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called an ‘incomplete block design’. . .
As the name suggests, the balanced incomplete block designs are arranged in blocks o

groups that are smaller than a complete replication in orFler to eim;patef:::zoeiigﬁlt%ﬁs a
greater extent than is possible with randomised block design and Latin squé | t‘ g Se
designs were introduced by F. Yates in a paper «A new method of arranging variety trials
involving a large number of varieties” Journal Agr. Sci. 26, 424-455, 1936.

In factorial experiments confounding enables us to reduce the sizfe of the bIOCI.( at the cost
of information on certain treatment comparisons which may be relatively of less lm'portanc'e.
But in Balanced Incomplete block designs (BIBD) which were developed for experiments in
plant breeding and agriculture selection of all comparisons among pairs of treatments is 1‘
made with equal precision. ‘

Incomplete Block Design (I.B.D.). Definition. An incomplete block design is one
having v treatments and b blocks each of size k such that each of the freatments is replicated r
times and each pair of treatments occurs once and only once in the same block. v, b, r and &
are known as the parameters of the I.B.D.

Balanced Incomplete Block Design (BIBD). Definition. An arrangement of v
treatments in b blocks of k plots each (k < v) is known as BIBD, if

(i) each treatment occurs once and only once in r blocks and

(i1) each pair of treatments occurs together in A blocks.

BIBD is used when all treatment comparisons are equally important as it ensures equal
precisions of the estimates of all pairs of treatment effects. [Apart from ensuring equal
precisions all the treatments, the variance of the estimate of any treatment variety mean, is
0?%/r, where 62 is the error variance and r the number of replicates, which is same for each
treatment.]

6-13-1. Parameters of B.I.B.D. The integeré v, r, b, k and A are called the parameters of
the B.1.B.D., where ,

v = number of varieties or treatments, b = number of blocks
k = block size, r = number of replicates for each treatment

» = number of blocks in which any pair of treatments occurs together or number of timeSsi;l:“i

any two treatments occur together in a block. The following parametric relations serve asa
necessary condition for the existence of a B.L.LB.D. ks vl

@uvr=bk, @EMv-1D=rk-1), and @ii))b>uv (Fisher’s Inequality.)
We shall now establish these results ag theorems 6-1 to 6-3 on B.I.B.D
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DESIGN OF EXPERIMENTS , ' 6:129
Theorem 6-1. or = bk ..(6261)

'PI'C_'Of-' Sglcft lt]her(? are v treatments each replicated r times, total number of plots in the
design 1s vr. Iurther since there are b blocks each of size %, there are bk plots in all.

Hence, ur & bp

. 6-123-2. Im':‘l‘dence Matrix. Associated with any design D is the incidence matrix N = (n;),

(=12 ..,05]= 1,2, ..., b), where n; denotes the number of times the ith treatment occurs

in the jth block. Thus by the definition of a BIBD,
ni nig n1p
N2y Nz ... ng
N=| : et ...(6-262)

nvl nvz ...... nub

where n; =1, if ith treatment occurs in the jth block. ...(6-262a)

= 0, otherwise
. Rema.rk. Since in case of BIBD, n;; can take only two values 0 or 1, BIBD is sometimes called a
binary design.
We also observe, by definition of BIBD :

b b

2z n = 2IREs vy GFd, 20, 1) ...(6-263)
J=1 Jj=1

v v
_>21 ng . = ,21 nit=kii=1,2 b ...(6-263a)
1= 1=

b

X oning =M (ixl=1,2,..,0), ...(6-263b)
J=1

since n,;, nj; = 1 if and only if ith and /th treatments occur together in the jth block otherwise
it is zero and they occur together in A blocks.
If N’ denotes the transpose of N then

,r 2, nljz o nying ... ?- nyj nuﬂ r A A ... A
J J
Y nginy; Y nd o .. Yoagny et Siamied Ml gl ¢
NN=| 7YY T FAT = T : - (6:264)
vaj ny; znvj ng, ... z nuj2 A A A r ]
L J J J ] L | v Xv
[From 6-263) and (6-263b)]
Theorem 6-2. My-1=r(k-1). ...(6:265)
Proof. Let us denote by E,,, the m x n matrix all of whose elements are unity. From
(6-264), we get B _ ~
; o 1]
r A A .. A
1 1
’ = A r A A
NN =l : = [r+r@-1)
A A'. A 7 v XU f |_ 1 uxl‘ L 1
L ) k) A
cAlsh = [r+r00-1] E, .. (6:266)
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=k . . )
L nyi ny2 nyp

