

{

return a + b + b * c + (a + b - c) / (a + b) + 4.00;

}

*Program 1.10: Iterative function for summing a list of numbers 

(p.20)

float sum(float list[ ], int n)

{

float tempsum = 0;

int i;

for (i = 0; i<n; i++)

tempsum += list [i];

return tempsum;

}      

Sabc(I) = 0

Ssum(I) = 0

Recall: pass the address of the

first element of the array &

pass by value
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*Program 1.11: Recursive function for summing a list of numbers 

(p.20)

float rsum(float list[ ], int n)

{

if (n) return rsum(list, n-1) + list[n-1];

return 0;

}

*Figure 1.1: Space needed for one recursive call of Program 1.11 

(p.21)

Type Name Number of bytes

parameter: float

parameter: integer

return address:(used internally)

list [ ]

n

2

2

2(unless a far address)

TOTAL per recursive call 6

Ssum(I)=Ssum(n)=6n

Assumptions:



CHAPTER 1 13

Time Complexity

• Compile time (C)

independent of instance characteristics

• run (execution) time TP

• Definition

A program step is a syntactically or 

semantically meaningful program segment 

whose execution time is independent of the 

instance characteristics.

• Example

– abc = a + b + b * c + (a + b - c) / (a + b) + 4.0

– abc = a + b + c

Regard as the same unit

machine independent

T(P)=C+TP(I)

TP(n)=caADD(n)+csSUB(n)+clLDA(n)+cstSTA(n)
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Methods to compute the step 

count

• Introduce variable count into programs

• Tabular method

– Determine the total number of steps contributed 

by each statement

step per execution  frequency

– add up the contribution of all statements
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*Program 1.12: Program 1.10 with count statements (p.23)

float sum(float list[ ], int n)

{

float tempsum = 0; count++; /* for assignment */

int i;

for (i = 0; i < n; i++) {

count++;             /*for the for loop */

tempsum += list[i]; count++;  /* for assignment */

}

count++;         /* last execution of for */

return tempsum; 

count++;         /* for return */ 

}    
2n + 3 steps

Iterative summing of a list of numbers
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*Program 1.13: Simplified version of Program 1.12 (p.23)

float sum(float list[ ], int n)

{

float tempsum = 0;

int i; 

for (i = 0; i < n; i++)

count += 2;

count += 3;

return 0;

}

2n + 3 steps



CHAPTER 1 17

*Program 1.14: Program 1.11 with count statements added (p.24)

float rsum(float list[ ], int n)

{

count++;       /*for if conditional */

if (n) {

count++;  /* for return and rsum 

invocation */

return rsum(list, n-1) + list[n-1];

}

count++;

return list[0];

}
2n+2

Recursive summing of a list of numbers
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*Program 1.15: Matrix addition (p.25)

void add( int a[ ] [MAX_SIZE], int b[ ] [MAX_SIZE],

int c [ ] [MAX_SIZE], int rows, int cols)

{

int i, j;

for (i = 0; i < rows; i++)

for (j= 0; j < cols; j++)

c[i][j] = a[i][j] +b[i][j];

} 

Matrix addition
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*Program 1.16: Matrix addition with count statements (p.25)

void add(int a[ ][MAX_SIZE], int b[ ][MAX_SIZE],

int c[ ][MAX_SIZE], int row, int cols )

{

int i, j;

for (i = 0; i < rows; i++){

count++; /* for i for loop */

for (j = 0; j < cols; j++) {

count++; /* for j for loop */

c[i][j] = a[i][j] + b[i][j];

count++; /* for assignment statement */

}

count++;    /* last time of j for loop */

}

count++;         /* last time of i for loop */

}    

2rows * cols + 2 rows  + 1
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*Program 1.17: Simplification of Program 1.16 (p.26)

void add(int a[ ][MAX_SIZE], int b [ ][MAX_SIZE],

int c[ ][MAX_SIZE], int rows, int cols)

