20MCA12C RELATIONAL DATABASE MANAGEMENT SYSTEM

UNIT II: Relational Databases

FACULTY
Dr. K. ARTHI MCA, M.Phil, Ph.D,,
Assistant Professor,
Postgraduate Department of Computer Applications,
Government Arts College (Autonomous),

Coimbatore-641018.

What is Relational Model?

Relational Model (RM) represents the database as a collection of relations. A relation is nothing
but a table of values. Every row in the table represents a collection of related data values. These
rows in the table denote a real-world entity or relationship.

The table name and column names are helpful to interpret the meaning of values in each row.
The data are represented as a set of relations. In the relational model, data are stored as tables.
However, the physical storage of the data is independent of the way the data are logically
organized.

Relational Model

Structure of Relational Databases
Relational Algebra

Tuple Relational Calculus

Domain Relational Calculus

Extended Relational-Algebra-Operations
Modification of the Database

Views

> O 5 S S S O

Basic Structure

n Formally, given sets Dy, D, D, a relation r is a subset of
Dix Dy x...
X Dy
Thus a relation is a set of n-tuples (as, ay, ..., a,) where
ai U Dj
n Example: if

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}
Thenr ={ (Jones, Main, Harrison),
(Smith, North, Rye),
(Curry, North,
Rye),
(Lindsay, Park, Pittsfield)}
is a relation over customer-name x customer-street x customer-
city

Relational Algebra

n Procedural language
n Six basic operators

H select
H project
H union

H set difference
H Cartesian product
H rename

n The operators take two or more relations as inputs and give a
new relation as a result.

Drawbacks of using file systems (cont.)

e Atomicity of updates
e Failures may leave database in an inconsistent state with partial updates carried out
e E.g. transfer of funds from one account to another should either complete or not happen
at all
e Concurrent access by multiple users
e Concurrent accessed needed for performance
e Uncontrolled concurrent accesses can lead to inconsistencies
- E.g. two people reading a balance and updating it at the same time
e Security problems

e Database systems offer solutions to all the above problems.

Relati

1.

2.

w

~No

10.

St

onal Model Concepts

Attribute: Each column in a Table. Attributes are the properties which define a relation.
e.g., Student_Rollno, NAME etc.

Tables — In the Relational model the, relations are saved in the table format. It is stored
along with its entities. A table has two properties rows and columns. Rows represent
records and columns represent attributes.

Tuple — It is nothing but a single row of a table, which contains a single record.
Relation Schema: A relation schema represents the name of the relation with its
attributes.

Degree: The total number of attributes which in the relation is called the degree of the
relation.

Cardinality: Total number of rows present in the Table.

Column: The column represents the set of values for a specific attribute.

Relation instance — Relation instance is a finite set of tuples in the RDBMS system.
Relation instances never have duplicate tuples.

Relation key - Every row has one, two or multiple attributes, which is called relation
key.

Attribute domain — Every attribute has some pre-defined value and scope which is
known as attribute domain

ructure of Relational Databases

A relational database consists of a collection of tables, each of which is assigned a
unique name. For example, consider the instructor table of Figure 2.1, which stores
information about instructors. The table has four column headers: ID, name, dept_
name, and salary. Each row of this table records information about an instructor,
consisting of the instructor’s ID, name, dept name, and salary. Similarly, the course
table of Figure 2.2 stores information about courses, consisting of a course_id, title,
dept_name, and credits, for each course. Note that each instructor is identified by
the value of the column ID, while each course is identified by the value of the
column course_id.

Figure 2.3 shows a third table, prereq,which stores the prerequisite courses for
each course. The table has two columns, course_id and prereq_id. Each row consists
of a pair of course identifiers such that the second course is a prerequisite for the
first course.

Thus, a row in the prereqtable indicates that two courses are related in the
sense that one course is a prerequisite for the other. As another example, we
consider the table instructor, a row in the table can be thought of as representing
the relationship between a specified ID and the corresponding values for name,
dept_name, and salary values

ID name dept_name salary
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | ElSaid History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
08345 | Kim Elec. Eng. | 80000

Figure 2.1 The instructor relation.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, fromwhich
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between n values is represented
mathematically by ann-tuple of values, i.e.,, a tuple withnvalues, which
corresponds to a row in a table.

coursedd | title deptmame | credits
BIO-101 | Intro. to Biology Biology 4
BIO-301 | Genetics Biology -
BIO-399 | Computational Biology Biology 3
CS-101 Intro. to Computer Science | Comp. Sci. -
CS-190 Game Design Comp. Sci. -
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts | Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 | Investment Banking Finance 3
HIS-351 | World History History 3
MU-199 | Music Video Production Music 3
PHY-101 | Physical Principles Physics +
Figure 2.2 The course relation.

courseid | prereqid
" BIO-301 | BIO-T01 |

BIO-399 | BIO-101

CS5-190 | CS-101

CS-315 | CS-101

CS-319 | CS-101

CS-347 | CS-101

EE-181 PHY-101

Figure 2.3 The prereq relation.

