D I B

6.12. SPLIT PLOT DESIGN

Suppose we have a factor A which has p-levels, say, ay, as,..., a,. These p-levels of A are
allocated at random to the p plots of, each of say, r blocks. [This is same as an RBD with p
treatments in r blocks.] It may sometimes be desirable to compare several levels of another
factor B, on each of these plots. Suppose the factor B has g levels, say, by, bo, ..., b,. We now
divide each plot within a block into g sub-plots and allocate the g levels of B at random in
these sub-plots within each block. This scheme enables us to compare different levels of B,
along with A, at a little extra cost. Obviously, this type of design is possible only if the levels
of factor A require bigger plots whereas levels of B require smaller plots. The bigger plots are
called whole-plots and the smaller plots are called sub-plots. The treatments under factor A
allotted to whole-plots are called whole-plot (W.P.) treatments and the treatments under
factor B allotted to the sub-plots are called sub-plot (S.P.) treatments.

Such a layout in which one set of treatments called the whole-plot treatments is assigned
or allotted at random to large parts called the main plots (or whole-plots), and the second set
of treatments called the ‘sub-plot treatments’ is allocated to the sub-divisions of the main plot
called sub-plots is termed as ‘Split Plot Design’.

P =

P e v AL

o wanasal, et 4
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We come across a large number of situations in practice, specifically in ggricultural ang
industrial experiments, when the very nature of the level of one factor necessitates the yge o

bigger plots (units). We give below some situations, where Split-Plot Design can be s‘nfably

adopted :
(1) In research on milking machines, large amount (?f milk is required. Iﬁlethﬂ,,ﬂ8 of
cooling or pasturising require smaller amounts of milk and may be used as split-pleg

treatments. ,
(i) In agricultural experiments, it is usually found tha.t certain treatments

irrigation, dates of sowing, varieties of crops, etc., require large plots. and may be
regarded as whole-plot treatments. On the other hard, the treatments hke': the seeds.
the methods of ploughing or planting, manurial applications, etc., require smalle,
plots and may be regarded as sub-plot treatments.

(iir) In alloy preparation or smelting, large quantity of material is required by the
machine, while for moulding, we need relatively much smaller quantity.

(iv) In greenhouse temperature studies, the entire greenhouse which must be maintaineg
at a constant temperature, is used as a main plot and several treatments that may e

conducted in a green house are used as sub-plots.

(v) In management studies, the store (or farm) may be used as main-plot treatments and
the methods of displaying (or producing) the commodity may be used as sub-ph
treatments.

Remarks 1. Split-Plot-Design vs R.B.D. (R.B.D. with rpg Units). In a split-plot design, the

various levels of A (whole-plot treatments) are allocated at random within the whole-plots of a block
and the levels of factor B (sub-plot treatments) are allocated at random among the sub-plots of the

main-plot in each block. However, in R.B.D. all the p X g treatment combinations of two factors are

allocated at random to the p x g plots in each block.

The average experimental error over all the treatment comparisons is same for the complete
randomised block design as well as split-plot design. Therefore, there is no net gain in precisiea
resulting from the use of split-plot design. However, in a split-plot design, there is an increased

precision on :
() the main effect (B) of the sub-plot treatments, and

(zt) the interaction of W-P treatments and sub-plot treatments, i.e., (A x B), than the main effects

of the whole-plot treatments (A). & =

The increased precision on B and AB is obtained as the cost of the sacrifice of the precision on the
main effect A, which is confounded with incomplete differences. ' ¥

For the test of significance or the construction of confidence limits, the R.B.D. holds a ik
advantage on the average because it provides more degrees of freedom for the estimate of single error
variance. - Y]

2. Since the Split-Plot Design (SPD) is used in a number of fields other than agriculture, where the

world ‘plot’ is not used e.g., in industrial experiments, the SPD‘ISGWW a nested design. i
4 i [eed . + W -:_L-“«.i,_'f:l"‘-"ﬁ T_ VIR BT 3 2 m 1 i .. 3 ‘;.. w.
h block divided into p

Statistical Analym.ﬂuppggg there are r block: 28
whole-plots ancl_.. ach whole- ' de ; ' h block, the v levds of
the factor A are 2 P ‘each whole plot, the ¢

levels of the fac

| mathematical model is :
Yijk = 1 + 0 .

1‘ 2’ sany Q) ] ...(5-2415}

S
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where Yy denotes the yil .
("Oplicati()n).y e from the k-th sub-plot in the jth whole-plot. of the ith block

P 1S the genery) mean effect, -

o, 1s tl 1 !

B' is tﬁz Zﬁ??"“a‘ b due to the ith replicate

Y: is the add;tiona: Egect due to the jth whole-plot treatment
. onal effect dye to the kth sub.- e,

e; is the ran dom et 3 sub-plot treatment;

plot treatment : Omponent associated with ith replication and jth whole-

d ;% 1S the interact: '
P ? treatment. action effect between the Jth whole plot treatment and kth sub-plot
HGI'E, o, Bj’ Yi and ajk

are fixed effects so that
o; = =
2;‘ i ?Bj—ng=Jz.5;k=k25_ik=0

(forallk) (for alljy)

...(6-246a)
Lid s
and % % N(0,62) and o, bk p, o?) ...(6:246b)
distributed independently of each other, the pooled error variance being 62= ¢ + g 6>
w 8
Remark. In the model (6-246), the sub-plots in the same main-plot are correlated i.e.

