20MCA11C OBJECT ORIENTED PROGRAMMING WITH C++

UNIT I: Principles of Object Oriented Programming

FACULTY
Dr. K. ARTHI MCA, M.Phil,, Ph.D,,
Assistant Professor,
Postgraduate Department of Computer Applications,
Government Arts College (Autonomous),

Coimbatore-641018.

UNIT I: Principles of Object Oriented Programming: Software Crisis - Software
Evolution - Procedure Oriented Programming - Object Oriented Programming Paradigm -
Basic concepts and benefits of OOP - Object Oriented Language - Application of OOP -
Structure of C++ - Applications of C++ - Tokens, Expressions and Control Structures -
Operators in C++ - Manipulators.

UNIT II: Functions in C++: Function Prototyping - Call by reference - Return by
reference - Inline functions - Default, const arguments - Function Overloading - Friend and
Virtual Functions. Classes and Objects: - Member functions - Nesting of member
functions - Private member functions - Memory Allocation for Objects - Static Data
Members - Static Member functions - Array of Objects - Objects as function arguments -
Friendly functions - Returning objects - const member functions - Pointer to members.

UNIT I1I: Constructors: Parameterized Constructors - Multiple Constructors in a class -
Constructors with default arguments - Dynamic initialization of objects - Copy and
Dynamic Constructors - Destructors. Operator Overloading: Overloading unary and
binary operators - Overloading binary operators using friend functions- Overloading the
extraction and the insertion operators.

UNIT IV: Inheritance: Defining derived classes - Single Inheritance - Making a private
member inheritable - Multiple inheritance - Hierarchical inheritance - Hybrid inheritance -
Virtual base classes - Abstract classes - Constructors in derived classes - Member classes -
Nesting of classes.

UNIT V: Streams: String 1/O - Character 1/O - Object 1/0 - 1/O with multiple objects -
File pointers - Disk 1/O with member functions. Exception handling - Templates -
Redirection - Command line arguments.

TEXT BOOKS:

1.E.Balagurusamy, “Object Oriented Programming With C++7, 6" Edition, Galgotia,
Publications Pvt. Ltd., 2000.

REFERENCE BOOKS:

1.Herbert Schildt, C++: The Complete Reference, McGraw Hill Inc., 1997.
2.Stanley B. Lippman, Inside the C++ Object Model, Addison Wesley, 1996

Principles of Object-Oriented Programming

software crisis

- How to represent real-life entities of problems in system design?

- How to design systems with open interfaces?

- How to ensure reusability & extensibility of modules?

- How to develop modules that are tolerant to any changes in future?
- How to improve s/w productivity & decrease s/w cost?

- How to improve the quality of s/w?

- How to manage time schedules?

- How to industrialize the s/w development process?

1. 2 Software Evolution

The s/w evolution can be describing it as a tree. The s/w evolution has

had distinct phases or layers of growth. These layers were built up one
by one. With each layer representing an improvement over the

previous one. Fig. (1.1) had shown layers of s/w.

1,0

Fig. (1.1) layers of s/w technology

Since the invention of the computer, many programming approaches
have been tried. These included techniques such as modular
programming, top-down programming, bottom-up programming and
structured programming. The primary motivation in each case has been
the concern to handle the increasing complexity of programs that are
reliable & maintainable. These techniques became popular among
programmers over the last two decades. With the advent of languages
such as C, structured programming become very popular and was the
main technique of the 1980s. Structured programming was a powerful
tool that enabled programmers to write moderately complex programs

fairly easily.

Object-Oriented Programming (OOP): -
Is an approach to programs organization and development that attempts

to eliminate some of the pitfalls of conventional programming methods
by incorporating the best of structured programming features with

several powerful new concepts.

1.3 Procedure—Oriented Programming

Conventional programming using high level

languages (COBOL,

FORTRAN and C) is commonly known as procedure oriented

programming. In the procedure-oriented approach, the problem is viewed

as a sequence of things to be done, such as reading, calculating and

printing. A number of functions are written to accomplish these tasks. A

typical program structure for procedure programming is show in fig.

(1.2).

Main Program

h 4

Function-1 |

Function-2

N

T~

Function-4

Function-3

| Function-6

Function-5 |

ANV

Function-7

3

Function-8

Fig. (1.2) Typical structure of procedure oriented programs

Characteristics exhibited by procedure-oriented programming

1- Emphasis 1s on doing things (algorithms).

2- Large programs are divided into smaller programs known as
“functions”.

3- Most of'the functions share global data.

4- Data move openly around the system from function to function.

5- Function transforms data from one form to another.

6- Employs top-down approach in program design .

Object Oriented Paradigm: Features

Encapsulation

Data Abstraction

Single Inheritance

NS

Polymorphism

OoOoP
Paradigm
\ Persistence
\ Delegation
Genericity

Multiple Inheritance

Basic concepts and benefits of OOP

Abstraction: The process of picking out i.e. abstracting similar characteristics of procedures and
objects.

