20MCA13C COMPUTER ORGANIZATION AND ARCHITECTURE
UNIT I: : Binary Systems

FACULTY
Dr. K. ARTHI MCA, M.Phil., Ph.D.,
Assistant Professor,
Postgraduate Department of Computer Applications,
Government Arts College (Autonomous),
Coimbatore-641018.

20MCA13C COMPUTER ORGANIZATION AND ARCHITECTURE
UNIT I: Binary Systems: Digital Computers and Digital systems - Binary Numbers - Number Base Conversions - Octal and Hexadecimal number - Complements - Binary codes. Boolean Algebra
and Logic Gates: Basic Definition - Axiomatic Definition of Boolean Algebra - Basic Theorems and Properties of Boolean Algebra - Boolean Functions - Canonical and Standard forms - Other
Logic operations-Digital Logic Gates- Simplifications of Boolean Function.
UNIT II: Combinational Logic: Introduction - Design Procedure - Adders - Subtractors - Code Conversions - Multiplexer - Demultiplexer - Encoder - Decoder. Sequential Logic: Introduction -
Flip- Flops - triggering Flip-flop - Excitation Tables - Registers - Shift registers - Ripple Counters - Synchronous counters - Timing Sequences.
UNIT I11: Register Transfer Logic: Introduction -Arithmetic, Logic and Shift Micro-operations - Fixed Point Binary data - Arithmetic Shifts - Instruction Codes. Micro Computer System Design:
Introduction - Instructions and Addressing modes - Stack, Subroutines and Interrupt - Input - Output interface- Direct Memory Access.
UNIT IV: CPU Organization: General Register Organization Types of Interrupts - RISC - Parallel Processing - Pipelining - Array Processors - Performance of a processor. Input-Output
Organization: Peripheral Devices - Asynchronous Data Transfer (Strobe & Handshaking Method) - Modes of Transfer - Priority Interrupt - IOP.
UNIT V: Memory Organization: Types of Memory - Memory Hierarchy - Main Memory - Memory interface to CPU - Associative Memory - Cache Memory: Cache mapping schemes - Virtual
Memory.
TEXT BOOKS:
1.Morris Mano M, “Digital Logic and Computer Design”, Pearson Education, 2016.
2.Morris Mano M, “Computer System Architecture”, Pearson Education, 2012.
REFERENCE BOOKS:
1.John Patrick Hayes, “Computer Architecture and Organization”, Tata McGraw Hill, 2007.
2.Albert Paul Malvino, Donald P. Leach, “Digital Principles and Applications”, Tata McGraw Hill, 2002

= Digital

= Concerned with the interconnection among digital components and modules

» Best Digital System example 1s General Purpose
Computer

* LLogic Design
= Deals with the basic concepts and tools used to design digital hardware
consisting of logic circuits

» Circuits to perform arithmetic operations (+, -, x, &)

Digital Signal - Decimal values are difficult to represent in
electrical systems. It i1s easier to use two voltage values than

ten.

Digital Signals have two basic states:
1 (logic “high™, or H, or “on™)
0O (logic “low™, or L., or “off™)

Digital values are 1in a binary format.

A good example of binary 1s a light (only on or off)

o

Binary means 2 states.

3

|Pwrswi.h~hv s SEF > F OFt art

‘e

»>

Analog and Digital Signal

= Analog system

— The physical quantities or signals may vary continuously
over a specified range.

* Digital system

— Theghysucal quantities or sng(r(l?ls can assume only
dlscrete lues. —

- -

_, IITTTTTI[

Analog signal Digital signal =

— Great racy

)

Digital Systems and Binary Numbers

Digital age and information age

Digital computers

— General purposes

— Many scientific, industrial and commercial applications
Digital systems

— Telephone switching exchanges

— Digital camera

— Electronic calculators, PDA' s

— Digital TV

Discrete information-processing systems
— Manipulate discrete elements of information
— Forexample, {1, 2, 3, ...} and {A, B, C, ...}...

