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11.1 INTRODUCTION TO RESPONSE SURFACE METHODOLOGY

Response surface methodology, or RSM, is a collection of mathematical and statistical
techniques that are useful for the modeling and analysis of problems in which a response
of interest is influenced by several variables and the objective is to optimize this response.
For example, suppose that a chemical engineer wishes to find the levels of temperature
(x;) and pressure (x,) that maximize the yield (y) of a process. The process yield is a
function of the levels of temperature and pressure, say

y = flx;, x) + €

where € represents the noise or error observed in the response y. If we denote the expected
response by E(y) = f(x,, x,) = 7, then the surface represented by

n = fx, X2)

s called a response surface. |
We usually represent thie response surface graphically, such as in Figure 11-1 (on
the nexy page), where 7 is plotted versus the levels of x, and x,. We have seen response
Sl."fac?- plots such as this before, particularly in the chapters on factorial designs. To help
Visualize the shape of a response surface, we often plot the contours of the ‘response
surface as shown in Figure 11-2 (on the next page). In the contour plot, line§ of constmt
shonse are drawn in the X1, X, plane. Each contour corresponds to a particular height
of the response surface. We have also previously seen the utility of contour plots.
i Mmost RSM problems, the form of the relationship between lhe‘respo%]s.e and the
} ®Pendent variables is unknown. Thus, the first step in RSM is to find glstlltable ap-
E;f“mation for the true functional relationship between y and tl.'.e set 0:1 mde_pe‘nc:;n;
y ables, Usually, a low-order polynomial in some region of lhg indepen ent variable
*Mployed. If the response is well modeled by a linear function of the independent

Varj
3bles, then the approximating function is the first-order model

11-1
y=ﬁn+ﬁ1xl+32X2+"‘+ﬁkxk+e (427)

-
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s curvature in the system, then a Polynomi 2

re a '
the e second-order model | of higher degree must be used

quch 8 t

k k
y=Bot 2 B+ D g2y
i=1 2‘, Bix; +‘>;;: B:ﬁ,‘x.’X/ + €

{ RSM problems use one or both of

{most al ) . 1€se models, () - ,
omla‘l model wﬂfl ll)]e a reasonable approximation of the tf'ucf(:) ‘fjt:::t::) 1§ ]Unl.kfcly th?t
over the entire space 0 the independent variables, by for a relatively s ﬂa“rela'uonshlp
asually work quite well. y small region they

The method of least squares, discussed in Cha

(11-2)

pter 10, is used to estimate the parameters

‘ surface analysis is then perf i
b ed su rface. If the fitted surface is an adequate approximation of tﬁe t:utnr‘:;;r;i

functi0m, maﬁlms a;zlﬁl,srsi iﬁidﬁ;lted surface will be appfoximately equivalent to analysis
of the actual syst parameters can be estimated most effectively if pro
-mental designs are used to collect the data, Des; : proper

experimen A data. Designs for fitting response surfaces are
called response surface designs. These designs are discussed in Section 11-4

RSM is a sequential procedure. Often, when we are at a point on th.e response
qurface that is remote from the optimum, such as the current operating conditions in
Figure 11-3, there is little curvature in the system and the first-order model will be
appropriate. Qur objective here is to lead the experimenter rapidly and efficiently along
a path of improvement toward the general vicinity of the optimum. Once the region of
the optimum has been found, a more elaborate model, such as the second-order model,
may be employed, and an analysis may be performed to locate the optimum. From Figure
11-3, we see that the analysis of a response surface can be thought of as ‘‘climbing a
hill,”” where the top of the hill represents the point of maximum response. If the true
optimum is a point of minimum response, then we may think of ‘‘descending into a
valley.”

The eventual objective of RSM is to determine the optimum operating conditions
for the system or to determine a region of the factor space in which operating require-

\
o <« Region of
/ ~ Roefgtll'?:) operability
85 > ~— . for the
‘ ] optimum process
\
Contours
80 Bath of of constant
ath o response
85 improvement P
80 75 70
Current . 65
operating 3
conditions g
60
- The sequential naiurc of RSM..
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430 CHAPTER 11 RESPONSE SURFACE METHODS

ments are satisfied, More extensive presentations of RSM amﬁm Myers and Montgomcfy
t'mu%) Khuri and Comell (1996), and Box and Draper (1987),

11-2 THE METHOD OF STEEPEST ASCENT
Frequently, the initial estimate of the optimum operating con‘dilit-ms; for the 5¥stem il
be far from the actual optimum. In such circumstances, the objective of the eXperim enter
is to move rapidly to the general vicinity of the optimum. We wish to use a simple 5 n;i
economically efficient experimental procedure. When we are remote from the opﬁmUm
we usually assume that a first-order model is an adequate approximation to the true'
surface in a small region of the x's.

The method of steepest ascent is a procedure for moving sequentially along the
path of steepest ascent, that is, in the direction of the maximum increase in the response.