Class: It means categorizing objects. However, a class defines all the common traits of the
numerous objects that fall under it.

Encapsulation: It is defined as wrapping the data under a single, consolidated unit. In Object
Oriented Programming, it is defined as binding data with a function that manipulates it.

Inheritance: Inheritance is defined as the ability of one class to derive its characteristics from
another class.

Interface: Interface comprises the languages and the codes used by various applications to
communicate with each other.

Object: Object is a self-contained entity. It consists of data as well as procedures.

Polymorphism: It refers to a programming language’s ability to process objects uniquely
according to their data type and class.

1. Simplicity: software objects model real world objects, so the complexity is reduced and the
program structure is very clear;

2. Modularity: each object forms a separate entity whose internal workings are decoupled from
other parts of the system;

3. Modifiability: it is easy to make minor changes in the data representation or the procedures in
an OO program.

4. Extensibility: adding new features or responding to changing operating environments can be
solved by introducing a few new objects and modifying some existing ones;

5. Maintainability: objects can be maintained separately, making locating and fixing problems
easier;

6. Re-usability: objects can be reused in different programs

structure of a c++ program

https://elysiumschool.weebly.com/
https://elysiumschool.weebly.com/
https://elysiumschool.weebly.com/

Documentation Section

Header Files Declaration Section

Preprocessor Statements

Global Declaration

Class Definition

Main Function

f
1

// Main method definition

N’

User Defined Function

Variables

A variable is the storage location in memory that is stored by its value. A variable is identified or
denoted by a variable name. The variable name is a sequence of one or more letters, digits or
underscore, for example: character _

Rules for defining variable name:

= A variable name can have one or more letters or digits or underscore for example
character.

= White space, punctuation symbols or other characters are not permitted to denote variable
name. .

= A variable name must begin with a letter.

= Variable names cannot be keywords or any reserved words of the C++ programming
language.

= C++ is a case-sensitive language. Variable names written in capital letters differ from
variable names with the same name but written in small letters. For example, the variable
name EXFORSYSS differs from the variable name exforsys.

A variable is the storage location in memory that is stored by variable value. The amount of
memory allocated or occupied by each variable differs as per the data stored. The amount of
memory used to store a single character is different from that of storing a single integer. A
variable must be declared for the specific data type.

Data Types

Below is a list of the most commonly used Data Types in C++ programming language:

= short int
= int

= long int
= float

= double

= long double
= char
= bool

short int : This data type is used to represent short integer.

int: This data type is used to represent integer.
long int: This data type is used to represent long integer.

float: This data type is used to represent floating point number.

double: This data type is used to represent double precision floating point number.

long double: This data type is used to represent double precision floating point number.
char: This data type is used to represent a single character.

bool: This data type is used to represent boolean value. It can take one of two values: True or
False.

Using variable names and data type, we shall now learn how to declare variables.

Declaring Variables:

In order for a variable to be used in C++ programming language, the variable must first be
declared. The syntax for declaring variable names is

data type variable name;

The date type can be int or float or any of the data types listed above. A variable name is given
based on the rules for defining variable name (refer above rules).

Example:

int a;

This declares a variable name a of type int.

If there exists more than one variable of the same type, such variables can be represented by
separating variable names using comma.

For instance

int x,y,z

This declares 3 variables x, y and z all of data type int.

The data type using integers (int, short int, long int) are further assigned a value of signed or
unsigned. Signed integers signify positive and negative number value. Unsigned integers signify
only positive numbers or zero.

For example it is declared as

unsigned short int a;
signed int z;

By default, unspecified integers signify a signed integer.

For example:

int a;
is declared a signed integer
It is possible to initialize values to variables:

data type variable name = value;

Example:

int a=0;
int b=5;

Constants

Constants have fixed value. Constants, like variables, contain data type. Integer constants are
represented as decimal notation, octal notation, and hexadecimal notation. Decimal notation is
represented with a number. Octal notation is represented with the number preceded by a zero

character. A hexadecimal number is preceded with the characters Ox.

Example

80 represent decimal
0115 represent octal
0x167 represent hexadecimal

By default, the integer constant is represented with a number.

The unsigned integer constant is represented with an appended character u. The long integer
constant is represented with character I.

Example:

78 represent int
85u present unsigned int
78l represent long

Floating point constants are numbers with decimal point and/or exponent.

Example

2.1567
4.02e24

These examples are valid floating point constants.

Floating point constants can be represented with f for floating and | for double precision floating
point numbers.

Opero’rors in C++

Assignment Shift Ternary Relational Operator Mathematical
Operator Operator Operators

Bitwise Unary Comma Logical

F‘ipulators

Manipulators are special functions that can
be included in the I/O statement to alter the
format parameters of a stream.

To access manipulators, the file iomanip.h
should be included in the program.

— setw()

— setprecision()

— setfill()

— setiosflags()
l — resetiosflags()

THANK YOU

This content is taken from the text books and reference books prescribed in the syllabus.