E(ejjk):() ) E(e?)=02 ;E(Eijk,e‘jk’)=po‘2; kzE
: . R =0, otherwise) ...(6-246¢)
t.e., the yields within the same whole-plot are correlated but within two different whole-plots are
uncorrelated.
The least square estimate for various effects are obtained on minimising the error sum of
squares.
E=X 2% e;k =22 % b’ij_u"ai"ﬁj—eij ~Ye—082) and are given by :
g )
a5 &: 2 o2 ﬁ B 49)
Loty R L SN Yo ) R =y
ol B P8 i " s ...(6-247)
Y=Yk =Yoo § Op=Yp—Vh=Y oty

A T - s A L4
s 1 8ij.=Yijo— V- —Yitep=y..

Substituting in (6-246), transposing, squaring both sides and summary over i, j & k,

we get

AP %()’ijk*y_--.)z=pq 2@~y ergX (3’_9'-—37...)2+rpg.(f-k-y_...)?
ey i

J
tq X (J'_i--“.')_’ij.‘y_y’-"'y_...)z"'r?%(JTjk"JT'-k—)T-j-"'y—‘..)z
i g
+22§ ()’uk—y—ij--f--k*f’_;fk)z,
F 79

(all the product terms vanish because algebraic sum of deviations from mean is zero.
= T.SS.=S8.R.+S8. (WxP)+8.8.(SxP)+SSE, +SS. (AxB)+ SS.E; ...(6249)

where T.SS.=Y ¥ ¥ (yyu-7 .. )2,- is the total sum of squares ;
T TR £ )

...(6-248)

SSR.=pg 3 (7..-7..)"is the S5, due to replications (blocks),
i=1 TR Y ! R

|

ol
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p B Iz
SS (WP)=SSA)=rq X (¥,=¥ ) is the 8.8. due to whole plot treatmentg,
j=1

Yy (v'” Y=Yty ) is the error 8.8, due to whole-plotg |

3 (_\7..,, -y )2, is the 8.8. due to sub-plots.

SS.(AxB)=r E Y (y ( A=Y a=¥ 5+ g )2, is the S.S. due to interaction effect A x B,

SSE;= 22X X Yy Yty )2, is the error S.S. due to sub-plots.
I I ’

Degrees of Freedom. The break-up of degrees of freedom for various sum of square,
are as given in the following Table.
DEGREES OF FREEDOM FOR VARIOUS

| ss| Tss. ,sqn SS.(WxP)] SS.E, |SS(SxP)|SS(WxP)x(SxP)| SS.E,
: i | or SS.(A) S.5.(B) S.S.(AxB)
:d_f qu"l: r-1 ! p—l {p—l)(r-l) q—l (P—I)(Q“l) P(r"l)(q—-_l'}—'

Since d.f. are additive, by Cochran’s Theorem, the various S.S. are independent chi.
square variates with respective degrees of freedom.
Expectation of Various S.S:

S.SR. =Sum of squares due to replicates =pg 2. (=¥ )2
i

=pg [(m+0;+8 —8.) - (n+8; —E..)2
=pg X [oi+ (E-7.)+ (55 I
E(SSR) =pg [Zo2+E (6.-2.)' +E (&.-2.)’]
[The expectations of all product terms are zero because of (6-246b)]
=pgZ a2+ pqE [Z &2-re 2] +pgE [2 &2-re ]

_qua,2+m ( ) (rp)}‘“m{(g)_r(ﬁ)}

=PaL 0P+g(r-1)a} +r-1)a? .(6:250)
- E(MSR) = E( ) _1)'_: a2+ g o? + 0P ...(6:2500)
88.(A) =88.(WP)=rg X (J'-,‘-")T..,)s |
! |

=rq 12 [(l-l"‘ Bj+~¢'.j+i'.j.)—(p+'.'._+:m)]. AR &1

=rg I [B+(2,-E)+(7,-2 )] gy ]
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E (SSA) —;q[ZBz+Ez(e j =8 )3+EE (e,~e }J

[A“ product terms are zero because of (6-246b)] ...(6:246b)
= 2 =
rq .}Zﬁj +rqE{ zef—pe..?} +rq E { §,e..2—pe _2}
2 2 2 2
Wx c o o
._qu ]32+rq{ ( ) ——}+ { o _}
Prp*md P par
=qu B?+q(p~1)c52 +(p-1)c?
: o :
SSA
= E(MSA) [ o qo‘ + 52 ...(6-:251)

SSB. =SS.(SP)=rp Z ( 37*..,, = y‘,__)?
k

2

zrpx
k

(h+e +7 +e ) - (u+E..+EH)]2= p >k: [ + (e-x—e.. )]

E[SSB] =rp | % N+ E kZ (ex-e.. )2]

[The product terms are zero because of (6-246b)]

S4B [Fes-.2]" =S e la Z)-g2)]