Of course, if minimization is desired, then we call this technique the method of Steepest
descent. The fitted first-order model is
¥y=Ppo+ 21 Bix, (11-3)

and the first-order response surface, that is, the contours of ¥, Is a series of paralle! lines
suc'h as that shown in Figure 11-4. The direction of steepest ascent is the directiop n
which § increases most rapidly. This direction is parallel to the normal to the ﬁnezi
response surface. We usually take as the path of steepest ascent the line through th
center of the region of interest and normal to the fitted surface. Thus, the steps along 1

\

Region of fitted
first-order rBEPGNSE
surface

Path of Sleepest ascen

e e

Sc-a'n:n'ed v‘\')ith‘mCa‘rhScénner



-z o

U2 THE METHOD OF STEEPEST ASCENT 431

actual step size is determined

pare proportional to the regression cocflicients {3, The
pﬁ. the expc‘ﬁmcnlcr based on process knowledge or other practical considerations
' Experinwnls are f““d}""“i along ‘lhe path of steepest ascent until no further inhcjreme
s nse is_(1l’5t“"""d- Then a new hrst-(‘m!er model may be fit, a new path of stcepést
scent dctcmunc“i. and lh%' |vl'(.)k‘0t1}lr_c C_O"UHUC(L Eventually, the experimenter will arrive
0 the vcinity of the optimum. 11“5. is usually indicated by lack of fit of a first-order
odel. Al that time additional experiments are conducted to obtain a more precise esti-

{ the optimum.

mate ©

EXA}[PLEII'I L I T T

A chemical engineer is interested in determining the operating conditions that maximize
the yield of a process. Two contrq[lable variables influence process yield: reaction time
and reaction temperature. The engineer is currently operating the process with a reaction
ime of 35 minutes and a temperature of 155°F, which result in yields of around 40
percent. Because it is unlikely that this region contains the optimum, she fits a first-order
model and applies the method of steepest ascent.

The engineer decides that the region of exploration for fitting the first-order model
should be (30, 40) minutes of reaction time and (150, 160)°F. To simplify the calculations,
the indzpendent variables will be coded to the usual (—1, 1) interval. Thus, if £, denotes
the nateral variable time and & denotes the natural variable temperature, then the
coded variabies are

& - 35 L & — 155
Xy _5 and X =
The experimental design is shown in Table 11-1. Note that the design used to collect
this data is a 22 factorial augmented by five center points. Replicates at the center are
used to estimate the experimental error and to allow for checking the adequacy of the
first-order model. Also, the design is centered about the current operating conditions for
the process.
A first-order model may be fit to these data by least squares. Following the methods
for two-level designs, we obtain the following model in the coded variables:

§ = 4044 + 0.775x, + 0.325x;

Table 11-1 Process Data for Fitting the First-

Order Model

Natural Coded

Variables __Y_?_n;ables Response
£ £ Vi A '\k—-——
30 150 -1 -1 39.
30 160 - ! NG
40 150 ! ol 409
40 160 1 ! 413
35 155 0 0 40.3
35155 0 0 i
35 155 0 0 W
15 155 0 0 40.2 .
g mi styghet A g RIS Sp R MR L
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' ; o : h of steepest ascent, the a,de,quac}. of 1
efore expios ng along the patu § ' - ° '
winl .fh“ﬁ'f;h‘:}‘ ;'1&'% ﬂiiﬁal;’d The 2? (}ESig with cente poimnts allo 's the ey
el S0 DO IRYL AtCG. n nieT 5 W

i

firse.,
P‘-‘rm-‘;::

i
.

|
4
|

é;

1. Obtain an estimate of ermor .
2. Check for interactions (cross-product terms) in the model

3. Check for quadratic effects (curvature)
an estimate of error as 7
The replicates at the center can be used to calculate ITOT 25 follonys.

 (403F + (4057 + (4077 + (4027 + (40.6)° — (202375

LArS

o 4
= 0.0430
The first-order model assumes that the variables x; and x; have an additive effect o 1
response. Interaction between the variables would be represented by the coefficien: 8.
of z cross-product term x,x. added to the model. The }east. squares estimate of t:z;
coefficient is just one-half the interaction effect calculated as in an ordinary 27 facipriy
dﬁiigﬂ, or
Bix = H(1 X 393) + (1 X 41.5) + (=1 X 40.0) + (—1 X 409)]
, = 3—0.1)
= —0.025
The single degree of freedom sum of squares for interaction is

—0.1)
T L

A

= 0.0025

Comparing S5y 10 67 gives a lack-of-fit statistic

F = SSL—;::::‘*_-Q:!:
&
_0.0025
0.0430
= 0.058

which is small, indicating that interaction

Another check of the adequacy of the straight-line model is obtained by applying
the ;her:k for pure quadratic curvarure effect described in Section 6-6 Recall that thi
ummstsf of com[_)ma.ring the average fesponse at the four points in the fa;:torial portion
the dcs;gn. s2Y ¥r = 40.425, with the average response at the desien center, S8y ¥c =
40.46. I merg 15 quadratic curvature in the true response function, then yr — Ye 52
measure, of this curvature. If £, and B, are the coefficients of the " pure quadtaic
vy p:rrg q:;;!m: l:;'m ifyc 1S an estimate of Bi + B In our example; an

ﬂll‘ + ﬂll = yp A, :"‘-C'
- =40425 - 4046
= ~0.035

1s negligible.
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11-2 THE METHOD OF STEEPEST ASCENT = 433

e 1.2 Analysis of Variance for the First-Order Model
Sum of Degrees of '
source of Variation Squares Freedom é::ﬁ:?e F, P-Valu
/’ - 2 - >
odel (Brs B2 2.8250 2 . 14125 47.83 0.0002
Residud 0.1772 6
(Interaction) (0.0025) ! 0.0025 0.058 0.8215
(Pure quadratic) (0.0027) 1 0.0027 0.063 0.8142
(Pure €1TOT) (0.1720) 4 0.0430 '
2 o 3.0022 8