Number Base Conversions

Evaluate

WMagnitude \’.‘ -

Ewvaluate E s
Magnitude = =
Binary
(Base 2)
___________ He xadecimal
C)
Evaluate

agnitude —£

» TRUTH TABLE

Binary Hex Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 3 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

Decimal Number System

Base (also called radix) = 10

ol - -3
— 310 digits £0,-2, 2, 3,4,5,6, 7, 8,9}

Digit Position

— Integer & fraction

Digit Weight

— Weight = (Base) ™
Magnitude

— Sum of “Digit x Weight”
Formal Notation

2 7 o -7 -2
51 0 7 G o
700 70 7 07 O0-6F
| -3 1 1 i | 5. -1]
500 70 2 - O.04

A B B vd "B vd *Bvd_ B~

(512.74),,

Binary Number System

Base = 2

— 2 digits { O, 1 }, called binary digits or “bits”

Weights 4 2 7 17/2 1/4

— Weight = (Base) ™ N e e 2 .2

Magnitude 22 1 o ..,-1 -2
1*2°+0*2'+7 *2°+0 *2"+71 *2

— Sum of “Bit x Weight”

. =(5.25),,
Formal Notation
) (101.01),
Groups of bits 4 bits = Nibble
(1011|

8 bits = Byte

| 11000101 |

Octal Number System

Base = 8

—8digits {0, 1, 2,3,4,5,6, 7}

Weights 64 8 1 1/8 1/64

— Weight = (Base) ™ S - 2 -
2 1 o -1 -2

Magnitude
— Sum of “Digit x Weight”
Formal Notation

5*8+7*8 +2 *8°+7 *8 +4 *8°
=(330.9375),,
(512.74),

Hexadecimal Number System
Base = 16

— 16 digits {0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,F}

Weights 256 16 1 1/16 1/256
— Weight = (Base) ™ e Loyl
2 7 o -7 -2

Magnitude
— Sum of “Digit x Weight”
Formal Notation

1 *16 +74 *16 ' +5 *16°+7*16 ' +10 *16°
=(485.4765625)
(1E5.7A)..

n

N N R WN

The Power

’-) n

20=1
21=2
22=4
23=8
2+=16
25=32
26=64
27=128

of 2

n

10
11
12
20
30
40

n

25=256
29=512
210=1024
211=2048
212=4096
220=1M
230=1G
240=1T

Kilo

Mega

Giga

Tera

Decimal (Integer) to Binary Conversion

* Divide the number by the ‘Base’” (=2)
* Take the remainder (either O or 1) as a coefficient
* Take the quotient and repeat the division

Example: (13),

-
W

- WO

Quotient

/ 2= 6
/ 2= =
/2= 1
/2= O
Answer:

Remainder

1
O
1
1

Coefficient
a 1
O
1
1

e

a
a
a

N

3

(13),,= (a,a,a, a,), = (1101),

f

MSB

\

LSB

Decimal (Fraction) to Binary Conversion
Multiply the number by the ‘Base’” (=2)

Take the integer (either O or 1) as a coefficient

Take the resultant fraction and repeat the division

Example: (0.625)

Integer Fraction Coefficient
0625 *2= 1 . 25 a,="1
028 *2= 0 . S a,=0
0.5 *2= 1 . O a,=1
Answer: (0.625). ., = (0.a,a_.a.).=(0.101),

7)

MSB LSB

Decimal to Octal Conversion
Example: (175),

Quotient Remainder Coefficient
175 / 8= 21 7 a, =7
21 /8= 2 5 a,=>5
2 /8= o 2 a,=— 2
Answer: (175),.,= (Aa. a, a,): = (257),
Example: (0.3125)
Integer Fraction Coefficient
0.3125 *8= 2 _. 5 a, 6 = 2
0.5 *8= 4 . O a,—4
Answer: (0.3125) = (0.a_,a_a),.= (0.24),

Binary — Octal Conversion

8 =23
Each group of 3 bits represents
an octal digit

(¥}

Example: ASSUI‘H(, Zeros

(10110 01),

- &

» ways (Binary to Octral & Octal to Binary)