_rpk e T TP ke.k —qge _rplE s+ 7D q(rp) q(rpq)
=rp§Yz+(q—1)of

= E [MSB] =E féﬁ): rfl§ﬁ+of ..(6:252)

i = o
SS.(AxB) =r Z% (J-’—-jk—y'-k-J’-;-"'y...)
J

=7 Zz (u+ﬁj+'¥k+zu+5jk +E.Jk)— (p+€.j+*f,,+5..h)

J k
2
'(]-1+BJ+EJ+ET)+ (u+'é"+§__)
e g gl
SS(AKB) =7 [_;k"' E-j--e..k+e-..)]
" s o ) S e ST
E[SS.(A xB) =r 2 Z 2 +rE [ ?% {(e-jk—e-j~)" (e..k"’e...)} (™)
J

[Product terms are zero because of (6-246(4).]
2

EXT = {(ea-es)- (' -2 )} =BT (2 {(En-Er)- Ea-E ) }]

E[2 (3 @anes) - (-t ) )]
=B ? {Z (en—es)" }«p%(t,r-e,,, )]

e 555w .
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- o Bl S gt S 2
E{z,:{?,:eak qe.i.} p{?,:‘e..k 0§ }]
a? oy o2 2
P ()0 2(3)2F ()0
o° o? o?
AR .. ST
=Pq --ap =P

o 343 2
= Pg-p-q+lo’="(m-1g-Do

Substituting in (*), we get
E[SS. (AxB)=r Z§5’i+(p—1)(q—1)0‘:
J !

S.S.(Ax B) r !
P-D@-D| " p-1(q- 1)ZZB + 0, 7 (6253

S.SE, =qZZ (f—y.—j-i..—y—g'- +y—)
]

=q2i’,JZ[(p+a,-+[3j+e,-j+é'y_)-(p+a,;+€,-.+e',—_.)
~—(p+Bj+5.j+E.j.)+(u+E_.+e____)]2

=qzi;§[(e,,._a,-,ma.,-+a__)+(ai,.-zi..-e'.ﬁa_,)]z _ |

o ¢ o 9262 o oty Lon? 20‘2} |

LD W P g T TR
P /i pr P & i ro .+2rp p e
g9 _2°f_2°f}+2o2 207 202 2@,2}]
(5 o

Pa 7P, TRg [, Rg |
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2 9 a
- ZZZ 02—?*§‘-9;*+g1 ] 1 1 a
R ey 4 g AR l_dhr tqrl %

=plgr—r- - B 9
1 p+lao’=plg-D(r-1ga’

E (MSE,) = E { SSE, . )
= aind .
2 P(q-—lllr—l) —05 16255)
~ Null Hypotheses
Hyp:B,=0%,=1,2 ..,p l
Hop:%=0 ¥k=1,2,..,q ...(6:266)
H03:61§=0 'V'U,k) ‘
Alternate Hypotheses
H’ gy : At least two of B,’s are different. l
...(6:266a)

H'y : At least two of ¥;'s are different.
H' o3 : At least two of & s are different. I
Test Statistics. Under Hy, : B, =0, ¥,j=12, ..
homogeneity of the whole-plot treatments is :
i Mi;ngzP> % I\I\:SSP*; Sl R .(6:257)
Under Hpe : % =0, ¥ =12....q, the test statistic for testing th

sub-plot treatments 1s :

., p, the test statistic for testing the

e homogeneity of the

F.=F _MS(SxP)_ MSB _
2=fBT MSE, MSE;
0, ¥ (J, k), the test statistic for testing the in

MS [(WxP)x(SxP)]_MS(AxB)
Fy=Faxp= MSE, =" MSE,

,..(6:257a)

Fq—],p(q—l)lr—l)

Under Hog : 8% = dependence of A and B is :

~ Fp-1@-1» plg=Dir=1
...(6:257h)

The ANOVA Table for split plot design is basically split into two parts :
(i) The whole-plot analysis, and (i) The sub-plot analysis, and is given in Table 6:74.

TABLE 674 : ANOVA TABLE FOR SPLIT PLOT DESIGN
| Source of bl Sum of Mean Sum of | Variance Ratio (F) E(MSS) 1
i Variation | 55 Squares Sguares
Replications| ~ r—1 | SSR | s4=SSRIr=1 (Fy=sifs) ~Fn| P4 § oby go?
TN SRy T e MR Lo , r=1Xp=1) Fndoer: »

+0°
L3

s® =8SA/(p-1) F, =g ? P ‘
A Aty o, I 2 "
+ o'

b e=-p=1)
= s

o owgoleal
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r 1 | J VO . 4 l :

: Sub-plot I. q -1 SSH ¥ S8~ 1) [y a :/”,,’ o rp A P
Treatments | ' =1 jur " "
{R\ i I‘!f ), ptr 1ty I

¢ ' 2 5 ae :

WPT x SPT| p-D{g~1 | SS(A X n B an Fain=ty / U, ( | ’(

: " p=Dlg=1)
# “4 > I;] h'.q{_/.l."_ .“’ llﬂ I =Dy, pir Wiy~ 1 L 2‘. 4 |
= 3!
[(p ~ Dig Dl T e 5,,., * a
'S-P Error|{pr-1i(g-1 SSE, -'v'; SSk,/
Error 11 !