{

int i, j;

for( i = 0; i < rows; i++) {

for (j = 0; j < cols; j++)

count += 2;

count += 2; 

}

count++;

} 
2rows  cols + 2rows +1

Suggestion: Interchange the loops when rows >> cols
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*Figure 1.2: Step count table for Program 1.10 (p.26)

Statement s/e  Frequency  Total steps

float sum(float list[ ], int n)

{

  float tempsum = 0;

  int i;

  for(i=0; i <n; i++)

tempsum += list[i];

  return tempsum;

}

0     0             0

0     0             0

1     1             1

0     0             0

1     n+1           n+1

1     n             n

1     1             1

0     0             0

Total                    2n+3

Tabular Method

steps/execution

Iterative function to sum a list of numbers
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*Figure 1.3: Step count table for recursive summing function (p.27)

Statement s/e  Frequency  Total steps

float rsum(float list[ ], int n)

{

  if (n)

  return rsum(list, n-1)+list[n-1];

     return list[0];

}

0     0             0

0     0             0

1     n+1           n+1

1     n             n

1     1             1

0     0             0

Total                    2n+2

Recursive Function to sum of a list of numbers
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*Figure 1.4: Step count table for matrix addition (p.27)

Statement s/e  Frequency        Total steps

Void add (int a[ ][MAX_SIZE]‧‧‧)

{
   int i, j;

   for (i = 0; i < row; i++)

     for (j=0; j< cols; j++)

      c[i][j] = a[i][j] + b[i][j];

}    

0     0              0

0     0              0

0     0              0

1     rows+1         rows+1

1     rows‧(cols+1)   rows‧cols+rows

1     rows‧cols      rows‧cols

0     0              0

Total                   2rows‧cols+2rows+1

Matrix Addition
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*Program 1.18: Printing out a matrix (p.28)

void print_matrix(int matrix[ ][MAX_SIZE], int rows, int cols)

{

int i, j;

for (i = 0; i < row; i++) {

for (j = 0; j < cols; j++)

printf(“%d”,  matrix[i][j]);

printf( “\n”);

}

} 

Exercise 1
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*Program 1.19:Matrix multiplication function(p.28)

void mult(int a[ ][MAX_SIZE], int b[ ][MAX_SIZE], int c[ ][MAX_SIZE])

{

int i, j, k;

for (i = 0; i < MAX_SIZE; i++) 

for (j = 0; j< MAX_SIZE;  j++) {

c[i][j] = 0;

for (k = 0; k < MAX_SIZE; k++)

c[i][j]  +=  a[i][k] * b[k][j];

}

} 

Exercise 2
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*Program 1.20:Matrix product function(p.29)

void prod(int a[ ][MAX_SIZE], int b[ ][MAX_SIZE], int c[ ][MAX_SIZE],      

int rowsa, int colsb, int 

colsa)

{

int i, j, k;

for (i = 0; i < rowsa; i++) 

for (j = 0; j< colsb;  j++) {

c[i][j] = 0;

for (k = 0; k< colsa; k++)

c[i][j]  +=  a[i][k] * b[k][j];

}

} 

Exercise 3
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*Program 1.21:Matrix transposition function (p.29)

void transpose(int a[ ][MAX_SIZE])

{

int i, j, temp;

for (i = 0; i < MAX_SIZE-1; i++) 

for (j = i+1; j < MAX_SIZE;  j++)

SWAP (a[i][j], a[j][i], temp);

} 

Exercise 4



Asymptotic Notation

The  notation we use to describe the asymptotic running 

time of an algorithm are defined in terms of functions 

whose domains are the set of natural numbers

 ...,2,1,0N



O-notation

• For a given function          ,  we denote by              the set 

of functions

• We use O-notation to give an asymptotic upper bound of 

a function, to within a constant factor.

• means that there existes some constant c  

s.t.         is always              for large enough n.  
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Ω-Omega notation

• For a given function          ,  we denote by                 the 

set of functions

• We use Ω-notation to give an asymptotic lower bound on 

a function, to within a constant factor.