S I~ NV R N Y

Works o

00O
001
010
o1 1
100
101

110

Binary — Hexadecimal Conversion
16 =D

Each group of 4 bits represents
a hexadecimal digit

Example:

Works o

Assun\c Zeros

(10110 01),

&

4)i

 ways (Binary to Hex & Hex to Binary)

MADARPORLIONEWN~O

0000
0001
0010
0011
0100
0101
0110
o111
1000
1001
1010

............
)

R -
™

Octal — Hexadecimal Conversion

Convertto Cinary as an intermediate step
Example:

(2 6 . 2),
Assume Zeros \ I I / Assume Zeros

(010110.010),
(1 6 4')16

Works ot ways (Ocral to Hex & Hex to Ocral)

1.5 Complements

There are two types of complements for each base-r system: the radix complement and diminished radix
complement.

Diminished Radix Complement - (r-1)'s Complement
— Given a number NN in base r having n digits, the (r—1)'s complement
of N is defined as:

(r—1) — N
Example for 6-digit decimal num bers:

— 9’s complementis (r— 1)—N = (10~—1)—N = 9999995—-N
— 9’s complement of 546700 is 999999-546700 = 453299

Example for 7-digit binary numbers:
— 1’s complementis(r—1)—N=(2—-1)-N=1111111—N
— 1’s complement of 1011000is 1111111—-1011000 =0100111

Observation:

— Subtraction from (r"— 1) will never require a borrow
— Diminished radix complement can be computed digit-by-digit
— Forbinary: 1 —0=1and1—-1=0

Complements

Radix Complement
The s complement of an n-digit number N in base » is defined as
@ — N for N=# 0 and as O for &N = O. Comparing with the (»— 1)'s
complement, we note that the 7»'s complement is obtained by adding 1 to the
(— 1) 's complement, sincer" —N=[G"— 1) —N] + 1.

Example: Base-10

The 10's complement of 012398 is 987602
The 10's complement of 246700 is 753300

Example: Base-2

The 2's complement of 1101100 1s 0010100
The 2's complementof 0110111 is 1001001

Complements
* 1’s Complement (Diminished Radix Complement)
— All ‘O’s become “1’s

— All “1’s become ‘O’s
Example (10110000),
=> (01001111),

If you add a number and its 1’s complement ...

10110000
+= 01091111
11111111

Complements
* 2’s Complement (Radix Complement)

g Take 1’s complement then add 1
— Toggle all bits to the left of the first ‘1’ from the right
Example:
Number: 10110000 10110000
Comp.: 901001111
¥ 1

01010000 01010000

Complements

Subtraction with Complements

— The subtraction of two n-digit unsigned numbers M — N/
1.

2.

3.

Add the munuend Af to the »'s complement of the subtrahend N. Mathematically, Af
(@ —N) =M - N+ 1"

It A7 N, the sum will produce and end carry »”, which can be discarded: what is
left is the result A - N,

If AL - N, the sum does not produce an end carry and is equal o » — (N — M),
which is the »'s complement of (N — Af). To obtain the answer in a familiar form,

take the s complement of the sum and place a negative sign in front.

Complements

* Example 1.5
— Using 10's complement, subtract 72532 — 3250.

M 72532

10's complement of N = + 96750
Sum = 169282

Discard end carry 10° = — 100000
Answer 69282

* Example 1.6
— Using 10's complement, subtract 3250 — 72532.

M = 03250
10's complement of N= +27468 There is no end carry.
Sum 30718

Therefore, the answer is — (10's complement of 30718) = — 69282,

Complements

Subtraction of unsigned numbers can also be done by means of the (r— 1)'s
complement. Remember that the (r— 1) 's complement is one less then the s
complement.

Example 1.8

— Repeat Example 1.7, but this time using 1's complement.