Thus, in the relational model the term relation is used to refer to a table, while
the term tuple is used to refer to a row. Similarly, the term attribute refers to a
column of a table.

Examining Figure 2.1,we can see that the relation instructor has four attributes:
ID, name, dept_name, and salary.

Fundamental Relational Algebra Operations

We use the term relation instance to refer to a specific instance of a relation,

I.e., containing a specific set of rows. The instance of instructor shown in Figure 2.1

has 12 tuples, corresponding to 12 instructors. Relational Algebra is procedural query
language, which takes Relation as input and generate relation as output. Relational algebra
mainly provides theoretical foundation for relational databases and SQL.

Basic Structure

B Formally, given sets D,, D,, D, a relation r is a subset of
D;x D, x..xD,

Thus, a relation is a set of n-tuples (a,, a,, ..., a,) where each a; € D,
B Example: If

e customer_name = {lones, Smith, Curry, Lindsay, ...}

/* Set of all customer names */
® customer street = {Main, North, Park, ...} /* set of all street names*/
® customer_city = {Harrison, Rye, Pittsfield, ...} /* set of all city names */

Thenr={ (Jones, Main, Harrison),
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield) }
is a relation over

customer_name x customer_street x customer_city

Attribute Types

Each attribute of a relation has a name

The set of allowed values for each attribute is called the domain of the
attribute

Attribute values are (normally) required to be atomic; that is, indivisible

® E.g.the value of an attribute can be an account number,
but cannot be a set of account numbers

Domain is said to be atomic if all its members are atomic
The special value null is a member of every domain
The null value causes complications in the definition of many operations

e We shall ignore the effect of null values in our main presentation and
consider their effect later

Relation Schema

m ALA, .., A, areattributes

B R=(A, A, .., A,)isarelation schema

Example:

Customer_schema = (customer_name, customer_street, customer_city)

® r(R) denotes a relation r on the relation schema R
Example:

customer (Customer_schema)

Relation Instance

B The current values (relation instance) of a relation are specified by a table

B Anelement t of ris a tuple, represented by a row in a table

attributes
% ii (or columns)

; tuples
(or rows)

\

customer

Database

B A database consists of multiple relations

B Information about an enterprise is broken up into parts, with each relation storing
one part of the information

account : stores information about accounts
depositor : stores information about which customer
owns which account
customer : stores information about customers

B Storing all information as a single relation such as
bank(account_number, balance, customer_name, ..)
results in

® repetition of information

» e.g.,if two customers own an account (What gets repeated?)
e the need for null values

» e.g., to represent a customer without an account

B Normalization theory (Chapter 7) deals with how to design relational schemas

Keys

m letKcR

B Kis a superkey of R if values for K are sufficient to identify a unique tuple of each
possible relation r(R)

® by “possible r” we mean a relation r that could exist in the enterprise we are
modeling.
® Example: {customer_name, customer_street} and
{customer_name}
are both superkeys of Customer, if no two customers can possibly have the

same name

» In real life, an attribute such as customer_id would be used instead of
customer_name to uniquely identify customers, but we omit it to keep our

examples small, and instead assume customer names are unique.

Keys (Cont.)

B Kisacandidate key if K is minimal

Example: {customer_name} is a candidate key for Customer, since it is a
superkey and no subset of it is a superkey.

B Primary key: a candidate key chosen as the principal means of identifying
tuples within a relation

® Should choose an attribute whose value never, or very rarely, changes.

® E.g. email address is unique, but may change

Foreign Keys

B A relation schema may have an attribute that corresponds to the primary key of
another relation. The attribute is called a foreign key.

e E.g. customer _name and account_number attributes of depositor are
foreign keys to customer and account respectively.

® Only values occurring in the primary key attribute of the referenced relation
may occur in the foreign key attribute of the referencing relation.