= kr E'Ul

From (6-266) and (6-266a), we get

[r+ l(v—l)] Eu1= krE,,l

Aliter. v treatments gives rise to 'C, pairs and since each pair occurs A times, the tufal

vXb

=

. i

1 ?niz

: :N . =N
| 1 jonnp
'—1— [—ENJ‘,‘

J

1 anj

: =k |’

i :
LS _Envj_]

reAv-1)=kr ie, Mv-1)=r(k-1)as desired.ré

number of times all the pairs occur in the design is A Cq

Further since the size of each block is k, each block gives rise to *C; pairs and since there’j
are b blocks in all, the total number of treatment pairs in all the blocks is & *C,. Hence, we

get

Ko, =bl, = ww-D=bkk-1 ie, Av-1 =£’vf(k _1 )
A (v —1)=r{k - 1), as desired. [ vr=bk]
Theorem 6-3. b 2 v (Fisher’s Inequality). é
Proof. From (6-84), the determinant of the matrix N N’ is given by ;
r A A A

r A A

INN| = AN ;

AoA A F e

from the first column, we get

1
1
NN =[r+@w-1A]|1

1

A

A

S I

A

=rk(r-Av-1 .

> >

r

‘(Subtracting first row from the 2nd, 3rd, ...,
= [r +(v=-1A (r-Ay-2 . (Expanding by first column)
¢ [Using (6-265)] - '

= [r+(v—1)7\.]

e (62.66:3)e

1 A

0 r=-A) 0

0 0 =M.
o 0 0.
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DESIGN OF EXPERIMENTS 6-131

Thus | NN’ | 20, forifr =) then from (6:265), we get

-D=k-1 = v=~Fh

indicating that the design reduces to randomised block design. Hence, N N’ is non-singular

and consequently Rank (NN') = v (6-269)
since v is the order of the matrix N N, |
But Rank (N N’) = Rank (N)
‘ Rank (N) = v [From (6-269)] ...(6-270)
But since N is a v x b matrix, its rank can be at most b.
v=rank N<p = b>v, asdesired. -..(6-270a)
Deductions. (i) r>k
Proof. We have vr = bk = r= 5, k
)
Since b>2v,weget rk
(it) bzv+r—-k ...(6-272)
Proof. Wehave v—-k 20 and r—-kz20 [From (6-271)]
W=k (r=k)20 = (%—1) r-B20 ie, F(r-R-C-k20
vr
?—-uzr—k = b2v+r—=k [." vr=0bE]

6-13:3. Symmetric BIBD
Definition. A BIBD is said to be symmetricif b =v and r = k.
In this case the incidence matrix N is a square matrix.
Substituting r = £ and b = v in (6-88a), we get
INN | =r2(r—=A¢-1 = |N| | N | =r2r—-Ar-lie, IN|2=r2(r-0)""! ...(6:273)

v-1
IN|=2r(r-2)2 [- IN|=|N|P .(6:274)

Since the determinant of the incidence matrix N is an integer, hence when v is even,
(r — 1) must be a perfect square.

Remarks 1. Necessary condition for a symmetrical BIBD with v as even is that ( » — ) must be a
perfect square.

2. If N is the incidence matrix of BIBD, then

(i) every row sumisr,
(i) every column sum is %,

Gii) the inner product of any two rows of Nis A

.“ . For example, let us consider the following BIBD withv=4,b=6,k=2,r=3,A=1
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i BIBD Treatments
1 1 2
2 1 3 11170 0 0
100110
3 1 4 News={0 1 01 0 1
Blocks 2 Z 00101 1
5 2 4
6 3 4

We note that everyrow sum in N is 3 = r, every column sum is 2 = k and the inner product of any
two rows, e.g., say 2nd and 3rd rows is

.
1
0
100110 | |=1=2
0
1
Theorem 6-4. In a symmetric BIBD, the number of treatments common between any two
blocks is A.
Proof. We have already proved in (6-84) that
r A A ... A r-A 0 0 .. 0 A LA
Aroh oA 0 r—%2 0 ... 0 AA LA
NN=l s =D TR Y e
A A A . F v xo 0 0 0 ...r-n A A A

=(r-MNI, +AE,,

...(6-275)
where 1, is a unit matrix of order v.
Also for a symmetric BIBD, we have (for proof, see remark below)
= 1 — 1
(NN’ 1=m[lu - ’%E,,] = (N") lN’1=m IU—?%EW] ...(6-276)
B 5 y 1_ 1 . A |
_Premultiplying by (N ), weget N'= —— [N -3 N’ E,,,,} ..(6-277)
But it can be easi'ly verified that for symmetric BIBD
, . N’ g
N Euu =N F{uu =r Euv =k Euu = T E, = Euu (. r=k) ...(6-278)

Substituting in (6-277), we get N! - _} X [N‘ —-% E,.u]

Post multiplying by N, we have

s Y AL | s s ‘
I.,-r_l[N N-rNEW]__r—_T [N N-LAE,

N'N=(-)L+1\E,

A AR I S
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From (6-275) and (6:279), we get for a symmetric BIBD

Thus, the inner product of an

columns of N, i.e., A.