U(r 1) (g~ 1] ,

e e i ——— {

' Total rplg-1)
between

. S—Ps within |

| W-Ps :-
Tatal rpq -1 S f _» > m ~y) ) :

| P ————— = * ‘

Remark. Critical Difference Between Two Treatment Means. If the nul hypotheses of
homogeneity of treatment means are rejected, we would be interested to find which pairs of treatment
means differ significantly. The standard errors of treatment means for various combinations are given

in Table 6-75.
TABLE 675 : STANDARD ERRORS OF DIFFERENCE OF TWOT_HE_AIMEN_T__M‘E_&NE, S
No. Type of Comparisons Estimate of Standard Error
1. Difference between two whole-plot treatment means. -\/ 23':/( rq)
9 Difference between two sub-plot treatment means A2 sf;i firp) |

3 Difference between two sub-plot treatment means at the 3
same (fixed) level of whole-plot treatment. V2 ss,/ fi

4. Difference between two whole-plot treatment means at the : .
same or different level of the sub-plot treatment mean \ﬁ2 (q-1) ’f‘i téy ]/ rq

In the cases 1 to3 in the Table 6-75, .

CD between two treatment means = S.E. (d) x t (corresponding error d.f.) ...(6-268)

In case 4, the formula in (6:258) cannot be used because the ratio between the difference
in treatment means to its S.E. does not follow the +-distribution. In this case we use an
approximate method. The approximation tot he exact test involves the calculation of =%
significant values of ¢ say ¢, and ¢, corresponding to d.f. for SSE, and SSE, respectively i.e,

ty =ty 1p-1(0/2) and tp =ty - 1(g-1) (¢t/2), and then calculate ‘¢’ by the formula :
(g~ l)spi. t2+321. £

Tome 1)"32, s 3-”-?. ...(6:258a)

2. Computation of Various 8.8. For numerical computations, we proceed as follows :

Step 1. Total Sum of Squares :
RawS.S.:R.S.S.HE,ky;‘ ; G= % Yo N=rxpxq

o ik
Correction Factor = C.F. = G%/N.
Total 8.8. = RS.S. - CF, .(6:259)

[ =
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For numerical computation, we divi

parts (i) Whole-plot analysig, ang u;’;j §.f£" analysis of Split Plot Design (8.P.D.) into two
Step 2 Whole-plot Analysis, plot analysis,

“Whole plot treatment totag Vs, B]oczl.e( redu'ce the given data to into p » r two-way tale
MM@EQ_@&}L{A: given in following Table
~--(§t§%‘_."_!‘_f__w Wh_q{g-&lot L Treatments ___}r T
ISy s e~ Totals |
Figures (v;) in the Table ~——__.£_1__“_ﬂ'2__._5_"1__ wy Wi, w, i
represent the total of al]l the Yu, Yiz- T Yip | T; |
total of all the observationg for 2 Y, Y. Yy, Y. T; |
the jth whole-plot in the ith : | : |
replicate, total being taken over : ' 1
i all the sub-plots in the given J ¢ 7, 5
i whole-plot. : acien
( e ; § 8 |
i ;yi"‘) r In. Yra. Y | Im. r,
r Total TJ le Py T.j P T.’ IF
Note that each of the Yij- i8 the sum of i i i
' , jo q observations and the analysis of variance for
thlrac"l;ﬁble can be carried out in the usual way for two-way classification with g observations
.“:' pe ’
2 2 2
. W.P. Treatment 8.8, = .t Lot *#Th o
3 rxgq :
T s
3 W.P. Block S.S. goatfate 21, CF.
W.P. Total S.S. =2 X T -CF.
bod ]
W.P. Error S.S. = SSE,=W.P.(TSS)- W.P. (SST) - W.P. (SSB)
' Step 3. Sub-plot Analysis
: w; : ith W.P.treatment ; s; : jth sub-plot treatment
For sub-plot analysis i.e., for computing S.P. treatment S.S. and SP x WP interaction SS_,
we reduce the given data into the S.P. W.P. Treatments P
P % g table :, W.P. treatments Vs. | Treatments w, Wyt Wy Wy
S.P. treatments”, e TR :
The figures (w;) in the Table 1 T,
corresponding to the cell w; s;isthe| . o , ) %
total of the combinations of w; and : :
8;in all the replications of the given |  © i
data. Note that each observation in |~ j ——————————— () s
his table is the sum of 7§ = = = yail :
observatlons, o i e Sl R g o (' o T,
B B, e -
‘ f”& Mwi&;m e il 3 M,’;;a:ﬁ o d m‘!‘ e 1 ..‘.-Tg s 2‘1 G'=G

T e CR.=8P.(SST)
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(8P » WP) Sum of Squares - flb_i - . - (SST ' o
{Interaction) 24 {,Z )r ‘ r )_ Sl } SL A TN, et

Step 4. Error Il Sum of Squares (SSE,) :
SSE; = Total S.8. - WP(BSS) ~ WP (SST) - SSE, — SP(SST) - (SP x WP) S.S.
= Total 8.S. - Block S.S. - SSA - SSE; — SSB ~ SS(A x B)

6-12-1. Split-Plot Design Vs.Factorial Design

1. The layout in a split-plot design may be regarded as a factorial arrangement of two
factors A and B, A at p levels and B at ¢ levels. Regarding the sub-plot units z¢ the
experimental units and the whole plots as blocks, we find that the differen.ces among th,,
whole-plots are the same as the differences among the levels of the whole-point treatmens,
and conquently the main effects of the whole-plot treatments are said to be confoundegd in
this design. Hence, in SPD, the main effect A with (p — 1) d.f. is completely confounded with
the incomplete block or the whole-plot differences. Hence, SPD is an incomplete block design,

However, in a factorial experiments, our aim is to confound higher order interactionss
which are supposed to be less important.

