Non-linear Programming

“Eaoh ventwre i @ mew deginning to explore something hidden”

2% : 1. INTRODUCTION

Like linear programming, Now-linear Programming is a mathematical technique for
determining the optimal solutions to many business problems. In a non-linear
programming prodiem, cither the objective function is non-linear, or one or more
constraints have non-linear relationship or both,

-3¢ : 2. FORMULATING A NON-LINEAR PROGRAMMING PROBLEM (NLPP)
. We consider some real-life problems, that we shall formulate as NLPPs.

SAMPLE PROBLEMS

o 2L A company faces @ responsive price-volume relationship for its products, the lower a
- product’s price—ihe greater is the sales quantity, even in face of resultant price decreases by
- compesdors. [f the saleswrevenne does not vary proportionately with price, reflect this phenomenon in
- she mom-Binear objective function of the price.
- Mathematical Formulation of the Problem. Let x (p) represent the sales quantity as a function
- of the price p, say in the product-mix problem. Clearly, the associated sales revenue is px (p). Now if
- e sales quantity function be given by the demand equation x (p) = ot - Bp for o, B constants, over the
~ mage of p, then the sales révenue component in the objective function is quadratic,
o ':=prb)=w-ﬁ2: in the decision variables p. If each unit costs ¢ to produce (where p and ¢ are
. in e same units) then total profit P is given by
it . P=2-cx(p) = op-Pp-ca+cfp = (a+cf)p-ca-ppt
' . 2402, (Production Allocation Problem)-A manufacturing company produces two products :
. Radios and TV sets. Seles-price relationships for these two products are given below :

Prodact Quantity demanded Unit price
. Rafies — 1,500 - 5 p, — P
- TV sety " R 3,800 - IOh M

. The total cost functions for these two products are given by 200x, +0.15,2 and 300x; +0.1x,2
- respectively. The production takes place on two assembly lines, Radio sets are assembled on Assembly
* lime 1 and TV sets are assembled on Assembly line ll. Because of the limitations of the assembly-line :
. Capacities, the daily production is limited to no more than 80 radio sets and 60 TV sets The |
- production of both types of products requires electronic components. The production of each of these
 reguires five units and six units of electronic equipment components respectively. The electronic
Components are supplied by another manufacturer, and the supply is limited to 600 units per day. The
any has 160 employees, Le., the labour supply amounts to 160 man-days. The production of one |
Ofﬂo set requires 1 man-day of labour, whereas Z‘Mﬁdays of labour are required for a TV ‘
et How many units of radio and TV sets should the company produce in order to maximize the total
oit? Formulate the problem as a non-linear programming problem.
Mathematical Formal o “&‘me us assume that whatever is produced is sold in
market et xland '& stand for the quantities of radio sets and TV sets respectively, manufactured
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y = LS00 Sy | py = 300-02x,
or
Iy ® _‘.S\\‘ - IQ'\: IP) = JR0-0,1 I:

Further. if Cy, Cy stand for the wtal cost of production of these amounts of radio sets ang
respectively, then we are also given that ‘ 2 TV Sety
Cy = 2Ny + 0.1y and Gy = 300x; +0.1x,

Now. the revenue on radio sets is py x; and on TV sets is py x5, Thus the total reven,
eR.
measured by

I§
R = pyxp+pag
which can be writien as

R = L300 - 0.1\'0 X + (380 =-0. 1.12) X

300, - 0.2%,% + 380w, - 0.1x,2,

The total profit z is measured by the difference between the total revenue R ang the to;
C=Cy + C;y. Thus al Cogt

z= R=-Cy-Cy = 100x; -0.3x,2 + 80x; - 0.2x,2,
The objective function thus obtained is a non-linear function.

In the present case, production is influenced by the available resources. The two
have limited capacity to produce radio and TV sets. Since no more than 80 rag;

assembly |
assembled on assembly line I and 60 TV sets on assembly line Il per day,

Neg
0 sets can
we have the festrictiop, .

There is another side constraint in the daily requirerqent of the electronic components, g y,
5x; +6x, < 600. The number of available employees is limited to 160 man-days. Thus x +2x15168
Also obviously, since the manufacturer cannot produce negative number of units, we must havel
x;20 and x5 20.

x; <80 and x; £ 60.

Hence the given problem can be put in the following mathematical format :

Determine two real numbers, x; and x, so as to maximize

z = 100x; - 0.3x,% + 80x, — 0.2x,2
subject to the contraints :

0<x <80, 0Sx;<60, 5x,+6x,<600,

X|+2125160, xIEO, 1220. x320.

This problem is a non-linear programming ‘problem, since the objective function is non-linear in
x; and xj.

Remarks. In a non-linear programming problem, the objective function z may be linear in x| and x; wherss
the constraints are non-linear in x, and x,, or both z and the constraints may be non-linear in x, wnd X Fo
example, the decision-making problem

Maximize f(x;,x;) = 3x,+5x, subject to the constraints :

N5 <3 x?+x? <10, and x,x 20
is 2 non-linear progremming problem.

PROBLEMS
2403, (One-Potato,

ol
Two-Potato Problem) A frozen-food company processes P m?tue-;[w '
packages of French fries, hash browns and flakes (for meshed potatoes). At the begin® :‘:1 o ¢
manufacmnng_ process, the raw potatoes are sorted by length and quality, and then Alloct
separate product lines,
The company can purchase its

i f Vﬂious
_ . potatoes from two sources, which differ in their yi"‘: : ?owns ol
sizes and quality, Each source yields different fractions of the products French fries, hes i
flakes. Suppose that it H:

W
. and f

! . s possible, at different costs, to alter these yields somewhat, L / s{:ni ady ¥
the fractional yield per unit of weight of source / potatoes made into the three products: :

Fops

y
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g;. g2 and &3 be the yields for source 2. Suppose that each f; and g; can vary within +10% of the
yields shown below :

Product Source | Source 2 Purchase limitations
French fries 02 03 1.8

Hash browns 02 0.1 1.2

Flakes 03 03 24
Relative Profit 5 6

Let G (i, /2./3) and C; (g, 83, g3) be the expense associated with obtaining these yields.
The problem is to determine how many potatoes should the comps hase from each source?
I pany purchase
Formulate the problem as a non-linear programming problem. ‘

2404. A manufacturing concern operates its two available machines to polish its metal products.
The two machines are equally efficient, although their maintenance costs are different. The daily
maintenance and operation cost of the machines is given in rupees as the non-linear function :

f(x), %)) = 100=1.2x; ~ 1.5x, + 0.3x,2 + 0.5x,?
where x; and x; are the number of hours of operation of machine / and machine I/ respectively.