(a) X 1010100 1000011
X 1010100

I's complementof ¥ = = 0111100
Sum = 100 10000

End-around carry — # 1
Answer. X — ¥ = 0010001

(b)Y - X — 1000011 1010100
& 1000011
1's complement of X + 0101011
Sum = 1101110

There is no end carry. Therefore.
the answerisY — X =—(1's
complementof 1101110) = —
0010001 .

3.7 Binary Codes

Digital data is represented, stored and transmitted as groups of binary digits also known as
binary code.

7 S8 ‘ R, VRN T AR s—e koo
| Bnary || eco | é%; il o= E'é;“ ‘ | asce \leac'oc { roserin | [éncouo |

Benary codes panty Cassiicaton of vanous Binary coces

~Weighted codes: In weighted codes. each digit is assigned a specific weight according to its position.
~Non-weighted codes: In non-weighted codes are not appositionally weighted.

~ Reflective codes: A code is reflective when the code is self complementing. In other words. when the code for 9 is
the complement the code for0O. 8 for 1. 7 for 2. 6 for 3 and 5 for 4.

~Sequential codes: In sequential codes. each succeeding 'code is one binary number greater than its preceding code.
~Alphanumeric codes: Codes used to represent numbers. alphabetic characters. symbols

“Error defecting and correcting codes: Codes which allow error defection and correction are called error
detecting and' correcting codes.

BCD Code

Example:

A number with k decimal digits will require
4k bits in BCD.

Decimal 396 is represented in BCD with
12bits as O011 1001 0110, with each group
of 4 bits representing one decimal digit.

A decimal number in BCD is the same as its
equivalent binary number only when the
number is between O and S.

The binary combinations 1010 through 1111
are not used and have no meaning in BCD.

Consider decimal I8S and its corresponding value in BCD

Table 1.4
Binary-Coded Decirmal (8CD)

Decismal BCD
Symbol Digit
O OO0

1 (MM
2 O 10

=3 OO011
= 1 OO0

el 1ol
o o110

7 O111
= LER 8 8

< 1001

(185),0 = (0001 1000 0101) gcp — (10111001) >

-4 O100
+ 5 + 0101

BCD addition 2 1001

R 0100 =
S + 1 000 - 9
12 1100 17

+ 0110

10010

and binary:

1 000

+ 1001

10001

+ 0110
10111

Binary Codes

Other Decimal Codes

Table 1.5

Fowur Differernt Binory Codes for the Decimal Digrts

Decirmal BCD
Digit 421 2227 Excess-3 s 42 —2, —1

(8] OOOD DODO0 OOl OO
1 OO0 1 D001 o100 111
2 OO10 0010 arot Q110
= O0l1 00l GL10 1Ol
4+ Q100D 0100 o111 O 1 OO
= O101 1o 1 OO0 1O11
L o110 1 1O0D 1O 11O
7 o111 1101 1010 1001
= 1000 1110 1O11 1 OO
9 1001 I111 1100 1111
1010 IBRES]] [slslsle} (Sl le)}
Linusced 1011 alr1o Qo IOy
bat 110> airi (SIS R NS [&0 I |
combi- 1101 1000 1101 1100
natians 1110 1001 1110 1101
1111 1010 1111 1110

Binary Codes

Gray Code Table 1.6
Gray Code
— The advantage is that only bit Gray Decimal
in the code group changes in S i - oA
= QOO0 O
going from one number to 000,’ *
the next. C¥1a 2
Qo110 3
= Error detection. 0110 4
- Represeﬁ&et—i-en—ef—eneleg73ta. o111 S
: Q101 o
= Low{PPbwer design. OOl a100 -
/ / 1100 s
> 1101 9
4 1111 10
Lo 11 1110 11
100 4 101 1010 12
/ 1011 13
1001 14
1000 1s

11O

1-1 and onto!!