N'N=N'N
Yy two rows of N is equal to the inner product of any two

...(6-280)

Hence, in case of a symmetric BIBD, any two blocks have A treatments in common.

Remark.

(N N‘)"l =

NN

The cofactor of diagonal element of N N’ =

=r=-A"2r + @-2)2] = (r—)-2 [r+(v-12a-2]

=r —1)"—2 [Tk — 1.]
=r2(r—A)-2-A(r—A)y-2= A, (say).
The co-factor of off-diagonal element of N N’

A A
A r
A A

A
A

r

=—=A(r—=A)-2=B, (say).

Since N N’ is symmetric i.e., N N’ = N’ N, the transpose of the matrix of cofactors of elements of
N N’ is same as the matrix of cofactors of N N,

Also, for a symmetric BIBD,

(NNY!=

[ A/C B/C

B/C A/C

B/C B/C

[y

. BIC

. AlC

-

]
Tl Ll

1

Ll .

Adj (NN) el 1)
r A A
r A
A A r (v=Dx@-1)

(-..

(v=Dx(v=-1)

[e.f. (6-269)]
[ v=DA=r(k-1)]

r=k for symmetric BIBD) ...(2)
A 0 0
4 A (r=W 0
l 0 e (l"—-l) (v—l)x(v—l)
. (3)

(r—=2A)

o

_ | NN’| =72 (r= )~ = C, (say).
Substituting from (2), (3) and (4) in (1), we get
. BIC

Ll Ll

[From (6-273)) .(4)
A A A
T r
3 L3 A
A 1-p s
A A
| TR TA GRRkagla
"
s
A
-—ﬁ \
L3
-3 |
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6-134

(NN = (lv";Evv) "'(6'28‘1

P £k )::.‘:’

Theorem 65. If N is the incidence matrix of a symmetric BIBD, then

(NN)(INN=r-ANN+E£AE, (6282) ‘

Proof. For a symmetric BIBD, we have . :
N'N=@r-MNI+AE,, [From (5'.279) 3

= N'N)IN'N)=N’'N[r-MNIL +AE,]=(r-ANN+AMN N)E,,
=(r-MN'N+AN'(NE,)=(r- M) NN+ AN (R E,,) [From (6-27g)
=(r=A)N'N+M(INE)=r-MNN+MEE, [From (6-27g)] '

=(r—A)N'N+AM2E,
6-13-4. Resolvable Design. Definition. A BIBD with parameters v, r, b, k and A is saiq
to be resolvable if the b blocks can be divided into r groups or sets of b/r blocks‘_ eagh, b/r being
an integer, such that b/r blocks forming any of these sets give a complete replication of all the

v treatements.
TABLE 6-76 : BIBD

Blocks Treatments

For example, let us consider the BIBD 1 1 2
with parameters v=4,b=6,r =3,k = 2 2 3 4 First set
and A = 1, as given in Table 6-76. 3 1 3

Here b = 6 blocks are divided into r = 3 4 9 4 Second set
sets each of &/r = 6/3 = 2 (integer) blocks.
Moreover, each set contains each of the 5 1 4 )
treatments occurring once and only once.L 6 2 3 Third set

Also A =1.
Hence, the above design is resolvable BIBD.
Theorem 6-6. For a resolvable BIBD with parametersv, b, r, k, A

b2v+r—1 ...(6:283) |
Proof. Since the design is resolvable, b/r must be an integer, equal to n (say), i.e.,
blr=n = b=rn ...(6-284)
But for a BIBD
vr = bk = vr =rnk Le., v=nk ...(6-284a)
Also for a BIBD
rtk—=1)=A(v-1)=Mnk-1) [From (6-284a)]
_Alnk-1) A(k-1)+An-2 Aln-1)
s TETREC1 T k-1, o a7 e T |
An-1)
AT g e ——— .985) .
r—Aan &-1 ...(6 28 )

