
POSTGRADUATE DEPARTMENT OF COMPUTER

APPLICATIONS,

GOVERNMENT ARTS COLLEGE(AUTONOMOUS),

COIMBATORE 641018.

DATA STRUCTURES AND

ALGORITHMS

The contents in this E material are from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed

“Fundamentals of Data Structures in C”,

Computer Science Press, 1992.

FACULTY

Dr.R.A.ROSELINE M.Sc.M.Phil.,Ph.D,
Associate Professor and Head,

Postgraduate Department of Computer Applications,

Government Arts College(Autonomous),

Coimbatore 641018.

UNIT 1

Introduction

• The methods of algorithm design form one of the core
practical technologies of computer science.

• The main aim of this lecture is to familiarize the student
with the framework we shall use through the course
about the design and analysis of algorithms.

• We start with a discussion of the algorithms needed to
solve computational problems. The problem of sorting is
used as a running example.

• We introduce a pseudocode to show how we shall
specify the algorithms.

Algorithms

• The word algorithm comes from the name of a Persian
mathematician Abu Ja’far Mohammed ibn-i Musa al
Khowarizmi.

• In computer science, this word refers to a special
method useable by a computer for solution of a problem.
The statement of the problem specifies in general terms
the desired input/output relationship.

• For example, sorting a given sequence of numbers into
nondecreasing order provides fertile ground for
introducing many standard design techniques and
analysis tools.

Analysis of algorithms

Why study algorithms and performance?

• Algorithms help us to understand scalability.

• Performance often draws the line between what is feasible

and what is impossible.

• Algorithmic mathematics provides a language for talking

about program behavior.

• The lessons of program performance generalize to other

computing resources.

• Speed is fun!

Running Time

• The running time depends on the input: an already

sorted sequence is easier to sort.

• Parameterize the running time by the size of the

input, since short sequences are easier to sort than

long ones.

• Generally, we seek upper bounds on the running

time, because everybody likes a guarantee.

Kinds of analyses

Worst-case: (usually)

• T(n) = maximum time of algorithm on any input of

size n.

Average-case: (sometimes)

• T(n) = expected time of algorithm over all inputs of

size n.

• Need assumption of statistical distribution of inputs.

Best-case:

• Cheat with a slow algorithm that works fast on some

input.

Growth of Functions

Although we can sometimes determine the exact

running time of an algorithm, the extra precision is not

usually worth the effort of computing it.

For large inputs, the multiplicative constants and lower

order terms of an exact running time are dominated by

the effects of the input size itself.

CHAPTER 1 9

Measurements

• Criteria

– Is it correct?

– Is it readable?

– …

• Performance Analysis (machine

independent)

– space complexity: storage requirement

– time complexity: computing time

• Performance Measurement (machine

dependent)

CHAPTER 1 10

Space Complexity

S(P)=C+SP(I)
• Fixed Space Requirements (C)

Independent of the characteristics of the

inputs and outputs

– instruction space

– space for simple variables, fixed-size structured

variable, constants

• Variable Space Requirements (SP(I))

depend on the instance characteristic I

– number, size, values of inputs and outputs

associated with I

– recursive stack space, formal parameters, local

variables, return address

CHAPTER 1 11

*Program 1.9: Simple arithmetic function (p.19)

float abc(float a, float b, float c)

{

return a + b + b * c + (a + b - c) / (a + b) + 4.00;

}

*Program 1.10: Iterative function for summing a list of numbers

(p.20)

float sum(float list[], int n)

{

float tempsum = 0;

int i;

for (i = 0; i<n; i++)

tempsum += list [i];

return tempsum;

}

Sabc(I) = 0

Ssum(I) = 0

Recall: pass the address of the

first element of the array &

pass by value

CHAPTER 1 12

*Program 1.11: Recursive function for summing a list of numbers

(p.20)

float rsum(float list[], int n)

{

if (n) return rsum(list, n-1) + list[n-1];

return 0;

}

*Figure 1.1: Space needed for one recursive call of Program 1.11

(p.21)

Type Name Number of bytes

parameter: float

parameter: integer

return address:(used internally)

list []

n

2

2

2(unless a far address)

TOTAL per recursive call 6

Ssum(I)=Ssum(n)=6n

Assumptions:

CHAPTER 1 13

Time Complexity

• Compile time (C)

independent of instance characteristics

• run (execution) time TP

• Definition

A program step is a syntactically or

semantically meaningful program segment

whose execution time is independent of the

instance characteristics.