B Schema diagram

branch account depositor customer

branch—_name {—l_ account_number <—|_ customer—name > customer—name
branch_city branch_name account_number customer_street
assets balance customer—city

loan borrower

loan—_number <—|— customer—_nanie

branch_name loan_number
amount

Query Languages

Language in which user requests information from the database.
Categories of languages

® Procedural

® Non-procedural, or declarative
“Pure” languages:

® Relational algebra

® Tuple relational calculus

® Domain relational calculus

Pure languages form underlying basis of query languages that people use.

Relational Algebra

B Procedural language

B Six basic operators

® select: G

e project: [1

® unhion: U

e set difference: —

® C(Cartesian product: x

® rename: P

B The operators take one or two relations as inputs and produce a new
relation as a result.

Select Operation - Example
-
slisle

Select Operation

m Relationr

" Gp-prp>5()

® Notation: o (r)
B pis called the selection predicate
® Defined as:

o,(r)={t | t e rand p(t)}

Where p is a formula in propositional calculus consisting of terms connected
by : ~ (and), v (or), — (not)
Each term is one of:

<attribute> op <attribute> or <constant>

where op isone of: =, #,>, =2.<. <

B Example of selection:

a branchfname=”Perryn‘dge”(account)

Project Operation - Example

HA,C (r)

Project Operation

Notation:
I 4 s,..a,(1)
where A,, A, are attribute names and r is a relation name.

The result is defined as the relation of k columns obtained by erasing the
columns that are not listed

Duplicate rows removed from result, since relations are sets

Example: To eliminate the branch_name attribute of account

Haccount_number, palance (@ccount)

Union Operation - Example

" remensee a6 a]s]

B rus:

Union Operation

Notation: ruUs
Defined as:
rus={t|terortes}
For r s to be valid.
1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (example: 2" column
of r deals with the same type of values as does the 2™
column of s)

Example: to find all customers with either an account or a loan

chstomer_name (depositor) chstomer_name (borrower)

Set Difference Operation - Example

B Relationsr, s:

A | B A | B
a | 1 o
a | 2 V;;
p|1 S
r
m s -5
A | B
a | 1
g1

Set Difference Operation

B Notationr—s

B Defined as:

r—s ={t|terandt ¢ s}

B Set differences must be taken between compatible relations.
® rand s must have the same arity

e attribute domains of r and s must be compatible

Additional Operations

e Set intersection
e Natural join
e Division

e Assignment

Set-Intersection Operation

Notation: rm's
Defined as:
rons={t|terandtes}
Assume:

® 1, s have the same arity

e attributes of r and s are compatible

Note:rms=r—(r—s)

Natural-Join Operation

m Notation: r s

B Letrands be relations on schemas R and S respectively.
Then, r [xs is arelation on schema R\ S obtained as follows:

e Consider each pair of tuples t, from rand t. from s.

o |If t.and t have the same value on each of the attributes in R ™ S, add a tuple
t to the result, where

» t has the same value as tr onr

» t has the same value as ts ons

B Example:
R=(A, B, C, D)
s=(E's, D)
® Result schema = (A, B, C, D, E)

® r sisdefined as:

l_Ir.A. rB.rCrD sEOrg=sArp=sp(r X s))

Division Operation

B Notation: ;= ¢
B Suited to queries that include the phrase “for all”.
B Letrands be relations on schemas R and S respectively where
® R=(A, ... A, , By, ..B,)
e S=(B, .. B,)
The result of r+ s is a relation on schema
R-S=(A, .., A,)
r+s={t | tellgs(NAVues(tuer)}
Where tu means the concatenation of tuples t and u to produce a

single tuple

Assignment Operation

B The assighment operation (<) provides a convenient way to express complex
queries.

e Write query as a sequential program consisting of
» a series of assignments

» followed by an expression whose value is displayed as a result of the
query.

® Assignment must always be made to a temporary relation variable.
B Example: Writer+sas
templ <« [z (r)

temp2 < [1ps ((templxs)—Tlgss(r))
result = templ — temp2

® Theresult to the right of the < is assigned to the relation variable on the left

of the «.

® May use variable in subsequent expressions.