The single-degree-qf-freedom sum of squares associated with the null hypothesis,
Holﬁll + ﬂl?. =0,1s

SSpure Quadratic = "Fﬂc'(yF - yc)2
1c nF + nC
(4)(5)(—0.035)
4 +5
= 0.0027
where ny and n¢ are the number of points in the factorial portion and the number of
center points, respectively. Because

_ SSPure Quaaralic
k==——p——
o

~0.0027
~0.0430
= 0.063

is small, there is no indication of a pure quadratic effect. .
The analysis of variance for this model is summarized in Table 11-2. Both the in-

teraction and curvature checks are not significant, whereas the F test for the overall
regression is significant. Furthermore, the standard error of 3, and 3 is

, ms. _ |6° [0.0430 _ o
se(fB) = 4”= T ——4—-——0.10 i=1,2

lative to their standard errors. At this

B°fh regression coefficients 3, and j3, are large re
point, we have no reason to question the adequacy of the first-order model.

To move away from the design center—the point (x; = 0,.x; = ()—along the pa.th
“?f Steepest ascent, we would move 0.775 units in the x, direction for every.0.325 units
. inthe x, direction. Thus, the path of steepest ascent passes through the point (x, = 0,
-~ %= 0) and has a slope 0.325/0.775. The engineer decides ta use 5 minutes of reacuon

) ime as the basic step size. Using the relationship between & and x,, we see that 5 minutes
the coded variable x, of Ax, = 1. Therefore,

of reaction time i : i
- me is equivalent to a step In . ks
t‘h.g steps along the path of steepest ascent are Ax, = 1.0000 and Ax; = l(0-325/Q‘-.77f5)
" The engineer computes points along this path and observes the yields at these points
Until a decrease in response is noted. The results are shown in Table 11-3-(on the fext .
'-Pag?:) mbolhcodedand natural variablés; ‘Althﬁ’“gh' the 'cpded.__\_/anab‘l_’f;ﬁ-.?f.ﬁ, easw;Js
ik Pt acall, the napural varisbles must bo vsed 1o nuog 6 FEET
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434 CHAPTER 11 BESPONSE SURFACE METHODS

Table 11.3  Steepest Ascent Experiment for Example 111

Coded Variables Naturaj Variaml _'
Stepy 5 x; ¢ ¢ Rz%

Ongin (i 0 35 155 y

A 100 042 5 2

Origin + A 1.00 0.42 40 157 ;33

Origin + 24 2.00 0.84 45 159 4{?
Origin + 34 3.00 1.26 50 161 47,
Origin + 4A 4.00 1.6% 55 163 49-;
Origin + 5A 5.00 2.10 60 165 s
Origin + 6A 6.00) 252 65 167 P
Onigin + 7A 7.00 2.94 70 169 iy
Origin + A %000 3.36 75 171 m
Ongin + 94 9.00 3.78 80 173 T
Origin + 104 10.00 4.20 85 175 %3
Origin + 114 11.00 4.62 %0 179 %4
Origin + 124 12.00) 5.04 95 181 7

“—\

Figure 11-5 plots the yield at each step alon
response are observed through the tenth step;
in a decrease in yield. Therefore, another fir
vicinity of the point (¢, = 85, &, = 175).
A new first-order model is fit around t

g the path of steepest ascent. Increases o
however, all steps beyond this point resui;
st-order model should be fit in the genenl

he point (¢, = 85, ¢, = 175). The regicn of
exploration for £ is [0, 90], and for & it is [170, 180]. Thus, the codzd vanables are

_b-8 &= 175
5 x:f 5

S0~

Yield

m.—-

S N S T L T N L
123 485 67 8 5 w0z
: Ty Steps _ .
Figure 11-5 .Ykld!ﬁﬁiﬂmﬂoﬁgﬂgpahg[w .
. for Example 11-1. - 7 ol

49
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Table 11-4  Data for Second First.Order Model

\\H Natural Coded .
l Variables Variables
‘ £ & Ay “: Resal;ch
80 170 s o T e
80 180 -1 | 77
90 170 1 -1 -
90 180 1 1 79.5
4 85 175 0 0 28
85 175 0 0 303
85 175 0 0 80.0
85 175 0 0 207
85 175 0 0 798
i . 2 . . . . .
| Once again, a 2° design with five center points is used. The experimental design is shown
| inTable 114,
N The first-order model fit to the coded variables in Table 11-4 s
Ty § = 78.97 + 1.00x, + 0.50x,

Yzd  The analysis of variance for this model, including the interaction and pure quadratic term
k! checks, is shown in Table 11-5. The interaction and pure quadratic checks imply that the
first-order model is not an adequate approximation. This curvature in the true surface
kwl  may indicate that we are near the optimum. At this point, additional analysis must be
gad  done to locate the optimum more precisely.