• Example

– abc = a + b + b * c + (a + b - c) / (a + b) + 4.0

– abc = a + b + c

Regard as the same unit

machine independent

T(P)=C+TP(I)

TP(n)=caADD(n)+csSUB(n)+clLDA(n)+cstSTA(n)

CHAPTER 1 14

Methods to compute the step

count

• Introduce variable count into programs

• Tabular method

– Determine the total number of steps contributed

by each statement

step per execution  frequency

– add up the contribution of all statements

CHAPTER 1 15

*Program 1.12: Program 1.10 with count statements (p.23)

float sum(float list[], int n)

{

float tempsum = 0; count++; /* for assignment */

int i;

for (i = 0; i < n; i++) {

count++; /*for the for loop */

tempsum += list[i]; count++; /* for assignment */

}

count++; /* last execution of for */

return tempsum;

count++; /* for return */

}
2n + 3 steps

Iterative summing of a list of numbers

CHAPTER 1 16

*Program 1.13: Simplified version of Program 1.12 (p.23)

float sum(float list[], int n)

{

float tempsum = 0;

int i;

for (i = 0; i < n; i++)

count += 2;

count += 3;

return 0;

}

2n + 3 steps

CHAPTER 1 17

*Program 1.14: Program 1.11 with count statements added (p.24)

float rsum(float list[], int n)

{

count++; /*for if conditional */

if (n) {

count++; /* for return and rsum

invocation */

return rsum(list, n-1) + list[n-1];

}

count++;

return list[0];

}
2n+2

Recursive summing of a list of numbers

CHAPTER 1 18

*Program 1.15: Matrix addition (p.25)

void add(int a[] [MAX_SIZE], int b[] [MAX_SIZE],

int c [] [MAX_SIZE], int rows, int cols)

{

int i, j;

for (i = 0; i < rows; i++)

for (j= 0; j < cols; j++)

c[i][j] = a[i][j] +b[i][j];

}

Matrix addition

CHAPTER 1 19

*Program 1.16: Matrix addition with count statements (p.25)

void add(int a[][MAX_SIZE], int b[][MAX_SIZE],

int c[][MAX_SIZE], int row, int cols)

{

int i, j;

for (i = 0; i < rows; i++){

count++; /* for i for loop */

for (j = 0; j < cols; j++) {

count++; /* for j for loop */

c[i][j] = a[i][j] + b[i][j];

count++; /* for assignment statement */

}

count++; /* last time of j for loop */

}

count++; /* last time of i for loop */

}

2rows * cols + 2 rows + 1

CHAPTER 1 20

*Program 1.17: Simplification of Program 1.16 (p.26)

void add(int a[][MAX_SIZE], int b [][MAX_SIZE],

int c[][MAX_SIZE], int rows, int cols)

{

int i, j;

for(i = 0; i < rows; i++) {

for (j = 0; j < cols; j++)

count += 2;

count += 2;

}

count++;

}
2rows  cols + 2rows +1

Suggestion: Interchange the loops when rows >> cols

CHAPTER 1 21

*Figure 1.2: Step count table for Program 1.10 (p.26)

Statement s/e Frequency Total steps

float sum(float list[], int n)

{

 float tempsum = 0;

 int i;

 for(i=0; i <n; i++)

tempsum += list[i];

 return tempsum;

}

0 0 0

0 0 0

1 1 1

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+3

Tabular Method

steps/execution

Iterative function to sum a list of numbers

CHAPTER 1 22

*Figure 1.3: Step count table for recursive summing function (p.27)

Statement s/e Frequency Total steps

float rsum(float list[], int n)

{

 if (n)

 return rsum(list, n-1)+list[n-1];

 return list[0];

}

0 0 0

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+2

Recursive Function to sum of a list of numbers

CHAPTER 1 23

*Figure 1.4: Step count table for matrix addition (p.27)

Statement s/e Frequency Total steps

Void add (int a[][MAX_SIZE]‧‧‧)

{
 int i, j;

 for (i = 0; i < row; i++)

 for (j=0; j< cols; j++)

 c[i][j] = a[i][j] + b[i][j];

}

0 0 0

0 0 0

0 0 0

1 rows+1 rows+1

1 rows‧(cols+1) rows‧cols+rows

1 rows‧cols rows‧cols

0 0 0

Total 2rows‧cols+2rows+1

Matrix Addition

CHAPTER 1 24

*Program 1.18: Printing out a matrix (p.28)

void print_matrix(int matrix[][MAX_SIZE], int rows, int cols)