~ The past records of the firm indicate that the combined operating hours of two machines should
be a1 least 35 hours a day in order to perform a satisfactory job. However, the production manager
wishes to operate machine / at least 6 hours more than machine II because of the higher repair cost
of the latter. Find the optimal hours of operating the two machines and the minimum daily cost.
Formulate the problem as a non-linear programming problem.

. 2405. A company manufactures two products A and B. It takes 30 minutes to process one unit of
product A and 15 minutes for each unit of B and the maximum machine time available is 35 hours per
week. Products A and B require 2 kgs. and 3 kgs. of raw material per unit respectively. The available
quantity of raw material is envisaged to be 180 kgs. per week.

_ The products A and B which have unlimited market potential sell for Rs. 200 and Rs. 500 per unit
respectively. If the manufacturing costs for products A and B are 2x2 and 3y2 respectively, find how
much of each product should be produced per week, where

x = Quantity of Product A to be produced, and
y = Quantity of Product B to be produced.
.. '* 2406. (Portfolio Selection Problem) An individual investor has an opportunity to invest a fixed
amount of money in n different bonds and stocks. Let x; be the proportion of his assets invested in the
jth security. Then the vector X = (X}, X, ..., X,) is called a portfolio and the return R corresponding to
a given portfolio x is a random variable. The investor is risk-averse and is therefore interested in
determining a portfolio x that will minimise the variance of R subject to the restriction that his
~ expected return is not less than some specified amount ¢ (per unit invested). Formulate this portfolio

| selection problem as an NLPP.

24 : 3. GENERAL NON-LINEAR PROGRAMMING PROBLEM
' Definition 1 (General Non-linear Programming Problem). Let z be a real valued function of n
" varigbles defined by

o ) T R 10 ¢ TR
- Let {b;.bz. .oy D) be a set of constants such that
QUERERS e [ 8 Gpozy k) {82 08 =} By
S R s B2 ot by
| e (52 0} b
#'s are real valued functions of  varlables, %\, Finally, le
T i 2 "‘3"1- R0, 5% -j-“z"'.'n. : both are non-linear, then th
T St s NI ) i, f=l1,2,.am; or 0 . ) e
o e 1) 0 S0 B i ks ¢ 0 s o i and st
(8)nd (e}, i calld a general non-linear programming problem (GNLEL)
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itten as ; :
, . LPP may he wn : . )
In matrix notations the GN maximize Of minimize the objective function z =7y Subje
Determine x7 € R" 50 as 10 oy
constraints : g {s 2o = yb, x20 e ‘
i LIPS m
' -lincar in X. :
where either f(x) or some g (x) or both arc non

Sometimes it is convenient 10 W

W)=g ®-b simplex-like solution procedure for the solution of the genera)
There is onc § .

hie "

pmgramm n oblem Joweve numerou OlUliOH melhods have bCCﬂ dchklp! | :m-]”,
i g P b ry ! rous 5 ' v r
1 of llllm ||‘undamcnlal [hCOl’CllCﬂl pa.pcr :by Kuhn andt lUCleL A fe‘l' t EQ-
lablc SO]U[iOI'I lOChniqUCS Wl“ bc diSCUSSCd n thls an p 3 rjf
avai d the nex chapter, F“"Iary 3 the

24 ;4 CONSTRAINED OPTIMIZATION WITH EQUALITY CONSTRAINTS
.1f 'thc non-linear programming problem is composed of some differentiabye ob

fte the constraints gl (x) (S, 2or=}bas h(x){ S.Ema}r
)ty

function and equality side constraints, the optimization may be achieved by the - -ive
Lagrange multipliers* as illustrated below : iniliing 2=t of
. imizi minim =f(x,, .
Consider the problem of maximizing oOf g 11 %) subject o g
constraints :

j.
us

glxpx) =¢ and x;,x 20,
where ¢ is a constant. _ '

We assume that f(x;,x,) and g (x;, %)) are differentiable Wt X and x, [ -
introduce differentiable function h (x;,x,) differentiable w.r.t. x; and x, and defineg by
h (x,, X;) = g (x;, X;) — c. Then the problem can be restated as

Maximize z = f(x;,%;) subject to the constraints :
h(x;,x) =0 and xpxp 2 0.

To find the necessary conditions for a maximum (or minimum) value of z, a gy

function is formed by introducing a Lagrange multiplier A, as
L (x1, 23 M) = f(x1, 3) = M (xq, xp).
The number A is an unknown constant, and the function L (x;,x,, ) is called the

Lagrangian function with Lagrange multiplier \. The necessary conditions for a maximuy
or minimum (stationary ‘value) of f (x,, x,) subject to h (x,, x,) =0 are thus given by

oL (x, x5, \) oL (x;, x5, A) oL (xy, x5, A)
ox) =4, x fnd oA B
Now, these partial derivatives are given by
oL _ 3y,
axl a);’| axl
9L _9f ,dh
oL
where L, f and h o -
ere L, f and h stand for the functi ively
or simply by ¢ tunctions L (x,, x5, M), £ (x,, x,), and h (x,, x,) respectivelys

L] = fl —MI h = f -
T . |' 2 MQ and Ll = =h,
¢ necessary conditions for maximum or minimum of f(x,, x,) are thus given by
fl =M]r f2='l\.h2 and -h(xl.x2)=0

ditions become sufficie
' nt conditi
and the side constraintg are in the

Note, These necessary con

| P . Lotivd
function is concave (conyey) ons for a maximum (minimum) if the OB

form of equalities,

g La ‘ P 3 X 1
stationary point grange multipliers. ig o Systematic way of generating the necessary conditions fot
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SAMPLE PROBLEM
2407. (IHR":'AHOCWR Problem) A manufacturing concern produces a product consisting of

two raw materials, sav Ay and Ay. The production function is estimated as
: 2 =f(xXy) = 3.6x) - 04x,2 + 1.6x, - 0.2x;

where 2 represents the quantity (in tons) of the product produced and x, and x; designate the input

amounts of raw materials A and A, The company has Rs. 50,000 to spend on these two 7aw

materials. The unit price of A, is'Rs. 10,000 and of Ay is Rs. 5,000. Determine how much inpuf

amounts of Ay and Ay be decided so as to maximize the production output.