American Standard Code for Information Interchange (ASCII) Character Code

Table 7.7

American Srtandard Code for

information interchange (ASCIH)

b bohbs

b4b;bb, o000 001 o110 o1 100 101 110 111
OO0 NUL DLE sp O @ P - P
00O | SOH DO . ' A Q a q
OO0 STX DC2 = 2 B R b r
oDl ETX NDC3 i 3 . X s < s
0100 EOT DCa % 4 D T d 1
0101 ENOQ NAK % s | S5 U < u
a110 ACK SYN & & F v s v
arn BEI ETB : 7 S W 2 w
1000 BS CAN < % H x h x
1001 HT EMNM ' 9 1 Y i ¥
1010 LK SUB - : J 7 i Fa
1011 VT ESC + : K I X {
1 1O0 FF | S . g L \ I |
1101 CR Gs N] m b
1Mo SO RS - e N ~ n ~
1111 S uUs s ? O — o DEL

ASCII Character Code

Control characters

NUL
SOH
STX
ETX
EOT
ENO
ACK
BEL
BS
HT
LLF
VT
i
CR
SO
Si
sP

Null

Star of hcading
Star of text
End of text

End of transmission
Enquiry
Acknowledec
Bell

Backspace
Horizoniazl 1ab
[LLinc fecd
Vertical tab
Form feed
Carriage return
Shift out

Shift in

Space

DILE
DC1
DC2
DC3
DCcCa
NAK
SY N
E=ETB
C AN
EN1
SsuUB
ESC
S
GS

L S
us
DEL

Data-link escape
Device control |
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End-of-transmiission block
Cancel

End of maedium
Substitute

Escapec

File scparator

Group separator
Roecord scparator

Unit scparator

Delete

ASCI] Character Codes and Properties

American Standard Code for Information Interchange (Refer to Table 1.7)
A popular code used to represent information sent as character-based data.

< £ t
X € | 3 W=

It use 7 -DIts TO represern

o4 Graphic printing characters.
34 Non-printing characters
Some non-printing characters are used for text format (e.g. BS = Backspace, CR =
carriage return).
Other non-printing characters are used for record marking and flow control (e.g.

STX and ETX start and end text areas).

ASCII has some interesting properties:
— Digits O to 9 span Hexadecimal values 30 to 39

— Upper case A-Zspandl, _to SA_

i€

— Lower case a-z span 61, to 7A

= Lower to upper case translation (and vice versa) occurs by flipping bit oo

* Error-Detecting Code

— To detect errors in data communication and processing,
an eighth bit is sometimes added to the ASCII character to
indicate its parity.

— A parity bit is an extra bit included with a message to
make the total number of 1's either even or odd.

* Example:

— Consider the following two characters and their even and
odd parity:
With even parity With odd parity
ASCII A — 1000001 01000001 11000001
ASCII T = 1010100 11010100 01010100

Error-Detecting Code

Redundancy (e.g. extra information), in the form of extra bits, can be
incorporated into binary code words to detect and correct errors.

A simple form of redundancy is parity, an extra bit appended onto the code
word to make the number of 1's odd or even. Parity can detect all single-bit
errors and some multiple-bit errors.

A code word has coven parity if the number of 1°s in the code word is even.

A code word has odd parity ifthe number of 1’s in the
code word is odd.

— Example:

Message Ac: 10001001 1 (even parity)
Message B: 10001001 O (odd parity)

Binary Logic

Definition of Binary Logic
Binary logic consists of binary variables and a set of logical operations.

The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with

each variable having two and only two distinct possible values: 1 and O,
Three basic logical operations: AND, OR, and NOT.

1.

)

AND: Thas operation is represented by a dot or by the absence of an operator. For
cxamplec. x - ¥ =z or xy = z 1s read “x AND y 1s equal to z.” The logical opcration
AND is interpreted to mean that = = [ifonly x = 1 and » = 1: otherwise = = 0.
(Remember that x, v, and =z arc binary vanables and can be equal cither to 1 or O,
and nothing else.)