Since r is an integer, and A and n are also integers, from (6-285), we conclude that ’
Mn — 1)/(k ~ 1) must be an integer, o
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Now, if possible let ‘
| bevwb=1), bt gupeiat (%)
= rn-1) <@w-1) [From (6-284)]
= rin-1) < r______(kl- 1) [+ rle=1)= My =1)]
Aln-1
= _k__—Tl < 1,

which is a contradiction of the fact tha

tAn-1V/E -1 i tion
() is wrong and we must have Y(k - 1) is an integer. Hence, our assumpti

b2v+r-1
Aliter. The Incidence matrix N of the design consists of r sets of b/r rows each, where
any set of rows is such that it occurs once and only once in each column of the set. By
add1pg_the 1st, 2nd, ..., {(b/7) - 1)th row, to the (b/r) th row of a set we obtain a row
consisting of ones only. Moreover, since there are r sets, for each of these sets the rows

add up to the same vector (1, 1, ..., 1). We know that if any elementary row

transformation makes r row vectors identical then the rank is at least reduced by (r - 1).
Hence using (6-:270), we have

v=RankN<b-(r-1) = bo2v+r-1
6-13-5. Affine Resolvable Design.

Definition. A resolvable design is said to be affine resolvable ifb=r+v-1andany two
blocks from different sets have k2/v treatments common where k2/v is an integer.

For example, let us consider the resolvable design of § 6-10-3 with parameters v = 4,
b=6,r=3,k=2andA=1.

We observe that the condition b = v + r — 1 is satisfied. Also (k2/v) = 1 (integer) and any
two blocks from different sets have only one treatment (A = 1) common. Hence, the design is
affine resolvable.

6-13-6. Analysis of Balanced Incomplete Block Design. (Intra Block Analysis of
BIBD). This method of analysis developed by F. Yates by the use of standard Least Square
Technique is sometimes referred to as the ‘intra-block’ analysis, i.e., the analysis without
recovery of interblock information.

Consider ‘a’ units of material comprising b blocks to which v treatments are applied such
that each treatment is replicated r times subject to the conditions of the BIBD.

Let N = (n;) be the incidence matrix of the BIBD, where
n; =1, if ith treatment occurs in the jth block

= 0, otherwise
Then as given in (6-263), (6-263a) and (6-263b), we have

b
b b v v _— . .
I ng=3 n2=r ; X my= X nj?=k and % ngng=A,G*1) ..(6-286)

- - i=1 ]
1Jaetl:yu @ J= ; 2 ...v; j=1,2,..,b)bethe obsex:vation recorded on a unit of the material
for the ith tfeatr’ne’IJt which we suppose to be in the jth block where (i, j) runs through the set
- D for which ng = 1. Here the mathematical model is :
Fgogisn o ; -yﬁ=p+t;+bj+8gf0r(i,j)ED €3 1 %Y g, .3 (6287
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ral mean effect, t; G = 1, 2, ..., v) is the effect of the ith tregm .

:}hfrf g y th:) tl;: rtl}(?e effect of the jth block and Eu are thev xr mtra;lblock errors "-;

assumed to be independently normally distributed with mean zero and common varj

ie., g;are i.i.d. N (0, o.2). In the intra block analysis we assume that the treatment eﬁ"ect,

block effects are fixed, though unknown. =

According to the principle of least squares, the normal equations for estlmai:mg b

(v +b+ 1) parameters ;, i = 1,2, ...,v); b;, (j=1,2, ..., b) and p are obtained on mln i
the error or residual sum of squares

E= ¥ g2= X (yj-n-t;-b)?

G)eD GheD

Equating to zero the partial derivatives of E w.r.t., p, t; and b;, we get thekn ma

equations as : V5 :

JE _

5-=-2 % Gy-i-1-B)=0 ...(6:287g]
B Tghen i
gE_—z by (yljuu T,—B)=0 ...(5‘257
t D; 1

Je v
JE e
3, = 2,551 Wyj—H=-1;-B)=0 ...(6-287d]

where p, 1; and f; are the least square estimates of , ; and b; respectively, D; is the set of ;
values for which (i, j) € D for given i and D; is the set of £ values for which (i, /) e D fu
given J. .
In order that the set of equations (6-287a), (6-287b) and (6-287¢) has an unique solutx.i
we must impose the restrictions |