Introduction to SQL
Domain Types in SQL

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified maximum length n.
int. Integer (a finite subset of the integers that is machine-dependent).

smallint. Small integer (a machine-dependent subset of the integer domain type).
numeric(p,d). Fixed point number, with user-specified precision of p digits, with d
digits to the right of decimal point. (ex., numeric(3,1), allows 44.5 to be stores exactly,
but not 444.5 or 0.32)

real, double precision. Floating point and double-precision floating point numbers, with
machine-dependent precision.

float(n). Floating point number, with user-specified precision of at least n digits.

CREATE table

B An SQL relation is defined using the create table command:

create tabler (A, D,, A, D,, ..., A, D,
(integrity-constraint,),

seey

(integrity-constraint,))
e risthe name of the relation
® ecach A is an attribute name in the schema of relation r

e D.is the data type of values in the domain of attribute A,

B Example:
create table instructor (
ID char(5),
name varchar(20),

dept_name varchar(20),
salary numeric(8,2))

Integrity Constraints in Create Table

® not null
B primary key (A, ..., A,)

m foreignkey (A, ..., A,) references r

Example:

create table instructor (

ID char(5),

name varchar(20) not null,
dept_name varchar(20),

salary numeric(8,2),

primary key (/D),
foreign key (dept_name) references department);

primary key declaration on an attribute automatically ensures not null

Updates to tables

Insert

® insertinto instructor values (‘10211’, ‘Smith’, 'Biology’, 66000);
Delete

® Remove all tuples from the student relation

» delete from student

Drop Table

e drop table r
Alter

e altertableradd A D

» where A is the name of the attribute to be added to relation r
and D is the domain of A.

» All exiting tuples in the relation are assigned null as the value for
the new attribute.

e alter table rdrop A

» where A is the name of an attribute of relation r

» Dropping of attributes not supported by many databases.

Basic Query Structure

B Atypical SQL query has the form:

selectA A, ..., A,
fromr,r,, ..., r,
where P

® A represents an attribute
® R:.represents a relation
® Pis a predicate.

B The result of an SQL query is a relation.

The select Clause

B The select clause lists the attributes desired in the result of a query
® corresponds to the projection operation of the relational algebra

B Example: find the names of all instructors:
select name
from instructor

B NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case
letters.)

® E.g., Name = NAME = name

® Some people use upper case wherever we use bold font.

B SQL allows duplicates in relations as well as in query results.

B To force the elimination of duplicates, insert the keyword distinct after
select.

B Find the department names of all instructors, and remove duplicates

select distinct dept_name
from instructor

B The keyword all specifies that duplicates should not be removed.

select all dept_name
from instructor

B An asterisk in the select clause denotes “all attributes”

select *
from instructor

B An attribute can be a literal with no from clause
select ‘437’
® Results is a table with one column and a single row with value “437”
e Can give the column a name using:
select ‘437’ as FOO
B An attribute can be a literal with from clause

select ‘A’
from instructor

e Result is a table with one column and N rows (number of tuples in the
instructors table), each row with value “A”

B The select clause can contain arithmetic expressions involving the operation,
+,—, *,and /, and operating on constants or attributes of tuples.

® The query:

select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation, except
that the value of the attribute salary is divided by 12.

e Canrename “salary/12” using the as clause:

select /D, name, salary/12 as monthly salary

The where Clause

B The where clause specifies conditions that the result must satisfy
® Corresponds to the selection predicate of the relational algebra.
B Tofind all instructors in Comp. Sci. dept

select name
from instructor
where dept_name = ‘Comp. Sci.'

B Comparison results can be combined using the logical connectives and, or,
and not

e Tofind all instructors in Comp. Sci. dept with salary > 80000

select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 80000

B Comparisons can be applied to results of arithmetic expressions.

The from Clause

B The from clause lists the relations involved in the query
e Corresponds to the Cartesian product operation of the relational algebra.
B Find the Cartesian product instructor X teaches

select *
from instructor, teaches

® generates every possible instructor — teaches pair, with all attributes from
both relations.

® For common attributes (e.g., ID), the attributes in the resulting table are
renamed using the relation name (e.g., instructor.ID)

B Cartesian product not very useful directly, but useful combined with where-
clause condition (selection operation in relational algebra).

The Rename Operation

The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci’.

@ select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

Keyword as is optional and may be omitted
instructor as T = instructor T

String Operations

B SQL includes a string-matching operator for comparisons on character strings.
The operator like uses patterns that are described using two special
characters:

e percent (%). The % character matches any substring.
e underscore (_). The _ character matches any character.
B Find the names of all instructors whose name includes the substring “dar”.

select name
from instructor
where name like '%dar%'

B Match the string “100%”
like ‘100\% escape '\’

in that above we use backslash (\) as the escape character.