{

int i, j;

for (i = 0; i < row; i++) {

for (j = 0; j < cols; j++)

printf(“%d”, matrix[i][j]);

printf(“\n”);

}

}

Exercise 1

CHAPTER 1 25

*Program 1.19:Matrix multiplication function(p.28)

void mult(int a[][MAX_SIZE], int b[][MAX_SIZE], int c[][MAX_SIZE])

{

int i, j, k;

for (i = 0; i < MAX_SIZE; i++)

for (j = 0; j< MAX_SIZE; j++) {

c[i][j] = 0;

for (k = 0; k < MAX_SIZE; k++)

c[i][j] += a[i][k] * b[k][j];

}

}

Exercise 2

CHAPTER 1 26

*Program 1.20:Matrix product function(p.29)

void prod(int a[][MAX_SIZE], int b[][MAX_SIZE], int c[][MAX_SIZE],

int rowsa, int colsb, int

colsa)

{

int i, j, k;

for (i = 0; i < rowsa; i++)

for (j = 0; j< colsb; j++) {

c[i][j] = 0;

for (k = 0; k< colsa; k++)

c[i][j] += a[i][k] * b[k][j];

}

}

Exercise 3

CHAPTER 1 27

*Program 1.21:Matrix transposition function (p.29)

void transpose(int a[][MAX_SIZE])

{

int i, j, temp;

for (i = 0; i < MAX_SIZE-1; i++)

for (j = i+1; j < MAX_SIZE; j++)

SWAP (a[i][j], a[j][i], temp);

}

Exercise 4

Asymptotic Notation

The notation we use to describe the asymptotic running

time of an algorithm are defined in terms of functions

whose domains are the set of natural numbers

 ...,2,1,0N

O-notation

• For a given function , we denote by the set

of functions

• We use O-notation to give an asymptotic upper bound of

a function, to within a constant factor.

• means that there existes some constant c

s.t. is always for large enough n.

)(ng))((ngO












0

0

 allfor)()(0

s.t.and constants positiveexist there:)(
))((

nnncgnf

ncnf
ngO

))(()(ngOnf 

)(ncg)(nf

Ω-Omega notation

• For a given function , we denote by the

set of functions

• We use Ω-notation to give an asymptotic lower bound on

a function, to within a constant factor.

• means that there exists some constant c s.t.

is always for large enough n.

)(ng))((ng












0

0

 allfor)()(0

s.t.and constants positiveexist there:)(
))((

nnnfncg

ncnf
ng

))(()(ngnf 

)(nf)(ncg

-Theta notation

• For a given function , we denote by the set

of functions

• A function belongs to the set if there exist

positive constants and such that it can be “sand-

wiched” between and or sufficienly large n.

• means that there exists some constant c1

and c2 s.t. for large enough n.

)(ng))((ng












021

021

 allfor)()()(c0

s.t.and,, constants positiveexist there:)(
))((

nnngcnfng

nccnf
ng

)(nf))((ng

1c 2c
)(1 ngc)(2 ngc

Θ

))(()(ngnf 

)()()(21 ngcnfngc 

Asymptotic notation

Graphic examples of and . ,, O

2
2

22
1 3

2

1
ncnnnc 

21

3

2

1
c

n
c 

Example 1.

Show that

We must find c1 and c2 such that

Dividing bothsides by n2 yields

For

)(3
2

1
)(22 nnnnf 

)(3
2

1
,7 22

0 nnnn 

Theorem

• For any two functions and , we have

if and only if

)(ng

))(()(ngnf 

)(nf

)).(()(and))(()(ngnfngOnf 

Because :

)2(5223 nnn 

Example 2.

)2(5223)(nnnnf 

)2(5223 nOnn 

Example 3.

610033,3forsince)(61003 2222  nnncnOnn

Example 3.

3when61003,1forsince)(61003

610033,3forsince)(61003

2332

2222





nnnncnOnn

nnncnOnn

Example 3.

cnncncnOnn

nnnncnOnn

nnncnOnn







when3,any forsince)(61003

3when61003,1forsince)(61003

610033,3forsince)(61003

22

2332

2222

Example 3.