2, In two-factor factorial design, all the treatment combinations are allotted to the plots
within a block at random while in split plot design, randomisation is done in two steps.
Whole-plot treatments are allotted at random to the whole-plots within a block and then syb.
plot treatments are randomly allotted to the sub-plots within each whole-plot.

3. Split-plot design is more useful than the factorial design in the following respects -

(i) In split-plot design sub-plot factor (B) and the interaction effect (AB) are estimated
with greater precision than the whole-plot factor (A) but the average precision is
same as in the case of factorial experiment. However, in a factorial experiment all the
effects (main and interaction) are tested with same precision.

(21) Splif—bibt design can be used even when all the factors are not of equal importance.
R, D), %u;e of the plots is according to the necessity of factors. Accordingly, the factor
w

- which require larger bulk of experimental material can be tested. However, in case of
- factorial designs, it is not possible to test the factors which require relatively large
n case of split-plot design, we can include an extra factor at little extra cost witheut

arbing the original layout of the RBD. This is not possible in case of factorial

ntage 'und:Dishdvantages of SPD
-plot design is advantageous when ;
main effects of one of the two factors

precisi
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which requires

;.. i I:I:::t:”‘: ,::::“,II:J::;;:; l(::’n‘::r(.‘,,t, ll““lul““H an BP0, of the two factors, one which
L can be accommodated in smaller :::n‘:: Wihaspition, 4 P AU I,
D s more useful if :

3 () Sub-plot treatment offects (4

offects (AR) are of prenter int

: 4. As pomnted out earlier, Sp

b and its internction with the whole- plot trestment
t erest than the whole-plot treatment effects (A), or
] o] ] +

(i) the whole-plot effact cannot be estimated on small material

i 4. In SPD, of the t ) h ] ; : :

3 ol hn :vn errors, 88K, < S8E,. This implies that, usually the main effect B
- ‘ oraction effect AB Wl” be entimated and tested more precisely than the
K main effect A

i.: B, Overall precision 8PD can, however, be increased by designing the whole-plot
trontments in a Latin ROUATE oF In an lnunuph te Latin square, (This is, however, not
. discussed in the book )

~ Disadvantagos

:_ 1. The whole-plot treatments are measured with less precision than they are in 4

randomised complete block design of pg treatments in each of r replications.

_, 2. The computation of two types of error sum of squares S8E, and 88E, makes the
analysis more complex or difficult,

3. Sometimes, the whole-plot error (SSE,) is much greater than the sub-plot error

(SSE,) so that the effects of the main plot treatments, though large and exciting are
B not significant, whereas those of the sub-plot treatments are too small to be of
. practical interest, are statistically significant,

4. 'The different treatment comparisons have different basic error variances (SEs) which
make the analysis more complex as compared with the corresponding R.B.D.

© 6:12:3. Efficiency of Split plot Design. The ANOVA for the split-plot design is given m
Table 6-74. The estimated information on the whole-plot treatments is proportional to (Us

~and on the split-plot is ( ] Disregarding the difference in the number of df, the
fficiency of the split- plot design relative to randomised complete block demgn on the B and
lheA x B comparison is :

' (0-D4+r=D(p=Disg +lg-D+g-D=plg-1r- ”"!:‘

E = (pgr - r)ﬁ‘r
- 1)s; +plg - 1): o B
NP 1)lll+ DsZ  (p-Dag 2 PN .16:260)
(par - r)—r-__b (pg-1eg st SLM2 1% vl

*hhlchxathewaxghtedmmmmmd':xmd'imw am o 5. ‘P“
andptq_-nmpocumlylﬁmhm mmc "‘,

o AT A IR IR Ty

; i {zﬂ F » M‘ 1 ﬂz,sw AR ;.*i L Bl SRR 12 e

?ru,} p LT Y m} ek
" s J

gt sk 'fﬂ*i‘fa'ﬂ PR “". SleSEE, L Ut
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6-7. ANALYSIS OF COVARIANCE (ANOCOVA)