From Example 11-1 we notice that the path of steepest ascent is proportional to the
signs and magnitudes of the regression coefficients in the fitted first-order model

&
)7=Bo+;éixf

Itis easy to give a general algorithm for determining the coordinates of a point on the
Pa,th. of steepest ascent. Assume that the point x, = x; = ... = x; = 0 is the base or
ongin point. Then
L. Choose a step size in one of the process variables, say Ax;. Usually, we would
select the variable we know the most about, or we would select the variable that
has the largest absolute regression coefficient ]B,l

M]ysis of Variance for the Second First-Order Model

zUUme of Variation SS :S:Ixrz{ I?r%::ie;n‘: : srf:ﬁﬁ?ﬁ P-Value |
€LIession

oA
- Unteraction) (0.2500) ! 0.2500 0.0953
Pure quagraric (10.6580) I 10,6580 201.09 0.0001 i
- e (0.2120) 4 0.0530 g
4 T 161200 8
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|1.4 EXPERIMENTAL DESIGNS FOR FITTING RESPONSE SURFACES 455

EXPERIMENTAL DESIGNS FOR FITTING
114 RESPONSE SURFACES

| analyzing response sgrfaces is greatly facilitated by the proper choice of an
Fitting ental design. In this section, we discuss some aspects of selecting appropriate
eXF”  for fitting response surfaces.
desi? electing a response surface design, some of the features of a desirable design

When $

lows:

Provides a reasonable distribution of data points (and hence information)
throughout the region of interest

Allows model adequacy, including lack of fit, to be investigated

are as fOI
1.

Allows experiments to be performed in blocks

Allows designs of higher order to be built up sequentially
Provides an internal estimate of error

Provides precise estimates of the model coefficients

NS R

Provides a good profile of the prediction variance throughout the experimental
region

8. Provides reasonable robustness against outliers or missing values

9. Does not require a large number of runs

10. Does not require too many levels of the independent variables

11. Ensures simplicity of calculation of the model parameters

These features are sometimes conflicting, so judgment must often be applied in design
selection. For more information on the choice of a response surface design, refer to Myers
and Montgomery (1995), Box and Draper (1987), and Khuri and Cornell (1996).

11-4.1 Designs for Fitting the First-Order Model

Suppose we wish to fit the first-order model in k variables

k .
y=Po+ > Bxite (11-14)
i=1

Thereis a unique class of designs that minimize the variance of the regression coefticients
{B.). These are the orthogonal first-order designs. A first-order design is orthogonal if
the off-diagonal elements of the (X'X) matrix are all zero. This implies that the cross-
Products of the columns of the X matrix sum to zero.
the ;he ‘_:las§ of orthogonal first-order designs includes the 2! factoria‘l and fl'aCIi()l.lS of
We series in which main effects are not aliased with each other. In using these designs,
Sume that the Jow and high levels of the k factors are coded ta the usual x 1 levels.
are ;:h € 2“ design does not afford an estimate of the experimental ervor Iunk_:s_s some runs
the del:i cated. A common method of including replication in the 2 Q@Slgn 15 10 augment
addigio 80 with several observations at the center (the point x; = 0, = i :".' cvvy k). The
st of center points to the 2* design does not influence the (B} for i = 1, but the
S of B becomes the grand average of all observations. Furthermore, the addition
T points does not alter the orthogonality property of the design. Example 11-1
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tustrates the use of a 22 design augmented with five center points to fit a first-order
model.

Another orthogonal first-order design is
figure with & + 1 verices in X cimension
equilateral triangle and for & = 3
three dimensions are

the simplex. The sumplex is a regularly sided
s. Thus, for & = 2 the simplex design is a

1L 1s a regular tetrahedron, Simplex designs in two and

shown in Figure 11-19.

11-4.2 Designs for Fitting the Second-Order Model

We have informally introduced in Example 11-2 (
central composite design or CCD for fitting
popular class of designs used for fiting these |
factonal (or fractional factorial of resolution
center runs. Figure 11-20 (on the facin
The practical deploymen
tion, as 1 Examples 11-1 and

and even earlier, in Example 6-0) the

£ & second-order model. This is the mi‘:f
nodels. Generally, the CCD consists of2?
/) with 2, runs, 2 axial or star runs, aﬂd"‘
& page) shows the CCD for & = 2 and & = 3 factos:
s through sequential experiment#”
s been used 1o fit a first-order moh

of a CCD ofien anse
11-2. That is, a 2* ha
of fit, and the
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7.1 BIO-ASSAYS

In certain investigations it is necessary to compare the efficacy of two of more
substances in respect of some of their common effects. Such comparisons are
not possible by comparing the effects of individual doses of the substances, The
techniques used in bio-assays are designed for such comparisons, {’Bio-assays
are thus a type of experiments with the object of comparing the efficacy of two
or more substances, or preparations, like drugs, by using responses produced by
them on suitable living organisms) This technique is used more in pharmacological
investigations for comparing the potency of two or more preparations of individual
drugs.

{ Normally, two preparations having a common effect are taken for assaying.
One of the preparations is of known strength and is called the standard preparation
and the other is of unknown strength and is called test preparation. The objective
of the assay is to estimate the potency of the test preparation relative to that of
the standard pr epamtionf)r(l" he potency of the test preparation is defined to be the
ratio of two doses, one from the standard preparation and the other from the test
preparation such that each of them produces the same response. This response is

in form of some of their common effects when these are applied to suitable living
animals or other organisms, )

(Let z, and Z, denote the doses of the standard and the test preparations

respectively such that each of them Produces a pre-assi : in some living
organism. Then the ratio 3 Wghec s :

. { An assay with two preparations cdﬁt_aiging thcs;me eﬁ‘ééﬁve 'ing'r'ed'i'cni_ Wf“"h 5
1s responsible for the response, is ca"ed,Gﬂ?l{vticai'dillusion as.‘s'éy'.‘)fl AT R e
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- soon as death occurs. ).