100when610032,2forsince)(61003

when3,any forsince)(61003

3when61003,1forsince)(61003

610033,3forsince)(61003

2222

22

2332

2222









nnnncnnn

cnncncnOnn

nnnncnOnn

nnncnOnn

Example 3.

3when61003,3forsince)(61003

100when610032,2forsince)(61003

when3,any forsince)(61003

3when61003,1forsince)(61003

610033,3forsince)(61003

3232

2222

22

2332

2222











nnnncnnn

nnnncnnn

cnncncnOnn

nnnncnOnn

nnncnOnn

Example 3.

100when61003,any forsince)(61003

3when61003,3forsince)(61003

100when610032,2forsince)(61003

when3,any forsince)(61003

3when61003,1forsince)(61003

610033,3forsince)(61003

22

3232

2222

22

2332

2222













nnncncnnn

nnnncnnn

nnnncnnn

cnncncnOnn

nnnncnOnn

nnncnOnn

Example 3.

apply. and both since)(61003

100when61003,any forsince)(61003

3when61003,3forsince)(61003

100when610032,2forsince)(61003

when3,any forsince)(61003

3when61003,1forsince)(61003

610033,3forsince)(61003

22

22

3232

2222

22

2332

2222















Onnn

nnncncnnn

nnnncnnn

nnnncnnn

cnncncnOnn

nnnncnOnn

nnncnOnn

Example 3.

applies. only since)(61003

apply. and both since)(61003

100when61003,any forsince)(61003

3when61003,3forsince)(61003

100when610032,2forsince)(61003

when3,any forsince)(61003

3when61003,1forsince)(61003

610033,3forsince)(61003

32

22

22

3232

2222

22

2332

2222

Onnn

Onnn

nnncncnnn

nnnncnnn

nnnncnnn

cnncncnOnn

nnnncnOnn

nnncnOnn

















Example 3.

applies. only since)(61003

applies. only since)(61003

apply. and both since)(61003

100when61003,any forsince)(61003

3when61003,3forsince)(61003

100when610032,2forsince)(61003

when3,any forsince)(61003

3when61003,1forsince)(61003

610033,3forsince)(61003

2

32

22

22

3232

2222

22

2332

2222



















nnn

Onnn

Onnn

nnncncnnn

nnnncnnn

nnnncnnn

cnncncnOnn

nnnncnOnn

nnncnOnn

Standard notations and common functions

• Floors and ceilings

    11  xxxxx

Standard notations and common functions

• Logarithms:

)lg(lglglg

)(loglog

logln

loglg
2

nn

nn

nn

nn

kk

e









Standard notations and common functions

• Logarithms:

For all real a>0, b>0, c>0, and n

b

a
a

ana

baab

ba

c

c

b

b

n

b

ccc

ab

log

log
log

loglog

loglog)(log

log









Standard notations and common functions

• Logarithms:

b
a

ca

aa

a

b

ac

bb

bb

log

1
log

log)/1(log

loglog







Standard notations and common functions

• Factorials

For the Stirling approximation:




























ne

n
nn

n

1
12!

0n

)lg()!lg(

)2(!

)(!

nnn

n

non
n

n







Algorithm Analysis…

• Factors affecting the running time
– computer

– compiler

– algorithm used

– input to the algorithm

• The content of the input affects the running time

• typically, the input size (number of items in the input) is the main
consideration

– E.g. sorting problem  the number of items to be sorted

– E.g. multiply two matrices together  the total number of
elements in the two matrices

• Machine model assumed
– Instructions are executed one after another, with no concurrent

operations  Not parallel computers

Example

• Calculate

• Lines 1 and 4 count for one unit each

• Line 3: executed N times, each time four units

• Line 2: (1 for initialization, N+1 for all the tests, N for all
the increments) total 2N + 2

• total cost: 6N + 4  O(N)




N

i

i
1

3

1

2

3

4

1

2N+2

4N

1

Worst- / average- / best-case

• Worst-case running time of an algorithm
– The longest running time for any input of size n

– An upper bound on the running time for any input

 guarantee that the algorithm will never take longer

– Example: Sort a set of numbers in increasing order; and the data
is in decreasing order

– The worst case can occur fairly often

• E.g. in searching a database for a particular piece of information

• Best-case running time
– sort a set of numbers in increasing order; and the data is already

in increasing order

• Average-case running time
– May be difficult to define what “average” means

Running-time of algorithms

• Bounds are for the algorithms, rather than

programs

– programs are just implementations of an

algorithm, and almost always the details of

the program do not affect the bounds

• Bounds are for algorithms, rather than

problems

– A problem can be solved with several

algorithms, some are more efficient than

others

Arrays

One-Dimensional Arrays

• A list of values with the same data type
that are stored using a single group
name (array name).