Soluﬁon. Since the company must operate within the available funds, the budgetary constraint is
10,000x, + 5,000x, < 50,000 or 2x,+x, < 10.

We reduce this inequality constraint to an equality one by imposing an additional assumption that the

company has to spend every available single paisa on these raw materials. Then the constraint is
L y+x= 10. Also, obviously x; 20 and x, 20. The problem of the company can thus be written as
: "the following NLPP :

 Maximize z = f (x1,xg) = 3.6x -0.4x2+ 16xy - 0.2x,2  subject to the constraints :
2 +x, =10 and x,x, 20
et or Maximize 2z = f(x),x;) subject to the constraints :
‘ < h{x;x) =0 and x,x, 20

where h (x,,x,) 2x; +x— 10. Observe that f(x;, x,) and h (x;, x) are both differentiable w.r.t. x; and

i X.; Also we observe that the objective function z=f(x;, %) is a concave function and the said

oonstramt is an equality; constramt Thercfore, the necessary and sufficient conditions for a maximum
are
fu =2y, fz = 7«}12 and —h(xl. xQ) =0
That is, —

36 081.'1—21, 16 04Iz—A and 2x|+x2—10

The ﬁrst two of these yield
UL = 1.8-04x) = 1.6=0.4x,

and so the elimination of A gives 0.4x) —0.4x;-0.2=0.

Now since X =10-2x,, the last equation gwes
, 0.4x, - 0.4 (10-2x)) =02 = 0

or , ; a3 lel 2-0 or x|-35

B 'I‘l{ni‘s e o = 102k %
by  'The maximum value of the objecuve function is thus given by
2=1(35,3) = 36(35)-04 (57 +16 ()~ 0232
- ‘ = 10.7 (tonnes).
" Thus, in order to have a maximum production of 10.7 tonnes, the company must input 3.5 units
b of raw material A and 3 umts of raw material B ,
: 2408 Obtam the. uecessary and suﬁ'lc;ent candumns far the opnmum solution of the following

NLPP ’ ot Minimize 7= f(xpx) = 392‘:"“_1;26;*5 - subject to the constraints :
: [Kerala M.Sc, (Math.) 2001]

vttt Bl A =7 L AN 0. |
e Snluﬂon. Lct us imroducc ﬁ ncw d:ffcrentiable Lagrangian mnction L (%12, A) defined by
7 L (";-‘z- M f(xl.x;) h(x,+x,-7)

A "312:1”4.25,1»5 Mx,-t-x: 7)

oy

where. l is the La angtan multiphcr. i '
'iﬁw m objirctlyc ﬁmcnon z= f(x,,.x,_) 1s convex and the sldc constraint an equahty one, the

sary and sufﬁcacnt condmons for the mmimum of f (x,.xz) are. glven hy
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Necessary Conditions for a General NLPP
Consi neral NLPP @ :
Qon;:f::i:::r:‘im minimize) T = f(x;, & .\, X,)  subject to the constraints :
Spaad) =6 ad 5200 i=12...,m (<n)
The constraints can be reduced to
R@ponx) =0 for i=1,2 ... .m,
by the transformation A' (3}, . X) =g (¥, oo ) —¢; for all i=1.2. ... m (<n).
The problem can then be written in the matrix form as
Maximize (or minimize) : = f(x), xe R* subject to the constraints :
KX =0 x20,
To find the necessary conditions for a maximum or minimum of f(x), the Lagrangian

function L (x,1), is formed by introducing m Lagrangian multipliers l=(l,.kz,.,,,1_l
This function is defined by

LN =S = E Mk,

Assuming that L, f and K are all differentiable partially w.rt. x,x

X, and
Ajy A ..o Ay, the necessary conditions for a maximum (minimum) of f(x) are :
oL _F 5, _ i
an = a‘_j '_El l. axj - 0‘ ]—l.Z.....n
3—;=-m(x> =0, i=12..m

These m + n necessary condjtionsmnbelepmenledinthefollowing abbreviated form :

™ . m :
Li=fi~ L hKj=0 o fi= I MK i=l2..n

and Ly=-K=09 or K =0; i=1,2,...m
where j}=-a%%)-- h=h(x) and HJ=M.
j

Remark, These necessary conditions also become sufficient for A maximum (minimum) of the objective
function if the objective function is concave (convex) and the side constraints are equality ones,

SAMPLE PROBLEM

2409. Obuain the se; of necessary conditions Jor the non-

linear programming problem :
Ma.zimize = I|2 + 3.!22 +5,\‘32

subject to the constraints :
I|+11+1l1 = 2 SI|+211+13 = §

. XXy 2 0. -
Solution. Here we have x = (Lxpx),  flx) = 2 +I248n2,  l(x) = x, +x+ 3,

g (x) = 5x, *otxy and ¢ =2, ¢ = 5, Defining 4 (x) = gi(x)-c; i=1,2, we have the

constraints : h'(x) = 0 for ;= 1,2 s Pl
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The necessary conditions for the stationary point are
O . gyy=24=A = 0 AL o 4gy-8-1 =0
o i oxy
oL A=0 Q[—‘--(x|+x1+13all)-o_
5{\*-4\‘3—12-— = 7

The solution of the simultancous equations yields the stationary point
X, = (x|,x2.x3) = (6\, 2, k)N A=0.

The sufficient condition for the stationary point to be a minimum is that the minors A3 and A, be

both negative. Now, we have

o 1 1 1
o 1 | { 4 0 O

A3= l 4 0 =-8 nnd A‘= l 0 4 0 =—48
1 o 4 I 0 0 4

which are both negative. Thus, X, = (6, 2, 3) provides the solution to the NLLP.

