20MCA11C OBJECT ORIENTED PROGRAMMING WITH C++

UNIT I11: Constructors

FACULTY
Dr. K. ARTHI MCA, M.Phil,, Ph.D,,
Assistant Professor,
Postgraduate Department of Computer Applications,
Government Arts College (Autonomous),

Coimbatore-641018.

constructors

A constructor is a member function of a class which initializes objects of a class. In
C++, Constructor is automatically called when object(instance of class) create. It is special
member function of the class

o has the same name as the class,

« does not have a return type, and

e IS public
Constructor in C++
Default Parameterized Copy
Class_name() Class_name(parameters) Class_name(const Class_name old_object)

C++ Default Constructor

A constructor with no parameters is known as a default constructor.

* Parameterized constructor :-

e E —

_—Tn default constructor every objects are initialized with the same values but in many
cases, it may be necessary to initialize the various data elements of different object with
different values when they are permits us to achieve this objective by passing argument to
the construct function. When the objects are created, the constructors that can take
arguments are called parameterized constructors.

E.g. Class integer

1
int m,n;
Public:
integer(int x, int y) // parameterized constructor
{
m=x;
n=y;
}
55

When a constructor has been parameterized, the object of declaration statement as

integer intl;
integer int1=integer(0,100);

This statement creates an integer objects int1 & passes the values 0 and 100 to it.
integer int1(0,100); 4

Copy Constructor

* A copy constructor is called whenever a new

variable is created from an object

- Point p(5,95);

— Point a = p; // Copy constructor call!

— Point b(p); // Copy constructor call!
» C++ creates default copy constructor

automatically

MULTIPLE CONSTRUCTOR IN A CLASS

Class integer

{
int m, n;
public:
integer() //default constructor
{m=0; n=0;}
integer(int a, int b) //parameterized constructor
{m=a; n=Db;}
integer(integer & i) //copy constructor
{m=i.m; n=i.n}

1

= Destructors

— Special member function

— Same name as class
» Preceded with tilde (~)

— No arguments

— No return value

— Cannot be overloaded

— Before system reclaims object’'s memory
» Reuse memory for new objects

Mainly used to de-allocate dynamic memory locations

Introduction to Operator Overloading in C++

al = a2 + a3;

The above operation is valid, as you know if al, a2 and a3 are instances of in-built Data Types. But what if those are,
say objects of a Class; is the operation valid?

Yes, it is, if you overload the ‘+’ Operator in the class, to which al, a2 and a3 belong.

Operator overloading is used to give special meaning to the commonly used operators (such as +, -, * etc.) with
respect to a class. By overloading operators, we can control or define how an operator should operate on data with
respect to a class.

Operators are overloaded in c++ by creating operator functions either as a member or a s a Friend Function of a
class. Since creating member operator functions are easier, we’'ll be using that method in this article.

As | said operator functions are declared using the following general form:
ret-type operator# (arg-list);
and then defining it as a normal member function.

Here, ret-type is commonly the name of the class itself as the operations would commonly return data (object) of that
class type.

is replaced by any valid operator such as +, -, *, /, ++, -- etc.

Now that you have understood the theory, let’'s have a look at an example program:

// Example program to illustrate
// operator overloading
#include <iostream.h>

class myclass

{
int subl, sub2;

public:
// default constructor

myclass () {}

// main constructor
myclass (int x, int y) {subl=x;sub2=y;}

// notice the declaration
myclass operator +(myclass);

void show () {cout<<subl<<endl<<sub2;}
}i

// returns data of type myclass

http://learning-computer-programming.blogspot.com/2007/05/c-data-types-in-detail.html
http://learning-computer-programming.blogspot.com/2007/06/introduction-to-classes-in-c.html
http://learning-computer-programming.blogspot.com/2007/06/operators-in-c-part-i.html

myclass myclass::operator +(myclass ob)

{

myclass temp;

// add the data of the object

// that generated the call

// with the data of the object

// passed to it and store in temp
temp.subl=subl + ob.subl;
temp.sub2=sub2 + ob.sub2;

return temp;

}

void main ()

{
myclass obl(10,90);
myclass ob2(90,10);

// this is wvalid
obl=obl+ob2;

obl.show();

At this stage many of you might be wondering why the operator function is taking only one argument when it's
operating on two objects (i.e. it's a binary operator).

To understand this, first have a look at this line of code:
obl = obl + ob2;

Now assume that ‘operator+’ function is just a regular function which is called as below when the respective operator
(‘+” in this case) is encountered with respect to the objects of its class.

obl = obl.operator+ (ob2);

THANK YOU

This content is taken from the text books and reference books prescribed in the syllabus.