• General array declaration statement:

data-type array-name[number-of-items];

• The number-of-items must be specified
before declaring the array.

const int SIZE = 100;

float arr[SIZE];

• Individual elements of the array can be

accessed by specifying the name of the

array and the element's index:

arr[3]

• Warning: indices assume values from 0 to

number-of-items -1!!

One-Dimensional Arrays (cont.)

One-Dimensional Arrays

(cont.)

arr[0] arr[1] arr[2] arr[3] arr[4]

Skip over 3 elements to get

the starting location of

element 3

The array name arr identifies
the starting location of the array

Start here

element 3

1D Array Initialization

• Arrays can be initialized during their
declaration

int arr[5] = {98, 87, 92, 79, 85};

int arr[5] = {98, 87} - what happens in this case??

• What is the difference between the following
two declarations ?

char codes[] = {'s', 'a', 'm', 'p', 'l', 'e'};

char codes[] = "sample";
codes[0] codes[1] codes[2] codes[3] codes[4] codes[5] codes[6]

s a m p l e \0

Two-dimensional Arrays

• A two-dimensional array consists of both rows
and columns of elements.

• General array declaration statement:

data-type array-name[number-of-rows][number-of-
columns];

• The number-of-rows and number-of-columns
must be specified before declaring the array.

const int ROWS = 100;

const int COLS = 50;

float arr2D[ROWS][COLS];

• Individual elements of the array can be

accessed by specifying the name of the array
and the element's row, column indices.

arr2D[3][5]

Two-dimensional Arrays (cont.)

2D Array Initialization

• Arrays can be initialized during their
declaration

int arr2D[3][3] = { {98, 87, 92}, {79, 85, 19},
{32, 18, 2} };

• The compiler fills the array row by row

(elements are stored in the memory in the
same order).

1D Arrays as Arguments

• Individual array elements are passed to a

function in the same manner as other
variables.

max = find_max(arr[1], arr[3]);

• To pass the whole array to a function, you

need to specify the name of the array

only!!

#include <iostream.h>

float find_average(int [], int);

void main()
{

const numElems = 5;
int arr[numElems] = {2, 18, 1, 27, 16};

cout << "The average is " << find_average(arr, numElems) << endl;
}

float find_average(int vals[], int n)
{

int i;
float avg;

avg=0.0;
for(i=0; i<n; i++)
avg += vals[i];

avg = avg/n;

return avg;
}

• Important: this is essentially "call by
reference":

a) The name of the array arr stores the address of
the first element of the array arr[0] (i.e., &arr[0]).

b) Every other element of the array can be

accessed by using its index as an offset from the

first element.

1D Arrays as Arguments

(cont.)

arr[0] arr[1] arr[2] arr[3] arr[4]

The starting address of arr array is &arr[0].

This is passed to the function find_average()

2D Arrays as Arguments

• Individual array elements are passed to a
function in the same manner as other variables.

max = find_max(arr2D[1][1], arr2D[1][2]);

• To pass the whole array to a function, you need
to specify the name of the array only!!

• The number of columns must be specified in the
function prototype and function header.

#include <iostream.h>

float find_average(int [][2], int, int);

void main()

{

const numRows = 2;

const numCols = 2;

int arr2D[numRows][numCols] = {2, 18, 1, 27};

float average;

average = find_average(arr2D, numRows, numCols);

cout << "The average is " << average << endl;

}

float find_average(int vals[][2], int n, int m)

{

int i,j;

float avg;

avg=0.0;

for(i=0; i<n; i++)

for(j=0; j<m; j++)

avg += vals[i][j];

avg = avg/(n*m);

return avg;

}

• Important: this is essentially "call by
reference":

a) The name of the array arr2D stores the
address of arr2D[0] (i.e., &arr2D[0])

b) arr2D[0] stores the address of the first
element of the array arr2D[0][0]
(&arr2D[0][0])

c) Every other element of the array can be
accessed by using its indices as an offset
from the first element.

2D Arrays as Arguments (cont.)

Searching and Sorting
• Linear Search

• Binary Search

Linear Search
• Searching is the process of determining whether or

not a given value exists in a data structure or a

storage media.