• means that there exists some constant c s.t.                                     

is always            for large enough n.  

)(ng ))(( ng












0

0

 allfor )()(0

s.t.and  constants positiveexist  there:)(
))((

nnnfncg

ncnf
ng

))(()( ngnf 

)(nf )(ncg



-Theta notation

• For a given function        ,  we denote by                the set 

of functions

• A function          belongs to the set                 if there exist 

positive constants     and      such that it can be “sand-

wiched” between            and             or sufficienly large n.

• means that there exists some constant c1

and c2       s.t. for large enough n.
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Asymptotic notation

Graphic examples of              and     . ,, O
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Example 1. 

Show that            

We must find c1 and c2 such that

Dividing bothsides by n2 yields

For 
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Theorem 

• For any two functions           and          ,  we have

if and only if
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Because :
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Example 2.
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Standard notations and common functions

• Floors and ceilings

    11  xxxxx



Standard notations and common functions

• Logarithms:
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Standard notations and common functions

• Logarithms:

For all real a>0, b>0, c>0, and n

b

a
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Standard notations and common functions

• Logarithms:

b
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log
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Standard notations and common functions

• Factorials

For               the Stirling approximation:
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Algorithm Analysis…

• Factors affecting the running time
– computer 

– compiler

– algorithm used

– input to the algorithm

• The content of the input affects the running time

• typically, the input size (number of items in the input) is the main 
consideration

– E.g. sorting problem  the number of items to be sorted

– E.g. multiply two matrices together  the total number of 
elements in the two matrices

• Machine model assumed
– Instructions are executed one after another, with no concurrent 

operations  Not parallel computers



Example

• Calculate

• Lines 1 and 4 count for one unit each

• Line 3: executed N times, each time four units

• Line 2: (1 for initialization, N+1 for all the tests, N for all 
the increments) total 2N + 2

• total cost: 6N + 4  O(N)


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N

i

i
1

3

1

2

3

4

1

2N+2

4N

1



Worst- / average- / best-case

• Worst-case running time of an algorithm
– The longest running time for any input of size n

– An upper bound on the running time for any input

 guarantee that the algorithm will never take longer

– Example: Sort a set of numbers in increasing order; and the data 
is in decreasing order

– The worst case can occur fairly often

• E.g. in searching a database for a particular piece of information

• Best-case running time
– sort a set of numbers in increasing order; and the data is already 

in increasing order

• Average-case running time
– May be difficult to define what “average” means



Running-time of algorithms

• Bounds are for the algorithms, rather than 

programs

– programs are just implementations of an 

algorithm, and almost always the details of 

the program do not affect the bounds

• Bounds are for algorithms, rather than

problems

– A problem can be solved with several 

algorithms, some are more efficient than 

others



Arrays



One-Dimensional Arrays

• A list of values with the same data type 
that are stored using a single group 
name (array name).

• General array declaration statement:

data-type array-name[number-of-items];

• The number-of-items must be specified 
before declaring the array.

const int SIZE = 100;

float arr[SIZE];



• Individual elements of the array can be 

accessed by specifying the name of the 

array and the element's index:  

arr[3]

• Warning: indices assume values from 0 to 

number-of-items -1!!

One-Dimensional Arrays (cont.)



One-Dimensional Arrays

(cont.)

arr[0] arr[1] arr[2] arr[3] arr[4]

Skip over 3 elements to get 

the starting location of 

element 3

The array name  arr identifies 
the starting location of the array

Start here

element 3



1D Array Initialization

• Arrays can be initialized during their 
declaration

int arr[5] = {98, 87, 92, 79, 85};

int arr[5] = {98, 87} - what happens in this case??