b W
2 T, =0, 2 B=0 ...(6-288)
=1 J=1

(6-287a) gives : 2 yij—rv PR, S NCIP, 3 Bi=0 ...(6-289
GjeD G,j)eD GjeD "
Now 2 y=2 ( z 'l:,v) =X(r)=rxg=0 [From (6:288)]  ...(6-290)
Gj)eD i \jep, i i ]
Similarly, p Bi= Z ( 2 Bj) =k E Bi=0 [From (6-288)] (629001’
(,j))e D J \je D, J , % -;
Substituting in (6-289), we get g
hadblel 5 (6290}
From (6-:1055), we get ; : :
X ¥y rp- ry- Z Bj=0 = Ti=ry.+rt+ 3. [5,
Jje D, . Je D ' ju Di i ‘.
where T;= 3, _¥yj is the total yield for the ith treatment Further, since D, 1s the
J€ D

valueg for which (z J)e D for given i, i.e,, ni=1 and ; has a fixed value, we wnte

|
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T =pr ~ b :
i y..+r1‘.+2 n(}ﬁ’ : : S
7=1 v 1 _ ' a‘u(6’292) i

From (6-292) we
observe that
¢ . ;
- ::2 ng:irve_d tr?atment mean miniiisllxtlmate of & treatment effect I no | '
e way 1nto all the obser e grandmean, since tl; ) i*)l e g
favoured by occurring only in blocl\;ed treatment means, For e;a 0611( W ok
s with high block effer mple, & trostment may be -
effects. :

Similarly from (6-287c), we shall get

|
3' ' B,=ky . ;
i=ky. +kBi+ X oy
where B;= 2, y;isth . iay ...[6-293)
L D, ) e total yield from the jth block. |
The quantity : }-i _ 12
ma b 11 d . k - L= BJ +E .§I n,j T; --(6‘294}
g ys e ca. e 'the estimate of the jth block effect ignori;—g treatments
ubstituting the value of B; from (6:293) in (6-292), we get ’
- b
Ti=ry. +ru+y [ Ap—ns —3
. ity j§1 ni Bj—ky,_—pglnpjrp)]
- T 1 % B _ _ b 1082
i p ngBj=ry +ru-Y > ongi-7 Q0.0
A i i ka=:1 pfz.lnunpjrp
1 v
=ru-y Y Y ningT ...(6-295)
j=1p=1
biips B
The quantity : Q;=Ti- 2 Uk s ...(6-296)
j=1

he ith treatment. The

d treatment total or the adjusted total yield for t
subtracting from the treatment total T; the sum of the jth block

is called the ith adjuste
yield per plot for the jth block) for the blocks in which the ith

adjustment consists In
average Bj/k (average

treatment occurs.
Thus from (6-294) and (6:295), we have
b v

1
Q; =Tt} T X nie
st GC iy
= L myhy

1 ﬁ "
I S S nill—.--
(% Bw) o

..-—-k J 1 J' 1
roA [Using (6-286)]
_ L +4+7)% :
=ﬂ2¥_(11+v12+..,+1v)+(r k+k) i
k ; s e
y I-‘ % 7
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A k...
Qi=fT;‘ = T":Qi'ﬂ?\,—v r@=1,2,..,v)
i s M
If we write : =Ir
Then, ‘r,-=f—2£

It may be remarked that E < 1, since

A vwk-1) vk—v
E_g _—k(v_]_) <]_ ['_' A,(V_l):r(k—l)andv>k]

The quantity ( Z T; Q,) is the sum of squares due to treatments after adjusting for bIock '
=1
effects. Thus

v v 2
S.8. Treatments (adjusted) = Y, 1,Q,= ¥ % -..(6-299) -
i=1 i=1

The quantity |
b

i 2 |
Y B -npy. =3 B - L [ Yy y,-j} = Z (BHk)~CF. ..(6-300)
Jj=1 (,jJe D '
Under the model (6-287), the residual sum of squares is glven by

b
) Oij = '-1 u—-BP= X yijz_nuy—--_ZTiTi—szBj
i=1 Jj=1

(tj)e D Gj)e D

The sum of the squares due to ﬁ, 'c, and f3; being given by (n =vr = bk)

Sy, b, 1) = nuy + ZT‘E+ZBBJ].1 > yu+2BBj+ZT‘r 1

i=1 Jj= jeD Jj= i=

ie D,

=pZ( 3 yu)+ ZBBJ+ZT1:, 11234-2 BBJ+ZT1:

):(u +B)) B, +ET T

Substit:utmg for u + B; from (6-293), we get
b

S(ll,b, 7) = Z [% (BJ'—.Z nv-t,-)Bj]+ E T,"C,;

j-l i=1

): (Bik) + Z 1, (T, - Z n; Bilk) = Z (B2/k)+2 % Q;
J=1 :=1 J= =1

B2 A
=n11y..+(): —,;‘——~nuy..)+v2 Qi

j=1
is the sum of squares due to block ignoring treatments, i.e., 1t is (unadgusted) block sum
squares.