. population of toler_anée ddscs
et giV(;n type of subje,ct and prep

Desi
signs for Bio-assays and Response Surfaces 279

M""F’

(An assay with two preparations which have a common effect but do not contain

the same effective ingredient, is called e

obtained from analytial dillusion assa:sczg;gair:t;;;::u:rlu(:lnaf:m}ﬂtﬁhc "
fimited only o cxpenm.ema[ conditions, while the results obtained fronn(: CZ:ncc::::ile
dillusior} assays.arc limited by the experimental conditions. For exam I;e two
preparations which do not contain the same effective ingred.ient may Prl:)d::ce a
common effect . certain organism, say 4, while they may not produce the same
effect on a certain other organism say, B. Then the potency estimated from such an
assay holds only for 4 organism and not for B. This is, however, not the case with
analytical dillusion assays) We shall discuss here only analyticai dillusion assays.

( The purpose of bio-assays is ultimately to conduct an experiment for estimating
the doses of the standard and test preparations, such that each of them produces
the same response. Depending on the nature of the preparations, the experimental
subjects, that is, the type of living being or organism being used as experimental
units and the type of response, such two doses can be estimated by various methods.
One of these methods attempts to estimate such doses directly and is called direct
bio-assay. In many situations this technique is not applicable and indirect methods
are adopted for the estimation of such doses;!A detailed discussion of the application
of statistical methods to bio-assays is available in the works of Finney (1964). We
have discussed here only some of the topics which are necessary for statistical

designs for bio-assays.

7.2 DIRECT ASSAYS

(In direct assays the response is
subjects as a result of applicatio
like the appearance of a symptom w

in general preassigned as death of experimental
n of each preparation, Other types of responses
hich can be recognized as soon as it happens,
‘can also be used as preassigned response. It is further assumed that when the dose
of a preparation of a drug or a poison under assay, is administered to a subject, it
produces the effect immediately without any time lag, and the dose corresponding
“to the preassigned response can be measured as soon as the response occurs. )
(1Ifa subject can tolerate up to & dose “d” of a preparation.. such tifat any dose
greater than d will always kill it and any dose less than d “‘nll‘not kll! it, then d
is called the tolerance of the subject relative to the preparation. The direct assay

technique requires that the tolerance dose of cach subject should be measurable as

' -(me a pbpulation‘ of subjects as expcrlmffn
rat relative to a preparatio
aration the distribution of suc
ftolerance is also _assumc__d to

n. Itwill be assumcd\th’a:t fora

-some situations the logarithm 0

tal units, we can think of a

h tolerance is normal. In -
be normally distributed.)

al

i
ral
L&
£
j
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icn for the Assay : |
21?: fssay technique consists of taking a nurr-lbcli]oft't szb{ec:; and diy; ding "
two groups at random. One of thfe groups is allotte 1 oh € standarq Pre g o
and the other to the test preparation. To each al:.m?]a t. e 'conespollding dmg O‘n
administered by a suitable device such. that thf: administration can be Stoppeg as 30018
as the preassigned response occurs. This dose is recorded as an observation .

. °Tvation, L,
for each preparation, observations on all the subjects allotted to it are Obtaineg Ise,

The averages of these observations for the preparations are taken e
estimates of their equipotent doses. Denoting these two average doseg by 7., anq
y,, we get an estimate of the relative potency (R) as below:

Vs
v (1.1)
A measure of precision of R cannot be obtained in any straight-

It is obtained by using a theorem due to Fieller (see Finney. 1964),
is reproduced below.

R =

forward v,
The theorem

Fieller’s Theorem

Let a and b be two random variables distributed normally such that

E(a) =a

E®) =8

= 2

"B

a

=3
v(a) = vs?
() = e
cov (a,b) = "1232

The fiducial limits of M are ob_taine& from the following:

1/2
v 4ys 2
12 0 v

m-—Sgt |y _ 2 12
Vyy 4 b (V” 2my,, + m, + g- vlng
m,m, = i L Va9

l1-g

- where i
18 the error variance,

g=1s%,, /b? anq 5

The precision of R depengs on
-increasing the precisions of
each preparation so that v

the cost of the experimen
not be available, .

N the Precisions of 57_‘_ and'j;’ . One way of
Yo and 3, s to allot a larger number of subjects ¢

( Y ) and v ( yf ) are sma]]er_ Bllt this techniqﬂe increﬂSCS
t and Sometime :

: a
S a large number of suitable subjects ™ y _
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- witha constant variance, the dose response re
e here Flrst the followmg table

Designs for Bio-assays and Response Surfaces
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The other method is to take a homogeneous group of subjects, such that they
are similar in respect of those characters which influence the response under
consideration. These animals are then divided into two random groups for allocation
to the two preparations. It is, however, risky to choose two homogeneous groups
of subjects without regards to the between group variation and then allot them to
the two preparations, This procedure may increase the precision of the estimates
y, and ¥, but it introduces bias in the estimation of relative potency when the
animals in the two groups differ materially.

Fieller’s theorem gives a measure of precision of R by obtaining fiducial limits
of R. This method makes the assumption that tolerance is normally distributed. The
expression for the fiducial limits of R are some what complicated. If, however, the
logarithm of tolerance is normally distributed, estimation of precision of R gets
simplified as shown below.

When the logarithm of tolerance is normally distributed, the individual tolerance
values collected from the assay are transformed to the logarithmic scale. If x, and
X, denote the averages of the logarithm of the tolerance values for the standard and
test preparations respectively, then

logR = X, —X,.