OR: This opcratuon is represented by a plus sign. For example, x + v = £ 1s read “x
ORyvisequaltoz"meaning thatz= 1l ifx = lory = lorifbothx = I and » = 1.
Ifbothx “Oand vy =~ O, thenz =~ 0

NOT: This operation is represented by a prime (sometimes by an overbar). For
example, X'~ z(or x) is read “not x is equal to 2. mcaning that = is what = 1s
not. In other words, if x = 1, then = = 0, but if x = 0, then = = 1, The NOT operation
is also referred to as the complement operation, since it changes a 1 o 0 and a 0 10
1.

Binary Logic gates

* Truth Tables, Boolean Expressions, and Logic Gates

AND OR NOT
0o 0 0 o 0 0 0 1
0 1 0 0 ! 1 ! 0
1 0 0 1 0 1

I=X*y=Xxy z=x+y ITX=X

ArD
Fp—
D
=
W =2 B
OR
A
:§>. X
B
“=20+B8
HOR
£ -
=
B ——=
= AeB
Burfer
s ._|>—- P
X = A

A B |
O 0|0
0 1|10
1 0|0
1 3719
L B =
(e
0 111
1 01
1 1|1
A B
o 0ol0
0:1 |4
1 0|1
1 110
A X

oo

111

rAMND
“ Do—-
B N
x=A-B
NOR
AD}__ i
8 N\
x=520+B

Inverter (NOT)

A -—I>o- b

A B X
[R
o 111
1 0|1
1 1|0
A B =
o o1
o110
1 0|0
1 1|0
A

a1

110

Logic Function | Boolean Notation
AND A8
OR A+B
NOT A
NAND AB
NOR A+B
EX-OR (AB)+{AB)OrA® B
EX-NOR (A8)+ OTADB

b

= =001
=o=0/m

D
|‘l
i

—

- Q=01
(o o O S Y b

I

)
=o=0|m

SN o

= e

=] [51)
[Y

LAY

o o ‘;;
=o=o|m

D=

=l
e

Inverter (NOT)

Logic Function Boolean Notation
AND A3
OR A+B
NOT A
NAND AB
NOR 4B
EX-OR (AB)+(4B)orA® B
EX-NOR (A3)+ OrAGB

_ho:
=

Universal Gate

NAND and NOR Gates are called Universal Gates because AND, OR and
NOT gates can be implemented &created by using these gates.

NAND Gate Implementations NOR Gate Implementations

— z — A+U av —
B — B — u ‘II! ﬁ O | p—

NAND A=A+ B

D

ol

NAND

Dr. V. Krishnanaik rapD

Logic gates
— Exam
A
3
Transition occurs
between these hmits
l l
0

Binary Logic

nle of hinarv signals

Signal
range for
logic 1

Signal
range for
logic 0

Un-define

Logic O

Figure 1.3 Example of binary signals

Binary Logic

* Logic gates

X I=mXxX-y RS I=x+y .
R X
y y

(a) Two-input AND gate (b) Two-input OR gate (c) NOT gate or inverter

Fig. 1 4 Symbols for digital logic circuits

y 0 0 1 = 1

AND: x - y 0 o | 1 o 0
OR:x+y 0 | 1 1 1 0
NOT:-x' 1 0 0o | 1 1

Fig. 1.5 Input-Output signals for gates

Binary Logic

* Logic gates
— Graphic Symbols and Input-Output Signals for Logic

A F=ABC
B — b :
¢ — C

(a) Three-input AND gate (b) Four-input OR gate

G=A+B+C+D

Fig. 1.6 Gates with multiple inputs

Boolean Algebra

Boolean Algebra : George Boole(English mathematician), 1854
" Invented by George Boole in 1854
operators (+=and *) and a unaryv operator ()
“An Investigation of the Laws of Thought_on Which Are Founded the Mathematical Theories of Logic and

Probabilities "

Boolgan Algebra
1(110), Var, (NOT. AND, OR). Thms}

“Mathematical tool to expression and analyze digital (logic) circuits

“Claude Shannon, the first to apply Boole’s work, 1938

~A Symbolic Analysis of Relay and Switching Circuits™ at MIT

UThi Boolean al Bool ressi 1
evaluation and simplification, and VHDL program

Basic Functions and Basic Functions

Boolean functions : NOT, AND, OR,
exclusive OR(XOR) : odd function exclusive NOR(XNOR) : even function(equivalence)