PROBLEM
2411. (a) Examine z = 6x; x; for maxima and minima under the requirement 2, +xp = 10.
(b) What happens if the problem becomes that of maximizing z=6x)xy— 10x3 under the
constraint equation 3x) + X+ 3x; = 10. '

Sufficient Conditions for a General Prbﬁlein with m(< n) Constraints
Introducing the m Lagrange multipliers A=, A, ‘....'l,,,). let the Lagrangian function
for a general NLPP with more than one constraint be : |

m . i ! s o i
L(x,A) = f(x)- iEI Aj b (x) (m<n)
The reader may verify that the equations o , ‘
R T st et i
& =0 an N = s (i=12%.m; 1=l.2,‘...,n)

yiclfi the necessary conditions for statidnary points of f (x). Thus the optimization of f(x)
subject to h(x)=0 is equivalent to the optimization of L (x, A). We state here the
| sufﬁclyncy con@itions for the Lagrange multiplier method of stationary point of f(x) to be

' a maxima or minima without proof, For this we assume that the function L (x, A), f(x) and
k (x) all possess partial derivatives of order one and two w.r.t. the decision variables.

Let, V= (a_zli"-_M
- ax;ax’- nxn'

be the matrix of second order partiai derivatives of L (x, A) w.r.t. decision variables
Sl Ui LR ) Vo ‘

‘ {
where h’ﬂ:):%—gj’-‘l' i=1,2,,.,m, j=1,2,...0

| o | v
i ‘Hﬂ S RUTTITERN IRPAIRT

T Vo dmemx(m+n)

Define the square matrix

\1‘{::;0 g is afnfn_mm.null_ matrix. The ‘matrix H is called the bordered. Hessian matrix.
batosht e su '_C“?“t c.o.ndnmqu‘ for maximum and minimum stationary points are givel
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Let (%, A,) for the function L (x, A) be its stationary point. Let H”, be the
corresponding bordered Hessian matrix computed at this stationary point. Then x, is a

(a) maximum point, if starting with principal minor of order (2m +.1), the last (n—m)
. principal minors of H?, from an alterating sign pattern starting with (= 1)”*"; and
L (b) minimum point, if starting with principal minor of order (2m+ 1), the list (n—m)
| principal minors of H5, have the sign of (- 1)m,

Remark. It may be observed that the above conditions are only sufficient for identifying an extreme point,
i but not necessay. That is, a stationary point may be an extreme point without satisfying the above conditions.

[ SAMPLE PROBLEM
. 2412. Solve the non-linear programming problem :
Optimize z = 4x/2+2x,2 +x3% ~4x\x; subject to the constraints :

RFntx =15 2 -x+ 2 = 20, [Delhi B.Sc. (Stat.) 2002]
Solution. Here we have . |

F® = 4"+ 202 452 - dxx;, B (x) = x4 xp+ a3 - 1S
£ 1 (x) = 2x) - x; +2x; - 20,
fj : - Construct the Lagrangian function
L(x,}) = f(x)-Ah! (x) - M h? (x)
= (4x)' + 202 + 5% - 4xyxy) = A (x) + x5+ 23— 15) = Ay (2x) — x5 + 253 - 20)
- . The stationary pomt (xo» Ap) has thus given the following necessary conditions :

Sl o o o SEEERTINN
SR Gideior

oL aL

ax] = 8:, 4‘2 ll 2)‘1 =0 axz = 4x2 4x] ?\-1+M 0
B a2 0 s+ DL < by by 5] =, 0
81:3 "'_2"3 1~ 2 = akl ==X t+xtx

3212[:- =i=[2x)—x; + 25,20 = 0.

' 'Ihc soluncn to these simultaneous cquanons yields
e = (xp, 12,13) = (33/9 1073, 8) and A, = (ll,k,) = (4079, 52/9).
: The bordered Hessnan malnx at th:s solutlon (xo. 11,) is given by

1

Op, 0. =0 4 "1 1 :

_ [ L A e Nl i

: 'B YRR .‘.:. cedssnranas ' 3
Bo=l1" 2 ' 86 490
i SR GRS O AR O

i R 0 2

""" Here since n=3 and m =2, therefore n—-m=1, (2m + 1 = 5). Thls means that one needs to check
~  the determinant of H2, only it must have the sign of (- 1);2

”":'s‘ Now since dcl HB 96>0 X, isa minimum point

PROBLEMs‘yﬂ*

s "'_'So[ve the fallawmg nan-lmear pragramming prablems. usmg the method of Lagrangmn

"2'x]'+xz-4 Xy 20 [Nagadlma M.Sc. (Stat) 1989]
' ﬂm =5, 'au b
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inimi Dot 2t 4 100 + Ruy + 61y = 100 subject to the constrajnys
2418, Minimize ¢ = Iy +upt+in \ ) ts «

-

TR TR 00 vuayn20
.. Minimi 24 w42y subject to the constraints :
2416. Minimize =x + " +n° sub)
et ey = W0 g 20
inimi Tpndang? ject to the constraints :
2417. Minimize £ = @+ p°+x° subject

Yl‘\':'*l‘_\ = l .‘\."’.‘.T:*“_\ = 5. AT ST ‘.‘ 2 0
[{Andhra M.E. (Mech. & Ind) 1%

2 2 _x,? subject to the constraints : "
2418 Maximize : = G +8p-x°-1° subje B

41‘[ +1": = '6. 1“ ‘.‘SJ: = IS. -l'l..l'z 2 0

24 : 5. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRA[NTS
We shall now derive the Kuhn-Tucker Conditions (necessary and sufficient) for

the
optimal solution of general NLPP. Consider the general NLPP :
Optimize 2 = f(x}, Xy ..., X,;) subject to the constraints :
glxpx,) £C and x5, ....%, 20

where C 1s a constant.

Introducing the function A (xy, ..., x,) = g — C, the constraint reduces to h (X x) <0
The problem thus can be written as
Optimize z = f(x) subject to h(x)<0 and x20, where x € R".
We now slightly modify the problem by introducing new variable S, defined by
2=—h(x), or h(x)+S52=0.

The new variable S is called a slack variable and appears as its square in the constraint

equation so as to ensure its being non-negative. This avoids an additional constraint §20,
Now the problem can be restated as

Optimize z = f(x) xe R" subject to the constraints :
h(x)+5?=0 and x20.

This is a problem of constrained optimization in n+ 1 variables and a single équality
constraint and can thus be solved by the Lagrangian multiplier method.

To determine the stationary points, we consider the Lagrangian function defined by
L(x,52) = f(x)-A[h(x)+5?,
where A is the Lagrange multiplier. The necessary conditions for stationary points are

g—; = %—lg—; =0 for Jj=1.2,...n &)
—3—’5 = -[h(x)+5%] = 0. 2)
% =-25 = 0. , 0

Equation (3) states that %%a 0, which requires either A=0 or §=0. If $=0, (2) implies
that h (x) =0. Thus (2) and (3) together imply A h (x) =0.