The variance of ¥, —X, canbe obtained easily and provides measure of precision
of log R. The estimate of R is obtained by taking the antilog of x,—X,.

In many situations there may be a time lag between the administration of the
dose and the appearance of response. Alternative assay techniques are necessary
in such situations. Some of these techniques along with their appropriate designs

are described in Section 7.3.

7.3 INDIRECT BIO-ASSAYS
In indirect bio-assays the relationship between the dose and response of each
preparation is first ascertained. Then the dose corresponding to a given response is
obtained from the relation for each preparation separately.
In order to obtain such a relation two or more doses of the standard preparation
are taken. Then their responses are obtained through an appropriate experiment,
Let there be k doses of the standard preparation and each dose be administered
to n subjects, Some suitable effect of the doses on the subjects is then observed

from each of the subjects, Here the response is not preass1gned but takes its own
h of the dose and nature of the subject. With the help -

value according to the strengt
of these responses which are assumed to be pormally and independently distributed
lationship can be investigated as given

1S made with the response observatmns
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Y12 V2 32 Y
y]n y2n y3l? ykn
e ——
Total S, s, S, 5
Let LS, =G
First, it is tested if the dose response relationship is linear, For this purpose the
following table is made. : '

Table 7.2: Analys

-nvestigation is made accordingly, If this mean squares is significant, then the doses
G say, x, Usually, the following tf‘i‘n,s-fomgtlon

— R e

is of Variance for Testing the Linearity of Dose Response Relation

2 GZ
Between doses k-1 ———=
. h kn
Regression of response on does 1 (2 g, ) 0
ds; — =Y
; ivi k - R
Deviation from regression k-2 D-R 52 8i/5°
Within doses (Error) k(n-1) T-D s
RN i el
Total kn ~1 PR G? _ 7
——
0o, B e

1 dose . .
“ant, the relationship is linear and furth®
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() x = log (dosc)
(i) x = (dose)* :
where A is a suitable constant, :

. . response and the metameter is taken
to be linear. Normally, simple values like 1, 2, %, etc. are chosen for A. Experience

shows that suitable dose metameters are available in usual situations, though it is

not necessary that in all situations such transformations are available

-Some.times, the response variable is also transformed for linearizing the
relationship between the dose and response metameters. But in the present case
we shall restrict the investigation only to find out suitable transformation of the

dose vanable. ‘

The design and analytical techniques of the assay depends on such linearizing
transformations on the dose metameters. Depending on these metameters, the §
indirect assays are divided into two broad categories, called parallel lines assays L

and slope ratio assays. These have been discussed below.
Case 1: When x — log (dose) is the linearizing transformation.
Let _ y=at+bx (7.2) :

denote the relation between the response y and x_ where x_ = log z_and z_ denotes
the dose of the standard preparation.

Denoting by z, a dose equipotent to z, we have p =z/z, that is,

logp =logz,—logz, =x,—x,

That is, x, = logp+x,
Substituting for x, in the relation of the standard preparation,
‘ y =a, +bx,

we get the relation for the test preparation as
: y =a'+b(logp+x,)
: that is | y=a-+by, (7.3)
‘where . a,=a+blogp sl wb el
Bt i Hencc, the relétionship for the test preparation is also linear like thgt of the standard .
i preparati ' formation. pld L i |
P i : i Ap iﬁiﬂ;ﬁo ';equations.for,the two prepargtiopg‘ Ishow_s that Ih_e

- lines have the same slope and are, thercfore, paralel.

e
I
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of the lines on the y axis and b is the commgy, slope,

where ¢, and a, are the intercepts
‘ ' f the two preparations and 5 .
If in an assay A doses are taken for each o prep d % ang y

denote the averages of the dose metameters and ¥, and ), are the average responge

for the preparations, then it is known that

a, = ¥, - bx,.
and a, = y,—bx,.
Subsituting these values in
a, —a
log p = =
we get an estimate R of p from
log R = 5,5, ~ 5% (7.4)

From equations (7.2) and (7.3) it is seen that the two lines for the two preparations
should be parallel when the dose metameter is log (dose). The assays corresponding
to this transformation are, therefore, called parallel line assays. Before going to
estimate the relative potency, it is desirable to test with the help of the data collected
from the assay if the two lines are parallel. Such a test is called validity test. It is
also desirable to test if the relation between response and dose metameter is linear.
This gives rise to another validity test. While planning the assay it is necessary
that suitable data are available for conducting these validity tests before relative
potency is estimated.
Case 2: If the linearizing transformation is
x =z

where z fienoles the dose, then it is seen by following a similar procedure as in
paralle] line assays that the equations of the two, lines for the two preparations are

() y=a+h&

@ y=a+hx,
whege b, = b _p*.
Hence, p* - %_ ‘ | (1.5)
Since the relative poltency is estimated

preparations, the assays correspondin
ratio assays,

s :
from the ratio of the slopes of the V0
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test is to see if the relation between the response and dose metameter is

is seen that the first validity test for slope ratio assays is different from
validity test for the parallel line assays, thoy

linear, It

7.4 PARALLEL LINE ASSAYS

A parallel line assay

in which each of the Preparations has an equal number of
doses and an equal number of subjects is allotted to each of the doses, is called a

symmetrical parallel line assay. We shall discuss here only symmetrical parallel
line assays.

Let the number of doses of each of the preparations be k. As there are in all 2k

doses in this assay, it is called a 2k-point Symmetrical parallel line assay or simply
2k-point assay.