Boolean functions for (a) AND, (b) OR, (c) XOR, and (d) NOT

xI y" XAy xl y” xXvy xI yll XDy x" b of
o 0 o (4] 0 o 0 0 o o " 1
o 1 0 (4 1 1 o 1 1 1 (4]
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0
(@) (b) (©) (d)
Basic functions
- AND Z=X - Y orZ=XY
Z=1 if and only if X=1 and Y=1, otherwise Z=0
= OR Z=X+Y
Z=1 if X=1 or if Y=1, or both X=land Y=1. Z=0 if and only if X=0 and Y=0
* NOT Z=X"or

Z=1 if X=0, Z=0 if X=1

Boolean functions for (a) NAND, (b) NOR, and (c) XNOR

x | % " NOR % | y "XNOR

x | v ”NAND

Q0™

~000

- -)

()

(b)

@)

All possible binary boolean functions

— g p—

>
A‘llo
pd

>
+ll0]
X
*%|—-—00
N
+]0]]
>
AN=—0~0O
)
N.loo.l
>

(v 4
Ol—-—0c0O
pd
VO‘II
eo.l.lo
2O = O -
,yo ol o)
x o—

X OO0~~~
> o
XOO o
< OO0 ~
(elleleloNe)
2O = 0O -
X OO rm

Boolean Operations and Expressions

* Boolean Addition
—Logical OR operation D

Ex 4-1) Determine the values of A,B, C,an_. _“TT._. ..._.kethe sum term
A+B'+C+D’

Sol) all literals must be ‘0’ for the sum term to be ‘0’
A+B'+C+D’'=0+1'+0+1"=0— A=0, B=1, C=0, and D=1

* Boolean Multiplication

—Logical AND operation 3
Ex 4-2) Determine the values of A, B, C, : —D_ 1
Sol) all literals must be “1” for the product term to be ‘1’

AB’'CD’'=10"10'=1-—> A=1, B=0, C=1, and D=0

Basic Identities of Boolean Algebra

Basic Identities of Boolean Algebra

. —X+0=X 2. XEEX
3. X+1=1 4. X-0=0 T_hc rdati(?nsh@ Iu_rm-ecn a
single variable X_its complement
5. X+_X =X 6, X-{ — 4 WMMDMQ
] X+X=1 8. X-X=0 ——
9| X=X
0.] X+Y=Y+X 1. XY=YX Commutative
12] X+(Y+Z)=(X+Y)+Z 13. X(YZ)=(XY)Z Associative
14| X(Y+Z)=XY+XZ 5. X+YZ=(X+Y)}X+Z) Distributive
16| X+Y=X.Y 17. X-Y=X+Y DeMorgan's

Laws of Boolean Algebra

* Commutative Law: the order of literals does not matter
A+B=B+A AB=BA

] O—aeem] >— L D= D=
A+B = B+ A ‘ =
f —i N —d i i

e Associative Law: the grouping of literals does not matter

A+ (B +C)=(A+B)+C (=A+B+C) A(BC) = (AB)C (=ABC)
4D_ I 25 E)l "' : i_Di wncy ,‘. —D—‘i_‘h
S S <= D , [O—
® Distributive Law : A(B +C) = AB + AC (A+B){C+D) = AC+ AD + BC + BD

LI T

Rules of Boolean Algebra
v A+0=A In math if you add 0 you have changed nothing in

Boolean Algebra ORing with O changes nothing & s—

v A<0=0 In math if O is multiplied with —l—
you get O. If you AND anything with O you get O
v A+1 =A ANDing anything with 1 will yield the anything

v A+A = A ORing with itself will give the same result
v A+A’=1 Either Aor A’ mustbe 1so A+ A’ =1
v A*A = A ANDing with itself will give the same result

v A*A’ =0 In digital Logic 1’ =0 and 0’ =1, so AA’=0 since one of the

inputs must be 0.