T.he variable S was introduced merely to convert the inequality constraint into an
equality one, and therefore may be discarded. Moreover, since $220, (2) gives h (")_50‘
Whenever h (x) <0, we get A=0 and whenever A >0, h (x) =0, However, A is unrestricted
in sign whenever h (x) =0.

The necessary conditions for the

; point x to be a point of maximum are thus restated as .
(in the abbreviated form) : ] :
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,f,--Mu,no (= 1,2,...,n)
AMiow () Muximize [
hs0 subjact to !
AR Ow h %

The set of such hecessary conditions is called Kuhn-Tucker Conditions.
A similar argument holds for the minimization non-linear programming problem :
Minimize z = f(x) subject to the constraints :
gx)2C and x 20,
Introduction of h(x)=g (x) - C reduces the first constraint to h(x)z0. The new
surplus variable S, can be introduced in h(x)20 so that we may have the equality

constraint h (x) - §.2= 0. The appropriate Lagrangian function |s
L(x, S0 A) = f(x) =\ [h (x)- 5,2,
The following set of Kuhn-Tucker conditions is obtained :

fj=My =0 U=1,2,..,n)
Ma=0 Minimize f
hzo subject to :
A20 hzo

.Ti.uorem 24-1 (Sufficiency of Kuhn-Tucker Conditions) The Kuhn-Tucker conditions for a
maru.n-lzaubn NLPP of Maximizing f(x) subject to the constraints h(x)S0 and x2 0, are sufficient
conditions for a maximum of f(x), if f(x) is concave and h (x) Is convex,

Proof. The result follows if we are able to show that the Lagrangian function
L(x, 8, M) = f(x)-Nh (x)+ 52,
where § is defined by h (x) +82=0, is concave in x under the given conditions.

In that case the stationary point obtained from the Kuhn-Tucker conditions must be the
global maximum point. ‘

Now, since h (x)+52=0, it follows from the necessary conditions that AS?=0. Since

h(x) is convex and A 20, it fo]low.? that A (x) is also convex and - Ak (x) is concave.

Thus, we conclude that £ (x) ~ Ak (x)' &nd hence £(x) - A [h (x) + 5% = L (x, 5. A) is concave
in x, A

" Remark. By a similar argument it can be shown that for the minimization NLPP, Kuhn-Tucker conditions are
Also the sufficient conditions for the minimum of the objective function, if the objective function [(x) is convex
and the function 4 (x) is concave.

_ SAMPLE PROBLEM

2419_. Maximize z = 3.6x, -0.4x12+ l.6x2-0.2x22 subject 1o fhg constraints :
e . +n S 10 and x,x 20
~ Solution, Here . f() = 3.6x) = 04x2 4 1.6x; - 0.2x7 '
H gl : glx) = 2, 4%, c¢=10 ‘
h(x) = g(x)f-f = 2 +x%- 10,

t Mompreciuly e 1 -{1’-(- g%%:j' %J measures the rate of variation of £ w.r.t, A, then as the

:‘f:i nmhand side of /1 (x) < O increases about zero, the solution space bacomu less constrained and hence f(x)
: Wmdmm This means that A 2 0. LN T :
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The Kuhn-Tucker conditions are : N
Y A o Y@ R g =0 h<O A0
dx; ax, B ) ox;
x X
where A is the Lagrangian multiplier. .
That is,
3.6-08x, = 2M Al
16 = 0.412 = A ‘(2]
A (26, +x3- 10] = 0 £ t
26, +x,- 10 £0 A4)
A20 A5

From equation (3) either A=0or 2x; +x2 - 10=0.
Let A =0, then (2) and (1) yield x; = 4.5 and xg=4. With these values of x| and x, however, 4

cannot be satisfied. Thus optimal solution cannot be obtained here for A=0. Let then A#0, whic
implies [from (3)] that 2x; +x; - 10 = 0. This together with (1) and (2) yields the stationary value

X, = (xp %) = (35.3)

Now it is easy to observe that k (X) is convex in X, and f(x) is concave in x. Thus Kuhn-Tucke;
conditions are the sufficient conditions for the maximum. Hence x,=(3.5,3) is the solution to the

given NLPP. The maximum value of z (corresponding to X,) is given by
z, = 10.7.

Kuhn-Tucker Conditions for General NLPP with m (<n) Constraints
Introducing S = (S}, Sy, -+ Sp)» let the Lagrangian function for a general NLPP with
m (< n) constraints be

L& SN = @~ £ N IE @+ 57

where A= (A, ..., A,,) are the Lagrangian multipliers.
The necessary conditions for f(x) to be a maximum are :

oL _of % o _ , L
—Bx,- o™ —‘_El l,—-axj-() for j=1,2,....,n <)
oL _ i, s2= .
- W+ 85=0 for i=1,2,....m «(2)
oL Vil
3, -25A; =0 for 'i=1,2,....m w3)

where L = L(x,S,A), f=f(x) and K =  (x).
Equation (3) states that either A;=0 or §;=0. By an argument parallel to that considered in the

case of single inequality constraint; the conditions (3) and (2) together are replaced by the conditions
(5), (6) and (7) below :

M =0 for i=1,2,...m Nt
Ks0 for i=1,2,..m 6
)dz 0 for i=1,2,...mm N
The Kuhn-Tucker conditions for a maximum may thus be restated as
Ean, (=12
fi=E My G=h2eam
M# =0 (=12, ...m) Muximize f
H<0 C (i=1,2,..,m)  Subjectto:
220 | . Hs0
where ~ H' = 95'— _ (i=1,2,..,m).
axj
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Theorem 24.2, (Sufficiency of Kuhn-Tucker Conditions) For the NLPP of maximizing f(x),

X € R, subject to the inequality constraints H(X)S0 (i=1,2,...,m), the Kuhn-Tucker conditions are
also the sufficient conditions Jor a maximum if S(x) is concave and all W (x) are convex functions of X.
Proof. Exercise for the reader,

The Kuhn

-Tucker conditions for a minimization non-lincar programming problem may
be obtained i

n a similar manner. These conditions in that case come out to be :

* i
At L U=1.2...., )
i -
Ml =0 Minimize f
K20 | subject to ; b
220 W20 (i=1,2,..,m) .
It can be shown that for this minimization problem, Kuhn-Tucker conditions are also

sufficient conditions for the minima if

€ \ f(x) is convex and all A’ (x) are concave in x, that
is, — k' (x) are also all convex.