The basic objective of the designs considered so far is to make the treatment comparisons
with the greatest precision by reducing the experimental error through the powerful tool of
local control. Analysis of Covariance (ANOCOVA) , like Randomised Block Design or Latin
Square Design, is a technique of increasing the precision of the design by reducing the

experimental error.
ANOCOVA is a technique in which it is possible to control certain sources of variation by
taking additional observations on each of the experimental units. Let us suppose that in an
experiment, y is the response variable and x is another variable which is linearly related to
y. Moreover x cannot be controlled by the experimenter but can be observed alongwith the y's.
The variable x is called the covariate / concomitant / independent / ancillary variable. In
ANOCOVA we adjust for the variation in the response variable (y) for the linear regression
(effect) of the independent variable (x). If this is not done, then the error mean square will be |
inflated due to the linear effect of x, thus making it difficult to detect the true differencesm
the response variable. ANOCOVA procedure is a combination of the Analysis of Variance
(ANOVA) and the Regression Analysis, Whenever it is possible to take n 1
observations on one or more of the variables from each of the experimental units in the
design alongwith the response variable under study, the ANOCOVA technique has proved ¢
be useful in many fields of research. : _ S
We give below some illustrations for the use of ANOCOVA by identifying the response
variable (y) and the concomitant variable (x). g T e e S R
Illustration 1.Suppose we want to compare the effect of some rations (diets) the.
weight of animals, We can analyse the data by performing the ANOCOVA by rega

y : the final weight of the animals taking the ration
(days / weeks / months) as the response variable.
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the initial weight of the animals at the time of starting the experiment as the

concomitant variable.
To ensure that the real differences in the final weights (y) are due to rations, we must adjust
for the linear effect of the initial weight (x) on y.

Illustration 2. Suppose we want to compare the differences in the strength of the
filament fibre (y) produced by different machines. Obviously y depends on the thickness (x)
of the fibre-thicker the fibre, stronger it is. The effect of the thickness (x) on the strength (y)
can be eliminated by performing ANOCOVA between the response variable (y) and the
concomitant variable (x), for testing the differences in the strength of the fibre produced by
different machines.

Illustration 3. In plant breeding experiments; suppose an equal number of seeds are
sown per plot but at the time of harvest, the final number of plants in each plot will not be
same due to certain reasons (like non-germination of certain seeds, early death of certain
plants, attack by birds / cattle, etc.) and will vary from plot to plot. The yield (y) of a crop
from different plots may depend on the number of plants (x) per plot. To study the real
differences between the yields, we adjust for the linear effect of the number of plants per plot
by performing ANOCOVA by regarding the yield per plot (y) as the response variable and the
number of plants per plot (x) as the concomitant variable.

Illustration 4. Suppose we want to compare the different methods of teaching
(classroom lectures, correspondence courses, on-line teaching, etc.) by observing the scores of
the students, all of whom take the same final examination. The variation in their scores may
not be simply due to the different methods of teaching but also due to the intelligence
quotient (1.Q.) levels of the students. Hence the proper way to compare the different methods
of teaching will be to adjust the observed data (scores) for the 1.Q. of the students by carrying
out the ANOCOVA by taking ‘the score (y) of the student’ as the response variable and ‘the
1.Q. (x) of the student’ as the concomitant variable.

The above illustrations give us a glimpse of some diverse fields in which ANOCOVA can

Xy

be used.

Remark. Choice of Concomitant Variable. The concomitant variable need not necessarily be
measurable. Even if it is a quality characteristic which cannot be measured quantitatively, e.g.,
intelligence, poverty, indifference, good / bad, presence / absence, etc., but can be suitably converted
into numerical scores, the use of ANOCOVA results in a considerable increase in precision.

6-7-1. ANOCOVA For One Way Classification With a Single Concomitant
Variable in C.R.D. Layout. Let us suppose that we are comparing v treatments #,, ¢, ...,

v

t, ; ith treatment replicated r;, ¢ = 1, 2, ..., v) times so that n Y, r;, is the total number of
i=1

experimental units. Further suppose that the experiment is conducted with a Completely

Randomised Design (CRD) layout.
Suppose that along with the response (dependent) variable y, we consider a single 3

- concomitant variable x. Then the linear ANOCOVA model will consist of the sum of two ®
components-one is the same component as in ANOVA and the second component is due to the

regression of y on the concomitant variable x.
Then assuming a linear relationship between the response variable (y) and the
toncomitant variable (x), the appropriate statistical model (for fixed effects) for ANOCOVA

for Completely Randomised Design (CRD) with one concomitant variable is given by :
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: Ly = MO+ Blxy—X.) + &5 (=12 075 j=1,2,...,1)

‘ where (in the usual notation of ANOVA)

| (i) pis the general mean effect,
(ii) o; is the (fixed) additional effec

(iii) g is the random error effect,

) . d

(iv) B is the coefficient of regression of y on X, an Fa |
: i responding to the response varj

(v) x;is the value of concomitant variable corresp riable Yy

t due to the ith treatment (i=1,2,..,0v),

g iid
sothat () ¥ o;=0ande; ~ N0, 0. . (683)

i=1 ;
. . hall now estimate the parameters "o (G :
. tion of Parameters in (6-82). We s Y e 2 2 O (=
1 2Estu;1)a z:r(:d 8, using the principle of least squares by minimising the sum of squares of |

errors in (6-82), viz., \ |
y ¥ [y,-,-—u—ai—ﬁ(xzj-f--)] . (684)
1

i=1j=

SSE =Y. X g =
iJ

The normal equations for estimating the parameters are :

%(SSE)=O=—2EZ [y,:j—u—ai—ﬁ(xu—f--)] ... (6:85)
i
2 (ssE)=0=-2 [y-n-0s-B ;=% - (68)
i j
i J
From (6-85), we get
ZZJ’y
— ... (6-88)

YYy;-uXri-Xo-BL X (x-x.)=0 = ﬁ=J—ZT=§,_
b ¢ t LJ ~ 1

[On using (6-83) and X, 2 (xg,:*;v)*e}
i J :
From (6-86), we get :

~ M
<
S

l
-
—
=>
+
2>
e
|
>
M
0
<
I
R
I
o

= iy~ (J_’--"'&i)—ﬁ-ri (5,"—5..) =0

— - A -
= Yi=V.-0-B(%.~%.) =0 R ¢
= %= (7,-5..)-B . -%.) n .._‘(:6-891_7.