• What is the difference between the following 
two declarations ?

char codes[] = {'s', 'a', 'm', 'p', 'l', 'e'};

char codes[] = "sample";
codes[0] codes[1] codes[2] codes[3] codes[4] codes[5] codes[6]

s a m p l e \0



Two-dimensional Arrays

• A two-dimensional array consists of both rows 
and columns of elements.

• General array declaration statement:

data-type array-name[number-of-rows][number-of-
columns];



• The number-of-rows and number-of-columns
must be specified  before declaring the array.

const int ROWS = 100;

const int COLS = 50;

float arr2D[ROWS][COLS];

• Individual elements of the array can be 

accessed by specifying the name of the array 
and the element's row, column indices.

arr2D[3][5]

Two-dimensional Arrays (cont.)



2D Array Initialization

• Arrays can be initialized during their 
declaration

int arr2D[3][3] = { {98, 87, 92}, {79, 85, 19}, 
{32, 18, 2} };

• The compiler fills the array row by row 

(elements are stored in the memory in the 
same order).



1D Arrays as Arguments

• Individual array elements are passed to a 

function in the same manner as other 
variables.

max = find_max(arr[1], arr[3]);

• To pass the whole array to a function, you 

need to specify the name of the array 

only!!



#include <iostream.h>

float find_average(int [], int);

void main()
{

const numElems = 5;
int arr[numElems] = {2, 18, 1, 27, 16};

cout << "The average is " << find_average(arr, numElems) << endl;
}

float find_average(int vals[], int n)
{

int i;
float avg;

avg=0.0;
for(i=0; i<n; i++)
avg += vals[i];

avg = avg/n;

return avg;
}



• Important: this is essentially "call by 
reference":

a) The name of the array arr stores the address of 
the first element of the array arr[0] (i.e., &arr[0]).

b) Every other element of the array can be 

accessed by using its index as an offset from the 

first element.

1D Arrays as Arguments

(cont.)

arr[0] arr[1] arr[2] arr[3] arr[4]

The starting address of  arr array is &arr[0].

This is passed to the function find_average()



2D Arrays as Arguments

• Individual array elements are passed to a 
function in the same manner as other variables.

max = find_max(arr2D[1][1], arr2D[1][2]);

• To pass the whole array to a function, you need 
to specify the name of the array only!!

• The number of columns must be specified in the 
function prototype and function header.



#include <iostream.h>

float find_average(int [][2], int, int);

void main()

{

const numRows = 2;

const numCols = 2;

int arr2D[numRows][numCols] = {2, 18, 1, 27};

float average;

average = find_average(arr2D, numRows, numCols);

cout << "The average is " << average << endl;

}



float find_average(int vals[][2], int n, int m)

{

int i,j;

float avg;

avg=0.0;

for(i=0; i<n; i++)

for(j=0; j<m; j++)

avg += vals[i][j];

avg = avg/(n*m);

return avg;

}



• Important: this is essentially "call by 
reference":

a) The name of the array arr2D stores the 
address of arr2D[0] (i.e., &arr2D[0]) 

b) arr2D[0] stores the address of the first 
element of the array arr2D[0][0]
(&arr2D[0][0]) 

c) Every other element of the array can be 
accessed by using its indices as an offset 
from the first element.

2D Arrays as Arguments (cont.)



Searching and Sorting
• Linear Search      

• Binary Search



Linear Search
• Searching is the process of determining whether or 

not a given value exists in a data structure or a 

storage media.

• We discuss two searching methods on one-

dimensional arrays: linear search and binary search.

• The linear (or sequential) search algorithm on an 

array is:

– Sequentially scan the array, comparing each array item with the searched 

value.

– If a match is found; return the index of the matched element; otherwise 

return –1.

• Note: linear search can be applied to both sorted and 

unsorted arrays.