f
| 7

v A = (A’)" If you not something twice you are back to the beginning

v A+ A'B=A+B
If Ais 1 the outputis1l If Ais Othe outputisB
vA+AB=A
v(A+B)A+C)=A+BC
* DeMorgan’s Theorem
-F(AA,-,+,1,0) = F(A", A, +, -,0,1)
~-(AeB)Y=A"+B" and (A+B) =A" e B’

- DeMorgan’s theorem will help to simplify digital circuits using NORs
and NANDs his theorem states

~ — ~ «
o =523 >
» » .

NAND Noegative €M

Boolean Analysis of Logic Circuits

Constructing a Truth Table for a Logic Circuit ‘ j:)_ p—
\

D

N

III.(D
| }_\uhyllh

— Convert the expression into the min-terms containing all the input literals

— Get the numbers from the min-terms

— Putting ‘1’s in the rows corresponding to the min-terms and ‘0’s in the remains
Ex) A(B+CD)=AB(C+C’) (D+D’) +A(B+B’)CD =ABC(D+D’) +ABC’(D+D’) +ABCD+AB’CD

=ABCD+ABCD'+ABC’'D+ABC’'D’ +ABCD+AB’CD =ABCD+ABCD'+ABC’'D+ABC’'D’
+AB’CD =m11+m12+m13+m14+m15=2(11,12,13,14,15)

TrpesT OuTpuT
AT .1 < & | AB-CD)
o o S | © I
o o o 3
o o 1 o
= [o [3
AB+-CD)=mll-mlI2-ml3-mild4-mlS =3(11.12.13.14.15) o 1 o | o
o 1 5] 3
o 1 I 1 ©
o 1 1 1
] o o | ©
i | o N R
t o - 30 WK
.) & IET SO I
1 1 o | o
1 1 o 2
i | 1 1 | ©
1 1 1 3

otandarda Forms or boolean EXpressions

UThe Sum-of-Products(SOP) Form Ex) AB+ABC, ABC+CDE+B’CD’

U The Product-of-Sums(POS) Form Ex) (A+B)(A+B+C), (A+B+C){C+D+E)(B'+C+D’)

W Principle of Duality : SOP < POS

LU Domain of a Boolean Expression : The set of variables contained in the expression
Ex) AB+AB’'C: the domainis {A, B, C}

v Standard SOP Form (Canonical SOP Form)
— For all the missing variables, apply (x+x’)=1 to the AND terms of the expression
— List all the min-terms in forms of the complete set of variables in ascending order

Ex : Convert the following expression into standard SOP form: AB'C+A'B'+ABC'D
Sol) domain={A,B,C,D}, AB’'C(D’+D)+A'B’(C’'+C)(D’+D)+ABC’'D
=AB'CD’+AB'CD+A’'B’C'D’+A’B’'C’'D+A’B’'CD’+A’B’'CD+ABC’'D
=1010+1011+0000+0001+0010+0011+1101 =0+1+2+3+10+11+13 =
2(0,1,2,3,10,11,13)

Standard POS Form (Canonical POS Form)

~ For all the missing variables, apply (x x)=0 to the OR terms of the
expression
— List all the max-terms in forms of the complete set of variables in

ascending order

Ex : Convert the following expression into standard POS form: (A+B’+C)
(B’+C+D*)(A+B’+C’+D)

Sol) domain={A,B.C.D}, (A+B’+C)YB’+C+D*)(A+B’+C’ +D)
=(A+B’+C+D’D)Y(A’A+B+C+D’)(A+B’+C’+D) =(A+B+C+D")
(A+B’+C+D)(A’+B ' +C+D")(A+B’+C+D”)(A+B’+C’+D)=(0100))(0101)
(0110)(1101)=T11(4.5.6,13)

THANK YOU
This content is taken from the text books and reference books prescribed in the syllabus.

This content is taken from the text books and reference books prescribed in the syllabus.