Note, If S(x) is strictly concave (convex), the Kuhn-Tucker cbnditions are sufficient conditions for an
absolute maximum (minimum).

Remarks 1. We may consider x 2 0 or ~x<0, to have been included in the inequality constraint # (x) < 0.
2. In both the maximization and minimization NLPP, the Lagrange multipliers A, corresponding to the
equality constraints A’ (x) =0 must be unrestricted in sign.

3. A general NLPP may contain the constraints of -the ‘2’ or '=" or ‘S’ type. In the case of maximization
NLPP, all constraints must be converted into those of ‘<’ type and in the case of minimization NLPP, into those
of “2’ type by suitable multiplication by. ~1. :

SAMPLE PROBLEM
2420. Determine x), x, and x5 so as to

Maximize 7z ='=x\2=x;2 x>+ dx; + 6x, subject to the constraints :
X+ $2, 2+3x <12, x,x, 2 0.

[IAS 1992] A
~ Solution. Here f®) = -x25x2 - +4x) +6x,

xeR"
B () = x+x,-2, 2(xX) = 20 +3x,- 12,
Cléa'rly; £ (x) is concave* and h! (%), h (x) are convex in x. Thus the Kuhn-Tucker conditions will
be the. necessary and sufficient conditions for a maximum. These conditions are obtained by the partial
. differentiation of the Lagrangian function . ‘ |
e L(x8,) = f(x) =2y [h' (x)+ 8% = Ay [W? () + 53] ||
where §= (81, 82), A= (A, A), Sy, 5 being slack variables and A, A, the Lagrange multipliers.
" The Kuhn-Tucker conditions are given by

e ey o, T B W, kel . (i=1,2)

V) s S <o (=12
e A (=1

‘beginning with the negative sign, If the principal minors are p'_(')l?illivel.:‘ the objective function is convex. In the
PIeSent cage Ty odes eabadas AmODR

.. * The objective function is concave if the principal minors of bordered Hessian matrix, altemate in sign,

Sark e

e lH"|<0 'l'hus £(x) is concave.
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Thus, in this problem, these are
n (i) =2x,+4 = A +2), (i) —211+6 = A+ 3D, (fily =22y = 1
() M AM+xy=2)=10 (i) 220, 432,-12) = 0
) (i) »+x=-250 (iiy 2x,43x,-12 20
(@) A 20 A20

Now, there arise four cases .

Case 1. Ay =0 and Ay = 0. (i), (ii) and (iii) yicld x; =2, x5 = 3, x3=0,

However, this solution violates (3) [(i) and (if) both], and it must therefore be discarded.

Case 2. A =0 and Ay#0. (2) yield 2x) +3x;=12 and (1) (i) and (ii) yield -2z, 4427
—2x;+6=3%,. The solution of these simultancous equations yields x; =28/13, Qz;’l“
Ay =24/13>0; also (1) (i) gives x3=0. However, this solution violates (3) (i). This solution i alas
thus discarded.

Case 3. A, 20 and Ay# 0. (2) (i) and (ii) yield x; +x3=2 and 2x; +3xp =12, These 1oz,
yield x;=-6 and xp=8. Thus (1) (i), (i) and (iii) give x3=0, A} =68, by =-26. However, 1=
solution is to be discarded since A, =- 26 violates (4).

Case 4. A, #0 and A;=0. (2) (i) yicld x; +x,=0. This together with (1) (i) and (i) g
x;=1/2 and x,=3/2, A; =3 > 0. Further from (1) (iif) x3 =0. We observe that this solution does 1y
violate any of the Kuhn-Tucker conditions.

Hence the optimum (maximum) solution to the given NLPP is
x; = 1/2, xy =3/2, x3=0 with A, =3, &, =0,
the maximum value of the objective function being z,=17/2.

PROBLEMS
Use the Kuhn-Tucker conditions to solve the following non-linear programming problems :
2421. Minimize z = 2x;2+ 12xxy - 7Txy> subject to the constraints :
le +512 s 98. xl,x:z 2 0.
2422. Maximize z = 8x;+ 10x; —xy2 - x,2 subject to the constraints :
I 42y S 6, x, 20, 5,20 [IAS 1991
2423, Minimize z = x;2+x;2+x32 subject to the constraints :
+x S5, 4382, 21, 22 x20. [IAS 1997

0.3x,2 - 2x; + 0.4x72 = 2.4x3 + 0.6x;x, + 100 subject to the constraints -
2.1’1"0'12 2 4, X, X3 z 0.

i 2424, Minimize z

2425, Minimize z

i

~log x; —log x5 subject to the constraints :
x;+x; 82 and x; 20, x; 2 0.

2426. Minimize z = 2x; +3xy-x;2 - 2,2 subject to the conditions :
x43x, £6, Sx;+2x;, S 10, and x; 20, x; 2 0. o
B =1, ota= %, Minz= 7/ (Madurai B.E. (Electronics) 19%
2427. Maximize z = 2x;-x;2+x7 subject to the constraints :
2,43 S 6, 2 4x, <4 and x,x 2 0 :
[Dibrugarh M.Sc. (Stat) | 7o
2428. Maximize z = 3x;+x; subject to the constraints :
P4t S5 x-x sl and x 20, 520 [Madras B.E. (Civil) 19911
2429. Maximize z; = 8Bx;2+2x;? subject to the constraints :
x24x2 <9, x,S2 and x,x 20
2430. Minimize f(x),X3) = (x; = 1)2+ (x; - 5)* subject to :

—x2+x S 4 and -(x=2P+x S 3 [Madurai B.E. (Electronics) 1989
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 coordinates of the type (x1, xp) and conversely every A
" prdered pair (31, %) of real numbers determine 3 point q
- in the plane. -

A h satisfies the conditions

ﬂw > . " - - -
us recognise the fact that every complexity is explainable through echo of simplicity”

25 : 1. INTRODUCTION

mﬂs dJscussed earhcr an LPP can easily be solved by simplex method or its variations.
The optimum solution lies at one of the extreme points of the convex feasible region. But
in a non-linear programming problem (NLPP), the optimum solution can be found
m?'whett on the boundary of the feasible region and even at some interior point of it. In
spxte. of thc substantial advancement in the solution methods of NLPP in recent years, an
eﬁicncm_ simplex-like technique for a GNLPP is yet to be found. Some available technigues
for solving some special cascs of GNLPP shall be treated in the present chapter.