The ahaly31s of variance table for Intrablock analysis of BIBD is given in Table 6-77.
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— TABLE 6.77 : ANOVA FOR B
Source E B.D. (INTRABLOCK ANALYSIS)
] of .
Between blocks (unadjusted) 3eh — O SUm um of Squares E(M.S58.) f
) - @
2. B2~ (Gbk) |
Between treatments (adjusted) p—1 Z @ ¢ g2 E
rk :
Intra block error ™ “irk) G + ’FE'] u-I E
bk —b — v + 1 | By subtraction a? |
Total z_ : st
ota bk -1 (,-,J-E . yii* = (G?/bk) §
== =R.S.S.-CF. |
In the above table G = Y -
i Dy ij 18 the grand total of all the observations and X y
the raw sum of squares (R.S.S.). wjeD
For testing the null hypothesis: Hy: ¢, =¢t,=... =¢

the treatments (adjusted) m ; . .
Csual. ean square 1s compared with the intrablock error mean square as
If J;:ve are 1n1?erested to make inferences about the block effects, the (adjusted) block mean
sum of squares is to be compared with error mean square. The adjusted block sum of squares
can be computed from the following identity :
Block S.S. (adjusted) + Treatment S.S. (unadjusted)

= Block S.S. (unadjusted) + ’I'reatment S S. (adjusted) ...(6-301)
where, Treatment S.S. (unadjusted) == Z T2-C.F. ...(6-301a)
6-13-7. Comparison of Two Treatments. The 1:relatment contrast # — ¢, is estimated

by :
T, = ;% (Qi—- Q) [From (6-2975)]
...(6-:302)

Var (1, T,) = 2E2 [Var (@) + Var () — 2 Cov (@; Q)

Var (Q) =Var(Ti- Enu Bjlk)

=Var(T,—)+Z —J—Var(B)— 2% %4 Cov (T, B;). But

= ro?; Var (Bj)=Var( b yu) k o and Cov (T B) =nj o %)

Var (Tg)=Var( 2 i

j € D“ . 2 02
A 2 _—=% Y n?
Var (@) =T °e2+ k ?‘ Tk ? 4
1 2| k=1 g [Using (6:286)]  ...(6:302a)
=ril +i3- ~k o, = k ¢ . =

(1, (S naBilk)} (1= (Z-nwBilk)} ]
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= Cov (T}, T,) - Cov [ T, (% i Bt )] ;
- Cov [Tp, @, n B/k)] + Cov [ (JZ n;; Bj/k) (?, nij/k)] .

1 L ST—_—
=0- % Z ny; Cov (T3, Bj) - E JZ ni; Cov (Tp, Bj) + kz%' i Npi Cov (Bj, Bj’)
J g i
2

e
o o? 18 ’ B
=- _k_e ?’ Mpi Mj = f Jz-nii npi+ hz 2; i T Cov (B, B/) [Uﬂmg{al.;
But Cov (B, B)=0,( =) ] (n)
=k 0'3 ] (] =j’ ) i
Hence, on using (++) and (6-104), we get |
o, 1 2 A o
COV(Qi,Qp)=—2E‘°l+k—2'kUe?\.=_}—ece ---(6-302&;5‘
Substituting from (6-302q) and (6-302b) in (6:302), we have
1 |26 r(k—-1) 2\ o2
Var('lr,-—'tp)=r2E2 A Ty ;
E
21 62 2k 62 %
= 2R b-1+1)=7—rs LMy =D =r G-l
202 " |
= rEe [ == ...(6-302)

Thus, the test statistic for testi

ng the hypothesis of equality of two
Hy: ¢, = t, becomes

PR Y

i
U2 ...(6-304)
[2 s';’:/(rE)] :

where 52, the error mean (sum of) square is an unbiased estimate of o’. The statistic ¢ follows 3
students’ ¢-distribution with error d.f. :

treatments, L.e.,

20% 242 3 A
In case of a BIBD : Var (1, ~ T,) = E = R ...(6:305)
where 52 is error mean square for BIBD, :
: ‘ : 202 2¢2
In case of randomised block design Var (1, - Tp) = —% o —¢
r r
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2 .
where o is the variance per unit i

r unitin R.B.D 2

error mean square for R.B.D. -D. and s? is the unbiased estimate of o2, given by

Hence, the efficiency E’ of BIBD w.r.t, R.B.D. is siven by
.r.t. R.B.D. is given by :

E<1 ...(6-306)

.
]