Let n subjects be allotted to each of the doses and a suitable response be
measured from each subject. Suppose further that. 58,

..... Py denote the doses of
the stander preparation and ¢

1> f3s -+, 2, the same for the test preparation. Denoting
the response of the rth subject allotted to the pth dose of the standard preparation
by y,, and the rth response from the gth subject of the test preparation by

4 tgr? the
response data are first arranged as in Table 7.3.

Table 7.3: Response Data from 2k-Point Assay

= By e AT }

Ysi Yo Yk, Ym  Ya Y

YVsiz Y2 J’s"‘z Yoz Va2 Y

Ystin  Vsan ik Ystn Yan  Yen vt Vit

Total L S, Si T, T, o sc

The analysis of the assay for conducting validity tests and for estimating relative
[Potency becomes very much simplified when the doses of each of thﬂ preparations

M T o ~ Scanned with CamScanner
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are taken in geometric progression as shown below:
Y, O, (‘2.\' v Ck I-" ﬂ"d 1, cf, C2 lyeivy Ck_l’

where s and 7 are suitable starling doses of the standard and teg; Prepary
respectively and ¢ is a constant which 1‘; the same fog’ both the prcpa"ationsmn
further precaution necessary while choosing lhc.doses is that the dogeg shou]d.

evenly distributed in the range of response in which the dose responge relaﬁonshjp

was investigated for obtaining the linearing transformation.
logc's=logs+iloge(i=0,1, M i 1)

log cdt=logt+ilogc(i=0, 1:25'--’]‘—]).

Let Xs; =

and Xt =

Denoting by X, and X, the averages of the doses of the two Preparation,

we get
_ k-1
%, =logs+ ——logc (7.6)
. k-1

and x, =logt +—2— log ¢ (7.7)
= . k-1

So, Xs; =X, = ’—““’*‘“2 log ¢
- . k-1

and Xt —Xx = [I—T]Iog c.

Case 1: When  is odd we choose the base of the logarithm as c so that log c is 1.
The log dose as deviates from their mean can now be written as below:
Standard preparation
k-1 k-3 k-1

ey irs— 1, 0, Lo,y ———,

2

Test preparation
k-1 k-3 k-1
gl O =,
By choosing the base of the logarithm as above, these deviate values could be
made integers.
Case 2: When k is even, the base of the logarithm is taken as c so that log ¢ becomes
2 and hence all the dose deviates (i — (k- 1)/2) log ¢ become odd integers as shown
below.
Standard preparation
k== (k= 3), =L 1, 3, 00, (k—-1)
Test preparation
=&~ 1) - {k=3) i1 13500 (k-1).

| 1S‘Vca'nned with CamScanner
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The regression contrast for each preparation can now be obtained by multiplying

these deviate values by the corresponding dose totals and adding them
Iy '

‘ Annlysis
m As stated carlier the !“lrl-"ﬂs? of f\l\ltlysis of indirect bio-assays is two fold. First, it
is tested through the analysis of variance technique if, (/) the dose metameter and

<ponse relationship is linear; and (if) the two lines for the two preparations are
qrallel. If the tests reveal that the relationship is linear and the lines are parallel,

then the relative potency of the test preparation is estimated from the relation

logR = ¥,-% 20
: b

We have already obtained X; and X, at (7.6) and (7.7), 3, — ¥, is given by

M J

: 2.5 =27

} = = i

: ys — yl' ] _——kn !

The combined regression coefficient of the two preparations as obtained at (7.8)

below gives the value of .

For the first part of the analysis the following contrasts among the dose totals

are obtained.
Preparation contrast (Lp) =— ESf + ZT,- (7.8)

Combined regression contrast
k- k-3 k-1
1( A +7})—-—2——‘(S2 +T2)-—...+-—2——(Sk +T;)

(L1) =0 ""2_—
when £ is odd.
Combined regression contrast :
(L= (= 1), + T)- k=D &+ )= €= DG F T
when kis even. 3
s of the two preparations

The difference between the two regression contrast

is the parallelism contrast.

Parallelism contrast s
@=-£k -n)-E e -R)- ot R

 whenkisodd

D@D E NG e DG R e

kis even -
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Again, when k is odd [4 U R
he - ;,I 2 \ (k 1) AL
4 7 2
I
im(k =1)
when & is cven I,

A
i T

__6h
(K -1)

g analysis of variance table is then written for the validity tests

The followin
and estimation of error variance.

Table 7.4 : Analysis of Variance in k~Point Assays for Validity Tests

Préparation (Lp) 1 L /2km
Regression 1 L*/D
(combined) (L,)
Parallelism (L)) 1 Lflz D 53, Sll: /52
Deviation from 2k—-4 By subtraction 2 | 525
regression d |°d
SSPALT Ly (s,+7))
Doses 2k-1 ! t _ i
n 2kn
Within doses (error) | 2k (n-1) By subtraction 52
2 2 {Z (S +7; )} !
Total 2Zn-1 | LV +Z Y = .
pr gr ' 2kn ’J

The value of D, the divisor for the regression and the parallehsm sums of squares
in the above table is (kn (k* - 1))/6 when k is odd and (2kn (42 - 1)/3 whenk is even. -

- For testing the linearity of regression, the mean squares for the devxatlons from

regression is tested by the F-test using the within mean Squares as error F or testmg s
- parallel;sm, the ¢ parallellsm componcnt is tested - W

| SCéhhed Wlth CamScanner
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(£ both these tests are not significant, then the relative potency can be estimated
ﬂS bcl(‘wo

log R = X, ~% - 2=

b
L. kn(k? =1
= logs-—logl-k—l;n”-.-—(-ér—)-
whcnkis O’dd
k? -1
t 6 L
R 5 til d(kz _1) Lp
of = tan ilog o L

Where d = log,, ¢.
When k is even
logR = logi+£&.w.
t kn 3L,
d(k? —1) f‘z},
3L

Precision of R can be estimated through Fieller’s theorem.