Linear Search
• The algorithm translates to the following Java method:

public static int linearSearch(Object[] array,

Object key)

{

for(int k = 0; k < array.length; k++)

if(array[k].equals(key))

return k;

return -1;

}



Binary Search

• Binary search uses a recursive method to 
search an array to find a specified value

• The array must be a sorted array:
a[0]≤a[1]≤a[2]≤. . . ≤ a[finalIndex]

• If the value is found, its index is returned

• If the value is not found, -1 is returned

• Note:  Each execution of the recursive method 
reduces the search space by about a half



Binary Search

• An algorithm to solve this task looks at the 

middle of the array or array segment first

• If the value looked for is smaller than the value 

in the middle of the array

– Then the second half of the array or array segment 

can be ignored

– This strategy is then applied to the first half of the 

array or array segment



Binary Search

• If the value looked for is larger than the value in the 
middle of the array or array segment
– Then the first half of the array or array segment can be ignored

– This strategy is then applied to the second half of the array or 
array segment

• If the value looked for is at the middle of the array or 
array segment, then it has been found

• If the entire array (or array segment) has been searched 
in this way without finding the value, then it is not in the 
array



Pseudocode for Binary Search



Recursive Method for Binary 

Search



Execution of the Method search

(Part 1 of 2)



Execution of the Method search

(Part 1 of 2)



Checking the search Method

1. There is no infinite recursion

• On each recursive call, the value of first

is increased, or the value of last is 

decreased

• If the chain of recursive calls does not end in 

some other way, then eventually the method 
will be called with first larger than last



Checking the search Method

2. Each stopping case performs the correct 
action for that case

• If first > last, there are no array 
elements between a[first] and 
a[last], so key is not in this segment of 
the array, and result is correctly set to -1

• If key == a[mid], result is correctly set 
to mid



Checking the search Method

3. For each of the cases that involve recursion, if
all recursive calls perform their actions 
correctly, then the entire case performs 
correctly

• If key < a[mid], then key must be one of the 
elements a[first] through a[mid-1], or it is not 
in the array

• The method should then search only those 
elements, which it does

• The recursive call is correct, therefore the entire 
action is correct



Checking the search Method

• If key > a[mid], then key must be one of the 
elements a[mid+1] through a[last], or it is not 
in the array

• The method should then search only those 
elements, which it does

• The recursive call is correct, therefore the entire 
action is correct

The method search passes all three tests:

Therefore, it is a good recursive method definition



Efficiency of Binary Search

• The binary search algorithm is extremely 

fast compared to an algorithm that tries all 

array elements in order

– About half the array is eliminated from 

consideration right at the start

– Then a quarter of the array, then an eighth of 

the array, and so forth



Efficiency of Binary Search

• Given an array with 1,000 elements, the binary search 
will only need to compare about 10 array elements to the 
key value, as compared to an average of 500 for a serial 
search algorithm

• The binary search algorithm has a worst-case running 
time that is logarithmic:    O(log n)
– A serial search algorithm is linear:  O(n)

• If desired, the recursive version of the method search
can be converted to an iterative version that will run 
more efficiently



Iterative Version of Binary Search

(Part 1 of 2)



Iterative Version of Binary Search

(Part 2 of 2)



Fibonacci Search

• Given a sorted array arr[] of size n and an element x to

be searched in it. Return index of x if it is present in array

else return -1.

Examples:

• Input: arr[] = {2, 3, 4, 10, 40}, x = 10 Output: 3 Element x

is present at index 3. Input: arr[] = {2, 3, 4, 10, 40}, x = 11

Output: -1 Element x is not present. Fibonacci Search is

a comparison-based technique that uses Fibonacci

numbers to search an element in a sorted array.



Similarities with Binary Search:

• Works for sorted arrays

• A Divide and Conquer Algorithm.

• Has Log n time complexity.

Differences with Binary Search:

• Fibonacci Search divides given array in unequal parts

• Binary Search uses division operator to divide range. Fibonacci

Search doesn’t use /, but uses + and -. The division operator may be

costly on some CPUs.

• Fibonacci Search examines relatively closer elements in subsequent

steps. So when input array is big that cannot fit in CPU cache or

even in RAM, Fibonacci Search can be useful.