25: 2 GRAPHICAL SOLUTION
The graphical method for the solution of an NLPP involving only twa. variables is best
illustrated by the following sample problems :

SAMPLE PROBLEMS

2501. Minimize the distance of the origin from the convex region bounded by the constrainis :
x]+.1;2 >4, 2!]4'12 >5 and Xy 20,122 0.

Verify “that the Kuhn-Tucker necessary conditions hold at the point of minimum distance.

Solufion. The problem of minimizing th
f a circle with origin as cenltre, say

on bounded by the given constraints. Thus,

e distance of the origin from the convex region is
r‘z=x|2+.1:22 such that it
touches (passes though) the convex regi the problem is
formulated as :

: Minimize z(= A= x12+122 subject to the constraints :
n+xn 24, 4ty 25 nn20

. Graphical So 'n.Considerasdofrectfmgular J
cartesian axis OX(X, in the plane. Each point has %

’12'0-'5::!{ 520 lies in the first quadra:;d' and
conversely for any point (x1: %) in the first quadrant,
o ¢ the number paif

5,20, and %2 0. Thus our search fo

(34, %) is resticted 1o the points in the first quadrant

only. Now, since i +n24 and.z.::':?n:o.‘:;nthe

desired point must be somewhere in ded

convex r:::ion ABC (shown shaded) in ﬁg..zl.':.l.hsfél:c:

our search is for suc x;) which 8 o
‘ lhe’com_/ex '

minimum value of %1

h a paif (xll
24 x,? and lics in

g

e e e ——.

R
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nt of the reglon at which a side of the convex regiop, .

follows :

region, the desired point will be that poi
we have 2x;dx; + 2xpdxy = 0, yielding

tangent to the circle. Then we proceed as

Differentiating the cquation of the circle,
dxy Xy
(1)

dx, X3

Considering the equalities 2x) +xp =35 and x; +X2 =4, we have on differentiation
2dx +dvy = 0 and  dx +di = 0.

These yield d
dx;
2 and f = - | respectively. (2)

e’ SR,
1 1

Thus from (1) and (2), we obtain
-X =X )
—x;-‘-=_.1 or x, =X and ry =-2 o X =2
This shows that the circle 2= x,2+x;? has as a tangent to it

(i) the line x; +x, =4 at the point (2, 2)

(i) the line 2x; +xp =35 at the point (2, 1).
The point (2, 1) does not lie in the convex region and hence is to be discarded. Thus, the
minimum distance from the origin to the convex region bounded by the constraints is
z, = 22+2% = 8 and is given by the point (2, 2).
Verification of Kuhn-Tucker Conditions. ‘We now verify that the above minima satisfy the

Kuhn-Tucker conditions also. Here we have
f(l) = I|2+Xzz, hl (x) = XI+x2"4. hz(x) = 2x| +x2-5

and the problem is that of minimizing f(x) subject to the constraints 4! (x) 20, h%(x) 20 and x20.
The Kuhn-Tucker conditions for this minimization NLPP are :

f:}(‘) = Mhﬂ,'(x)+7u,h3}'(x), j=12
A =0 iel.2
Wm0 =
i : '_A-‘ 20 i l.2
t( ! | i | ot e
where fj (x) = aax;‘ = hij(x) = _.alsxgxl v (=1, 2), and Aj, A, are Lagrangian multipliers.
These conditions thus are as given below.: ' he _
2% = Ay +2 '
(@) { 1= A+ 24
2 = Mty
h -'4 O—I
®) { ity a w0
Mg (2%, 4 Xy = 5] = 0
(x4x3-8) 20
© { yhg-4 20
@uy+x-920

(d) M!O, Meo -

If the point (2,2) satisfies these conditions, then we must have from (a),
these values, (x}, %) = (2,2) and (M M) = (4, 0), it is clear that the conditions (4), (c) and (d) are
::itisiﬂed. Hence the minima obtained by graphical method satisfies the Kuhn-Tucker conditions ford -
2502, Solve graphically the following NLPP ¢~~~ " "7
T Maimics " = 25430y sublect 10 the coniainis 3
o ¥ % & 8 ' """12"?1‘2?,5.-‘.20»1 LOL R, 0. b Gt o

. Veriy that the Kuhn-Tucker conditlons hold for the maxina you obtain.

Scérined with CamScanner




NON-LINEAR PROGRAMMING METHODS

555

y al p s11- i ne4r.
Solutlon. In this NLPP, the objective function is linear whereas the conatraints are fion Jines
Consider a set of rectangular cartesian axes OX, X, in the first quadrant only.

Now xyxy=8 represents a rectangular
hyperbola with coordinate axes as it asymptotes;
and x\2+ x,2= 20 represents a circle of radius

20 with origin as its centre. Thus since
x1x2S 8 and x,2 + x,2 < 20, the desired point may
be somewhere in the non-convex feasible region
OABCD (shown shaded) in Fig. 25.2, Since our
search is for such a pair (x;,x;) which gives a

maximum value of 2x; +3x; and lics in (he °

convex region, the desired point is obtained by

moving parallel to 2x,+3x,=k, for some -

constant k, so long as k=2x, +3x, touches the
extreme boundary point of feasible region. Thus
in our problem the boundary point C=(2,4)
corresponds to maximum z. Hence the optimal
solution is z,=16, x; =2, x, =4,

%]

b

/"”’ﬂ

o
D (o} e
#
.. x4 x) =20
) 2
5\"4"’1"' 21.' v 35
\:
*, \‘
e . e
Cl I A ~ %
k=2x;43x, *+

Fig. 25.2

Verification of Kuhn-Tucker Conditions. We now verify that the above maximum solution

satisfies the Kuhn-Tucker conditions also.
Here we have

f(x) = x,+3x,
hl,(’) = xx-8
K (x) = x2+x,2-20

M the problem is that of maximizing f(x) subject to the constraints A' (x) S0, A2 (x)<0 and x20.
The Kuhn-Tucker conditions for this maximizing NLPP are