Set Operations

B Find courses that ran in Fall 2009 or in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union

(select course_id from section where sem = ‘Spring’ and year = 2010)

® Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect

(select course_id from section where sem = ‘Spring’ and year = 2010)

®m Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
except

(select course_id from section where sem = ‘Spring’ and year = 2010)

Set Operations (Cont.)

B Find the salaries of all instructors that are less than the largest salary.

e select distinct T.salary
from instructor as T, instructor as S
where T.salary < S.salary

B Find all the salaries of all instructors

e select distinct salary
from instructor

B Find the largest salary of all instructors.

e (select “second query”)
except
(select “first query”)

Set Operations (Cont.)

Set operations union, intersect, and except
® Each of the above operations automatically eliminates duplicates
To retain all duplicates use the corresponding multiset versions union all,
intersect all and except all.
Suppose a tuple occurs m times in r and n times in s, then, it occurs:
® m +ntimesinrunionalls
® min(m,n) times in r intersect all s

® max(0, m—n)timesin rexceptalls

Null Values

B |tis possible for tuples to have a null value, denoted by null, for some
of their attributes

null signifies an unknown value or that a value does not exist.
B The result of any arithmetic expression involving null is null
e Example: 5+ null returns null
B The predicate is null can be used to check for null values.
e Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

Aggregate Functions

B These functions operate on the multiset of values of a column of a
relation, and return a value

avg: average value

min: minimum value
max: maximum value
sum: sum of values
count: number of values

Aggregate Functions (Cont.)

Find the average salary of instructors in the Computer Science department

e select avg (salary)
from instructor
where dept_name="'Comp. Sci.’;

Find the total number of instructors who teach a course in the Spring 2010
semester

e select count (distinct /D)
from teaches
where semester = 'Spring’ and year = 2010;

Find the number of tuples in the course relation

e select count (*)
from course;

Aggregate Functions - Group By

B Find the average salary of instructors in each department

e select dept name, avg (salary) as avg_salary

from instructor
group by dept_name;

| ID | name | dept_name | salary |
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 |Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 | Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 |Einstein Physics 95000

dept_name |avg_salary
Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

Aggregate Functions - Having Clause

B Find the names and average salaries of all departments whose average
salary is greater than 42000

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where

select dept_name, avg (salary)
from instructor

group by dept_name
having avg (salary) > 42000;

clause are applied before forming groups

Null Values and Aggregates

Total all salaries

select sum (salary)
from instructor

® Above statement ignores null amounts
® Resultis null if there is no non-null amount

All aggregate operations except count(*) ignore tuples with null values on the
aggregated attributes

What if collection has only null values?
® countreturns O

e all other aggregates return null

Nested Subqueries

SQL provides a mechanism for the nesting of subqueries. A subquery is a
select-from-where expression that is nested within another query.

The nesting can be done in the following SQL query

select A, A, ..., A,
fromr,,r,, ..
where P

ol

as follows:
e A, can be replaced be a subquery that generates a single value.
® r; can be replaced by any valid subquery
® P can be replaced with an expression of the form:
B <operation> (subquery)

Where B is an attribute and <operation> to be defined later.

Modification of the Database

B Deletion of tuples from a given relation.
B Insertion of new tuples into a given relation

B Updating of values in some tuples in a given relation

Deletion

B Delete all instructors

delete from instructor

B Delete all instructors from the Finance department
delete from instructor
where dept_name=Finance’;

B Delete all tuples in the instructor relation for those instructors associated
with a department located in the Watson building.

delete from instructor
where dept name in (select dept name
from department
where building = "Watson');

Insertion

B Add a new tuple to course

insert into course
values ('CS-437’, ‘Database Systems’, "Comp. Sci.’, 4);

B orequivalently

insert into course (course_id, title, dept_name, credits)
values ('CS-437’, 'Database Systems’, "Comp. Sci.’, 4);

B Add a new tuple to student with tot_creds set to null

insert into student
values ('3003’, 'Green’, 'Finance’, null);

Updates

B Increase salaries of instructors whose salary is over $100,000 by 3%,
and all others by a 5%

® Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;

® The order is important

e Can be done better using the case statement (next slide)

THANK YOU

This content is taken from the text books and reference books prescribed in the syllabus.