2
8 2
! T.
E‘ = -g" . ...E == E ser
ro 2s? )
e 5,

Thus, for 2 homogene ,
geneous set of material (i.e., s> = s%), the BIBD is less efficient than the

R.B.D. If, however, by taki NI
y taking small block size, the reduction in variance is larger enough

han the one to i
¢ compensate the loss in accuracy due to the use of BIBD, the BIBD is
. . o 2
preferred. If the reduction in variance is just enough (i.e., E. i"f = 1) the R.B.D, should be
s ’ it

preferred. e

treaf;:r?:f?; 67;2111.0112 X da? in Table 6-78 gives the results of an experiment for comparing 7
cks of 3 units each, there thus being 3 replications of each treatment

Analyse the data. /

Treatments Blocks

— ! e 3 4 5 6 7
d 50 49 91 _ _ _ il |
2 — — 118 94 94 ek _ ’
3 76 — — 64 . 80 . ;
2 — = 72 — - 53 31 |
5 44 — - — 65 _ 54 ‘
6 = 102 ‘s — 119 92 —

| 7 — 38 = 38 M i 37 ‘!

v=7 b=1, r=3=k A=1

Solution. The above design is a BIBD with pa;ameters :
ute the following quantities :

To carry out the analysis of the design we comp
T; = Total yield for the ith treatment from all the blocks, i=1,2...7
ek, G=1,2, 0 7

B. = Total yield from the jth blo
hich ith treatment occurs =12, ..

J
2 n;Bj= Total yield from all the blocks in W
J

=0

For example,
SnyBj = Total yiel
=Bl+32+33=170+182

znaij =Bl_+ B4+Bs= 170+196
\ , :
Z n,-ij/k; (l«=1,‘-2,.

je17?

d from all the blocks in which 1st treatment occurs.

+281= 633
+2925 =591 and so on

o'
Qi=Ti-
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FORVARIOUS S.S.
TABLE 6:78A : CALCULATIONS ; \ s
i Treatment | p. Bﬁ I nBj 2 ny Bjlk ' #te & =B
| L J J (5) @) ((M= (2) - (6) (8) 97
| D ® ] P . 78100 :
T (133 170| 28900 633 | 211:00 -28 og gl 32,289_
: 306 182| 83,124| 755 251:67 543 ’529.00 48, 36 !
2 220 o81| 78,961 591 | 197-00 23-00 o 24,;00_ _‘
4 156 196| 38,416| 628 | 209-33 -53-33 ,729.00 26?5'36 i
5 163 o78| -77,284| 570 | 190-00 -27-00 72900 97, 69|
6 313 | 295| 50625 685 | 22833 84-67 % 000 12,9697
7 113 122| 14,844| 500 | 16667 —53-67 2,880- _7_(5?_
' .31/ 3,3
Total | 1454 | 1,454 3,22,194 17,887-31| 3, 7:1?‘1

block,

Error (Intrablock) S.S. = Total S.S. — Blocks (unadjusted) S.S. - Tre
=15,057-81 - 6,725-81 — 7,665-99 = 666-01
TABLE 6-79 : ANOVA TABLE FOR BIBD (

G= X y;=1454

where

kr

=

Treatments (adjusted) S.S. =

C.F =

Gjle D
Raw SS. = 2 yijz = 1,15,730 .
G,j)e D
1
Blocks (unadjusted) S.S. = 3

17,887-31 x 3

7

G?

(1,454)? _21,14,116

21 =

Total S.S. = Raw S.S. - C.F. = 15,057-81

7
Treatments (adjusted) S.S.= ¥ QArE;
i=1

rEz%-

=7

ISource of Variation S.8S. d.f.
Blocks (Unadjusted) 6,725-81 6
Treatments ( Adjusted) 7,665-99 6
—VError 666-01 8
N T P
Since tabulated Fgg (0-05) = 358,

significant and hence the nul| hypothesig

s S

21 21

7
3

,665:99

Mean S.S.

— |

1,120.97

1,277-67

If y;; denotes the yield from the experimental unit receiving the ith treatment in the jth

=1,00,672-19

7
2 B?-CF.=1,07,398-00 - 1,00,672-19 = 6,725-81
=

[(c.f. (6-299)]

atments (adjusted) S.S.