5 ® = M @)+ 7 (x) 5

ME@) =0
Hx) so0
: %20
‘ i
where £;(x) = %(;7‘1- W) = a’gg‘) for j=1,2, and Ay, X

.. These conditions are thus given as

S
@

{ 2= Mg+ x
. (a) 3 = l,xl+21212
dtrst Y by %3] = 0
Loai(B) . { IR
Mt +xt-20]=0

K 4n2-2050
3 A’ zlo. Mzo’

j=12
i=1.2
i=12
i=1,2

are Lagrangian multipliers.

i the point (2, 4) satisfies these conditions then we must have from (a) Mh: v ?‘d‘i‘:ﬁntz(:)‘/( :)
With these values, namely (xj,52)= (2:4) and (b, 2= 3. i s cbvious thay (e WHOR 0
) (d) P s GRS HCncc mémaxima obtained by graphlcal_ mahod ;alisfy Kuhn-Tucker conditions |
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PROBLEMS

Solve the following non-linear programming problems graphically :
2503. Maximize z = 8x)~x,2+Bxy—-xy2 subject (o the constraints ;

N+x 812, xy-x 24 and xpx 20
2504. Maximize z = x| +2x; subject to the constraints :

4t s, WS xx 20
2505. Maximize z = - (2x, - 5)2-(2xz~1)? subject to :
n+2; s, 20 and x; 20, .

2506. Minimize z = (x) - 2)2+ (x - 1) subject to the constraints :

x5 20, —x-x+220, x,x 20
2507. Maximize z = x; subject to the constraints :

(1=x)-x20, x,%20
Also show that the Kuhn-Tucker necessary conditions for the maxima do not hold. What do yq,
conclude?
2508. Maximize z = x; subject to the constraints :
_ B-x)-(5-2)20, 3-x)*#(5,-2) 20, x,x, 20.

Also show that the Kuhn-Tucker necessary conditions for the maxima do not hold in this case,

25 : 3. KUHN-TUCKER CONDITIONS WITH NON-NEGATIVE CONSTRAINTS

,‘ In the preceding chapter, we obtained the necessary conditions for a point x°€ R* 1
¥ be a relative maximum of f(x) subject to the constraints A/ (x) S0, i=1,2,...,m, x20,
These conditions, called Kuhn-Tucker conditions, were found by converting each
inequality constraint to an equation through the addition of a squared slack variable, S},
§ imposing the first-order conditions for maxima, on the first partial derivative of the
Lagrangian function, and then simplifying the outcome. The following conditions resulted:

mn
= { j=

? (a) J; i;“.l] }\,hj ‘ ji=1,2,...n

§ (b) MK =0 , i=1,2,...m

© . HWxs0 ad . i=12,..m

(d) M20 i=1,2,...m.

The reader may have observed that in obtaining these conditions, the non-negativity
{ constraints x 20 were completely ignored. However, we always had in mind to discard al

such solutions of (a) to (d) that violate x 20,

. Now we shall consider the non-negativity constraint x 20 as one of the constraints
viz, h(x)20, where h(x)=x, and derive the Kuhn-Tucker conditions for the resulting
problem, | L

We restate the problem as

Maxi_mize z=f(x) xeR" subject to the constraints :
C! l the h’(x)so, -xs“; ‘_l'2|||l|m )
- Clearly, there are m+ n inequality constraints, and thus we add the squares of (m+"
gle‘Vmﬁbh‘ 810 000 Smr Sys1s 100 Span in the Inequalities so as to convert them in®
it CH@+SEE0 foriml2,..m
‘ff"j_"'smff -'o. LR A or Je 200
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"W i
Po find the necessmy co .
onditions (or v ‘
Lagrangian function for maximum of f(x), we construct the associated

LS A) = _ m ‘ n
f(l) IEJI Mlhf(l)-‘-ﬁﬂl H}-l:l 7&.,,,,,'--11 ¢ Sm 0/]

where S (Sp S v Spay) s and Am () '
Kuhn-Tucker conditions ars : (Ay vy Ay y ) Bre the Lagrangian multipliers. The

al,

o, .
al’ "} l}l l‘h‘j"kmf” = () f“rj" I.2,,..,ﬂ
oL .
03, =28 =0 for i=1,2,...,m
oL, ,
CA kLR for fjm1,2,...,n
R
, =W +ShH =0 for im1,2,...,m
oL
and My = =[-x+S5,,A =0 forj=1,2,....n.
The Kuhn-Tucker conditions, as obtained from these, upon simplification are
¥ A
(a) Jrl -[:‘;I l‘h.’—lm‘” U-I’z'“”n)
(b MW (x)] =0 (i=1,2,...,m) Maximize f
(c) “Mnsyxy =0 (G=1,2,...,1) "fbj"c"”’
(d) H(x)s0 (i=1,2,...m) R(x) <0
() Mo app % 20 (i=1,2,.0m; 20
j= 1,2, ‘a-,n)

Remarks. As before these conditions are sufficient also if f(x) is concave and all K/ (x) are convex in x.

Similarly, the Kuhn-Tucker conditions for GNLPP minimization case are sufficient also if f(x) is coavex and

all ¥ (x) are concave in X.

25 : 4. QUADRATIC PROGRAMMING

Quadratic programming is concerned with the NLPP of maximizing (or minimizing)
the quadratic objective function, subject to a set of linear inequality constraints.

Definition. (Quadratic programming problem) Let xT and ce R". Let Q be a symmelric
nx n real matrix. Then, the problem of maximizing (determining X so as to maximize)

Fx) = ex+5xTQx subject to the constrainis .
AxS$b and x2 0

atrix, is called a general quadratic programming problem.

all that a quadratic form x7Q x is said to be
Itive-semi-definite (negative-semi-definite) if

where bT € R™ and A is an mXn real m

Remarks. x"Q x represents 8 quadratic form. The reader may rec
positive-definite (negative-definite) if x’"Qx>0 (<0 for x#0 an;i pos
x’Qx 2 0 (s 0) for all x such that there s one x#0 satisfying x"Qx=0.

The reader may casily show that . o
1. If x"Qx is positive-semi-dcﬁniw (negative-semi-dell

in x over all of R%, and
2. If x"Qx is positive-defini

pite) then it is convex (concave)

te (ncgativc-dcﬁnito) then it is strictly convex (strictly

. concave) in x over all of R™.

——
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