- From (6-87), we get

%?[ {J’g‘j—"ﬁ",&i"ﬁ (&q-—l'f.'.)}!'(xl-iu-f..)] =0
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6-51

U

LT ({05950 -7.0+ B(E=F0-Blry=F.0) % {;-%..} ] =0
(I

[Using (6-88) and (689)]

= LE oy -50- B -7 (- 7.0] =0
o
= LI {oy -3 -Bay-x0} {xy -7+ 5. -7} =0

=0

= XX 0y —yi) iy —%.) - BEX (xy— %02
g

[ E220y-5)G-70=2 [ @ -2 20~} ] =0
L J

i

and X ¥ (x,—-%)(F,. -%.)= z [(z,.-%.) Z (x;,-%:)] =0
L
R EE(y,, -y (x, =X, )
= B= ... (6-90)
22 (xy—x,.)
Let us write Y 5
By =X X (-5 ; Ep=3 3 (yy—7:) ... (6:91) |
Lo ] i
and E, =2 z (x; —x.) Oy —¥i.) '
4 J f
Then, ‘
|
A E,,
B ZE_L .. (6-92) !

A
Substituting the estimated values of the parameter ﬁ, &,- and B in (6-84), we get

AA A _ 12 — n —
SSE =% % [y;—i-0-Bly-70] =Z T [05-7:) - B lxy—F]
[ tJ

2

=2 2 (y—y:. )%+ (Y (x— %2 - 262 2 (= %) = ¥i) '
roJ i J LJ

g o+ (E=V g _oEy g (From (6:91) and (6:92))
=B+ (go] - En25 Bo |
E. 2 '|
- SSE=E}9,——§1_ ... (6-93)
xx

E,, is the Error Sum of Squares for C.R.D.
Since (E..%E,,)> 0, thereis a reduction in SSE if we apply ANOCOVA to CRD.
d.f. for SSE = Total d. f. —d.f. due to treatments — 1 &.f. due to f.

{ —n-1)-@w-1)-1=n-v-1 ... (6:93a)
,! Under the null hypotheses : , -
Hy: All the treatments are equally effective, i.e, Hp: 0= 0= .. = 00 =
T T I O
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the model (6-82) reduces to :

Yij =W+ Play—x.) + g*
Error Sum of squares under H| is given by :

2
(SSEy* =¥ % 6;2=% X [y, —n- P (y-%.) ]
toJ 1oy

A
Normal equations for estimating |t and B’ are :

ad >
E(SSE)* =0=-22Y X [y,;-p.— B (x;i— x..)]
Loy

a?B' =0=-212_}J_:[{y;j—u—ﬁ‘(xg—f..)}{x,j—f..}]
. I3
= u.—.J—ZT = y..
= Z? [{yi-0-F @-%.0} @ -5.0] =0
= z}z Hoy=57.0-F (x;-%0 } ay-%.0] =0

ZZ(rU x. D Oy- y..)
ZZ(IU—.“L o

’

= =

Let us write :
5SSy =X X (xj—%.)%; 88, =2 X (y;— 7.2
t 4 iy
88, =2 X (=%.) (y=y..)
t

B = S
S8,

... (6:94q)

.. (6-95)

.. (6-96)

... (6:97)

.. (6-98)

... (6:99)

... (6:100)

. (610D

Substituting from (6-98) and (6:101) in (6-95), we get the restricted error sum of squares

under Hg as :

(SSE)* ZE [yu i (xy =x. )] =22 [@{;—&'..)—ﬁ'(xu—f--)]g
Ly

= ? ? [(.70—57--)2 + i!’zi 2 (xy—x..)2 = 2ﬂ’§, 3__', (x; =% 0= Y

584\2 .. SS .
g (SSn) 8- 55, S8 Using (6-100) and (6101
SS,,2
=SS, , - ~—=a 105
9S.‘r'J’ SS,, 5 (6 102)
d.f. for (SSE)* =Totald.f. ~d.f forf=(n-1)~1=n—-2 .. (6-102a)
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Hence, the sum of squzres due tn treztmenta is given By -

SST (S# =(SSEy -(88E) . N
d.f for SST =d.f (SSEV ~df (SSE)y=n—-2-(p~ps-1j=p~1
SST (SSEy* -(38E;
¢ T - g 2 - e :"‘\ ..
MST = 5, a7 = " -1 .. (6104
SSE SSE
MSE =27 = == 2.2
E d'f B—0— 1 R F g
Hence, the test statistic for testing, Hy o, =y = =0, =0 @ zvem by -
F_‘A'ST__{&_ (SSEp —-(%..E; fr:—z:-i- _ SR
MSE 52 L n-1 " SEE J: S v—-he—g-L =