. s .
That 1s, R = 7antllog{

Some Particular Cases
It is seen that in 4-point assay a test of linearity of regression is not available, as the
deviation from regression component does not exist in the analysis of variance. In
6-point assay there are 2 degrees of freedom for the deviation from regression. The
following two contrasts of the dose totals are the two deviation contrasts.

Quadratic (L,) combined = (S, — 28, +8;) + (T, - 2T, +T,)

Difference between quadratics (L) = (S, - 25, * S)—(T,— 2T, + Ty).
When k is 4, there are 4 degrees of freedom for deviation from regression. In general,
the contrast L_is represented by the nth degree orthogonal polynomial (see Fisher and
Yates table, 1973). The. difference between two such polynomials is denoted by L’ .
Example 1: 6-Point Symmetrical Parallel Line Assay
Let s and ¢ denote two initial doses of the standard and the test preparations
respectively. The other doses are shown in Table 7.5,

Designs for Symmetrical Parallel Line Assays

The precision of the estimate of relative potency depends on the precision of L,
- and L, and the error variance. In the previous planning of the assays we assumed
~ completely randomized designs. But taking all the doses as treatments, randomized
| I.’k’__ck designs can also be adopeted, if | '
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Table 7.5: C

Contrasts

a Va
4 .s.poimAssay

Jidity Tests. Regression and Preparqyj,,,

i e

contrast

between

Dose total

Prcparation

Regression
Parallelism
Quadratic

Difference

quadratics

S, S, T

-1 -1 +1 +1
0 | -1 0
0 1 1 0
-2 1 1 -2
-2 1 -1 2

3 1Visorg
+1 6n
1 4n
- 4n
1 12n
-1 12n

Preparation L |68,=8,-8,+ T, + T, + T,)%n
Regression 1 (=5, +8- T+ T3)2/4n . |
Parallelism s
Lo 848+ 7, - yan 52| s
Quadratic I (S 2S +S +T |
2T, + 2
)2/12»: A o )
ebiesiosciia S .
Difference between e ' e
quadratics ! (5, ~28, + z
1748, ~ 1 + 2T )2 2o | e
= | L[S nen, | s |
) ) | M
1thin dose (error - Ry
"“"‘""*"-—-—---).-.q (n~1) .By Subractics 52 :
Total ' 2)
Total . (29)
3-2%)
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-

. experimental animals can be made avaj i

::Lhms:\rer. not applicable when k is (s:;)‘l;rt::t:: ::’af;lggcnzous vl d.csign
like rats, cats, gPinea pigs, etc. are used as experimentalot:ni't?is: :liz::;:": !;'ﬁm:;:
can be formed into homogeneous groups of required size by equalizin ytilem in
respect of age, breed, housing and other management, etc., to form blocksgAnimals
belonging to the same litter are expected to be very much'homogeneous e;nd hence
whenever available, litters can be used as blocks. For a 2k-point assay each block
consists of 24 units to which the 2k doses are allotted at random when a randomized
block design is adopted. The analysis of the data is the same as indicated earlier
excepting that a component due to a blocks is also obtained. If the number of doses
is small a latin square design can also be adopted to increase further the precision
of the estimate of the relative potency. Availability of suitable animals, however,
stands in the way of adopting latin square designs.

7.5 INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS

When the number of doses is large it may not always be possible to get suitable
homogeneous groups of experimental units for adopting randomized block designs.
If litters are used as blocks a sufficient number of litters of required size may not be
available, even if the number of doses is not very large. If, again, twin calves are
used as blocks, it is not possible to use a randomized block design when the total
number of doses is more than two. All these point to the necessity of incomplete
block designs for bio-assays. We have discussed below some incomplete block
designs which are suitable for parallel line assays. This work is mainly due to Das

and Kulkarni (1966).

The use of incomplete block designs for bio-assays is limited mainly due to the
inflexibility of the existing incomplete block designs. The main purpose of these
designs is the estimation of the difference between all pairs of treatment effects
with equal or nearly equal variances. In bio-assays all cfmuasts are m?t of equal
importance. The preparation and the combined regression con_trasts in paral\ld
line assays are more important because these two are uscd.tc'o estimate the re!at‘we_
potency. The other contrasts are used for testing the validity of the underlym% i
assumptions which are normally likely to be satisfied. They are, therefore, not as
important as the preparation and regression contrasts. | 5

When an incomplete block design is used for an assay the blmk_'?ﬂ‘:::;ﬁﬂfi
not orthogonal to the dose effects. The dose effects are, _thcreforeu.‘esum; " rs
by ;hé mathod appropriate for the incomplete block design and these effects are

: :ous contrasts indicated
the - usted dose totals in the VATOUS, ; TRk
n used in place of the unadjusted €0  asts are then obtained by squaring cach

sarlier. The sums of squares Of MSe 91 . i cor, The method of finding the
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