INTRA-BLOCK ANALYSIS) :
Variance Ratio

1,120-97
83:25

1,277-67
8325 = 15847 |

=13-46 ||
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—

C.D. for (T; = Tp) =ty o qz (0:026) S.E. (1, - 1,) = 5 (0:025) . %
= 2:306 X \j &;_33_'2&1 = 2:306 x 8-447 = 19-4787 (%)
Adjusted treatment means, say T »(@=1,2,..7) are given by
’.lTi=m+'t,-=m+f—in=m+%Q,- [e.f. (6-297)] . (2*)
where m = I?—k = 1’3;4{’—4 =69-24

TABLE 6-80 : ADJUSTED TREATMENTS

Q,‘ 7—1,' = 96-24 +%Qi ]
3 T ; = 69-24 + %Q,—, which are calculated in 1 -28-00 57-24
Table 6-80. 2 54-33 92-53
. it ) 3 23-00 79-10
= tg (0-025) S.E. [(m+1)-(m + 'cp)] 5 —-27-00 57-67
; 6 84-67 105-52
= t4(0-025) S.E. (1; — Tp) = 19-4784 [From (*)] ; _53.67 pra

Treatments (adjusted) in descending order are given in Table 6-81.
TABLE 6-81 : ADJUSTED TREATMENTS

L al

Conclusions. (i) Treatment 6 differs significantly from T 105-52 12.99
all the treatments except treatment 2. _

(ii) Treatment 2 differs significantly from all the T, 9253 1343
treatments except 6th and 3rd. | T o 79-10 2143

(iii) Treatment 3 differs significantly from all the T 57-67 0-43
treatments except treatment 2. e

(iv) Treatment 5 differs significantly from all the T, 5724 0-86
treatments except 1st, 4th and 7th. T4 46-38 0-14

(v) Treatment 1 differs significantly from all the a M
treatments except 4th, 5th and 7th. 7 |

(vi) Treatment 4 differs significantly from all the treatments except 4th, Gth and 7th.

' (vii) Treatment 7 differs significantly from all the treatments except 1st, 4th and 5th.
(viii) Treatments 1, 4, 5,7 donot differ Si_gniﬁs:ant_ly among themselves. Treatment 2 and

6 are also homogeneous.
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In order to test hypothesis Hj, about the homogeneity of blocks, i.e.,
Hb:b1=b2=---=b7 e
i.e., all the block effects are equal, we have to calculate the (adjusted) block S.S.

"').‘r

7
(Unadjusted) Treatment S.S. =*31 xT ? = (3 37,168) - 10,06,772-19 = 11 717 14
i=1

Hence, on using (6:301),
(Adjusted) Block S.S. = Block S.S. (unadjusted) + Treatment S.S. (adjusted)
—Treatment S.S. (unadjusted) = 6,725-81 + 7,665-99 — 11,717-14 = 2,674. 66

In order to test Hy : b; = by = ... = by, we will compare (adjusted) Block mean S.S, w‘ﬁ
error mean S.S. and hence the test stat1st1c is given by
(2,674-66)/6 B N
F= 3325 = 5-355 ~F (6, 8)

Since F > 3-58, H, is refuted or rejected

Remark. In order to test the significance of the different treatment pairs, we need not calculaxg
the adjusted treatment means T';, (i = 1,2, ..., 7). The test can as well be carried out with 1’s, usmgthg
test statistic (6-304.) !

DISCUSSION AND REVIEW QUESTIONS' =_.

1. (@) What do you understand by “Design of an Experiment”. Explain with examples the need of a
design of experiment to draw sound conclusion. :

(b) Explain the purpose of design of experiments, and indicate the characteristics of a good ]
experimental design. g

2. (a) Describe the following three fundamental principles :
(z) randomisation, (ii) replication, and (iif) local control.

Explain the importance of these principles with respect to designing statistical experiments. Give |
suitable illustrations.

(b) Explain, with illustrations, the different methods of controlling heterogeneity in field |
experiments.

(c) Discuss how the efficiency of an experiment can be increased by increased replication and local |
control. 4

(d) Define ‘experimental error’. What are its main sources ? What methods are adopted to mcrease
the accuracy of an experiment ? i3

3. (a) Write critical notes on replication and local control, as means of increasing the efficiency of a-‘_-*
design. :

~ (b) Show, by suitable examples how randomisation enables us to apply statistical methods.

COMPLETELY RANDOMISE DESIGN AND RANDOMISED BLOCK DESIGN

" 4. (a) Give the layout of a completely randomxsed block desxgn and explam the 31tuat10ns when itis
used. Discuss its merits and demerits.

(b) Give the complete statistical analysis of C.R.D, ; bl Fodet At
5. (a) What is meant by a Randomised Block Design P {*ysntirpns sopifiits 1 £l
(b) Give the analysis of variance for the design, stating clearly t.he mathematmal model and the:

Obtain the efﬁc1ency of this desxgn compared to completely randommed desngn

et o
....,,.mh«u, A e
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