• We discuss two searching methods on one-

dimensional arrays: linear search and binary search.

• The linear (or sequential) search algorithm on an

array is:

– Sequentially scan the array, comparing each array item with the searched

value.

– If a match is found; return the index of the matched element; otherwise

return –1.

• Note: linear search can be applied to both sorted and

unsorted arrays.

Linear Search
• The algorithm translates to the following Java method:

public static int linearSearch(Object[] array,

Object key)

{

for(int k = 0; k < array.length; k++)

if(array[k].equals(key))

return k;

return -1;

}

Binary Search

• Binary search uses a recursive method to
search an array to find a specified value

• The array must be a sorted array:
a[0]≤a[1]≤a[2]≤. . . ≤ a[finalIndex]

• If the value is found, its index is returned

• If the value is not found, -1 is returned

• Note: Each execution of the recursive method
reduces the search space by about a half

Binary Search

• An algorithm to solve this task looks at the

middle of the array or array segment first

• If the value looked for is smaller than the value

in the middle of the array

– Then the second half of the array or array segment

can be ignored

– This strategy is then applied to the first half of the

array or array segment

Binary Search

• If the value looked for is larger than the value in the
middle of the array or array segment
– Then the first half of the array or array segment can be ignored

– This strategy is then applied to the second half of the array or
array segment

• If the value looked for is at the middle of the array or
array segment, then it has been found

• If the entire array (or array segment) has been searched
in this way without finding the value, then it is not in the
array

Pseudocode for Binary Search

Recursive Method for Binary

Search

Execution of the Method search

(Part 1 of 2)

Execution of the Method search

(Part 1 of 2)

Checking the search Method

1. There is no infinite recursion

• On each recursive call, the value of first

is increased, or the value of last is

decreased

• If the chain of recursive calls does not end in

some other way, then eventually the method
will be called with first larger than last

Checking the search Method

2. Each stopping case performs the correct
action for that case

• If first > last, there are no array
elements between a[first] and
a[last], so key is not in this segment of
the array, and result is correctly set to -1

• If key == a[mid], result is correctly set
to mid

Checking the search Method

3. For each of the cases that involve recursion, if
all recursive calls perform their actions
correctly, then the entire case performs
correctly

• If key < a[mid], then key must be one of the
elements a[first] through a[mid-1], or it is not
in the array

• The method should then search only those
elements, which it does

• The recursive call is correct, therefore the entire
action is correct

Checking the search Method

• If key > a[mid], then key must be one of the
elements a[mid+1] through a[last], or it is not
in the array

• The method should then search only those
elements, which it does

• The recursive call is correct, therefore the entire
action is correct

The method search passes all three tests:

Therefore, it is a good recursive method definition

Efficiency of Binary Search

• The binary search algorithm is extremely

fast compared to an algorithm that tries all

array elements in order

– About half the array is eliminated from

consideration right at the start

– Then a quarter of the array, then an eighth of

the array, and so forth

Efficiency of Binary Search

• Given an array with 1,000 elements, the binary search
will only need to compare about 10 array elements to the
key value, as compared to an average of 500 for a serial
search algorithm

• The binary search algorithm has a worst-case running
time that is logarithmic: O(log n)
– A serial search algorithm is linear: O(n)

• If desired, the recursive version of the method search
can be converted to an iterative version that will run
more efficiently

Iterative Version of Binary Search

(Part 1 of 2)

Iterative Version of Binary Search

(Part 2 of 2)

Fibonacci Search

• Given a sorted array arr[] of size n and an element x to

be searched in it. Return index of x if it is present in array

else return -1.

Examples:

• Input: arr[] = {2, 3, 4, 10, 40}, x = 10 Output: 3 Element x

is present at index 3. Input: arr[] = {2, 3, 4, 10, 40}, x = 11

Output: -1 Element x is not present. Fibonacci Search is

a comparison-based technique that uses Fibonacci

numbers to search an element in a sorted array.

Similarities with Binary Search:

• Works for sorted arrays

• A Divide and Conquer Algorithm.

• Has Log n time complexity.

Differences with Binary Search:

• Fibonacci Search divides given array in unequal parts

• Binary Search uses division operator to divide range. Fibonacci

Search doesn’t use /, but uses + and -. The division operator may be

costly on some CPUs.

• Fibonacci Search examines relatively closer elements in subsequent

steps. So when input array is big that cannot fit in CPU cache or

even in RAM, Fibonacci Search can be useful.