WF>F _ ,_, _Jo,then we reject H, 2t ‘o0 level of signiSesmes ntmervias w= f2d =
reject Ho,
ANOCOVA Table for one Way Classifieztion (CED Layout). Let s defne -

T:: E. r; (3’” x 12 T Lr -'”2 T x

i=1

sz = z T, (zlj _xi'J r:l’q _J,'.'J
i
Then, we have

[F4
SS e, -Z =3
b t=1y
=) fxu—fz.)z + Y r(z . -z.7
£ j s

The product term will be zero, since the algebrzic sum of deviztions S mean = o0
3

-
-
|

{(J:Lf_."':,)-'{*; :--—J |
L X

M_\

"

= S8,.,=XY(x, -2  =E_ +T. TS5
L
Similarly, we can prove that
SS,, =E,, + T, . (-1
Also ss,, =2 2 (x,-x.)(y, -5
i
- — -_— — - . 1
=z z [rxlj—zt'+xl‘-z"}(yl.; — ¥ *¥—Y "”l
il
_ZZ(IU_:: D) Yy~ Y. }+ZE 15‘_‘.‘:._;-2_ "é:
P i
-1-2‘(:,—-1)2(,!.;"3‘. \*1 FE f;-—;-
LI
‘ =E,,+D+0+Tr, .
=y SS ‘_E ,-,T L 2

A Results in (6:108), (6-109), and (6 110) give the partitioning of the wial sam r’-.-'z.a..-'es
Ue by 5 x (88,,), the total sum of squares due to ¥ fSS ,) and total semy of products (S70 of =

‘ *ndy(88,,) respectively.

...
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—

Using these, notations the above statistical analysis can be expressed elegantly ag given
in the ANOCOVA Table 6-25.

TABLE 6-25: ANOCOVA TABLE (CRD)
Sum of Squares and

Products . j
Source of Variation s Esti Adjusted SS,, AdJ;;ted
df. | SS. | 8S, | 88,, | ** j:"'[‘;'t” "
Classes (Treatments) | v-1 | T, | T, .
Error n-v | E. E, E, | EE, SSE n-v-1
Total n-1| E, | Ey | E,, | EJE, (SSE*) n-2
D].ﬂ-erence (SSEI) - (SSE) v—1
(Total — Error)
Note. Ey =X (xj-%.)"=8S,, =Ty+E, ... (6-111)
LI |
Ey,, =33 (y;-y.)=8S,, =T,+E, ... (6:111a)
i
E, =§,E(x,;,-—§..)(yg*§..) =88, =T, +E,, ... (6111b) 1
J

8-7-2. Analysis of Covariance for Two-way Classification (Random Block Design)
with One Concomitant Variable. Suppose we want to compare v treatments, each
treatment replicated r times so that total number of experimental units is n = vr. Suppose
that the experiment is conducted with a Randomised Block Design (RBD) layout.

Assuming a linear relationship between the response variable (y) and concomitant

variable (x), the appropriate statistical model for ANOCOVA for RED (with one concomitant
variable) is:

Yi=H+0oi+ 0+ (x5 -X.) + g .. (6-112)
where
() pisthe general mean effect,
(i) o, is the (fixed) additional effect due to the ith treatment, (i = 1,2, ...,v);
(¢1£) 0, is the (fixed) additional effect due to the jth block, (f = 1,2, ...,
(tv) P is the coefficient of regression of y on x ,

(v) zj; is the value of the concomitant varinble cor
and

(vi) g is the random error effect so that :

responding to the response variable y;;

v r
2 0=0 _Zl 0,=0 , and ¢;'~ N(O, g, (6-1183)
= J=

Estimation of Parameters in (6:112). We shall estim
AREA U); 9_; (} = 1: 2) tery r) and BI

sum of squares in (6:112), viz.,

L)

. ate the parameters p, o, (i = 1, 2,
using the principle of least squares by minimising the error

v oor 9
SSE =Z§EU2= E E [yU-l-l*fl;“Uj*-ﬂ(xU—.‘?..)] -(6'114)
i ‘

i=1j=1
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Normal equations for estimating the parameters are :

) -
3 (S5B) =0=-2>,-:,Z [yy-n-0;—0—B(xy—%.)] ... (6:115)
%(SSE) =0="-22 [y,J—-p—tx,—Bj—B(x,__,—E)] (6'116)
' J
i(SSE) =-2% [y, -n-0;-0—B(a;-%.)] ... (6:117)
SHSSE) =2 L [{yy-n-o-0- By -0} Gy~ 5.0 ... (6:118)
(6:115) on using (6-113) gives :
Zzytj
M [ —_
H=—"1—"=y. ... (6:119)

Similarly, as in § 6:8:1, we shall get from (6-116) and (6:117) respectively :
o =(¥.-5.)-B(F.-%.)

A — - —_ —
and 0 =(¥,-5.0-B(x,-%.) ... (6:120)
Substituting these estimated values in (6-118), we get

0='2_$ [{ru-5.= (-7 -B(F.-50] - Fi-5.-BG;-F0} -By-) (xy-70]
= 0 =‘sz [{(yu--y,-._'y“.j+y..)-B(xU-§,-.-§.j+5..)} (xy -7
= g}z[{@{,_5,._5.1+§..)-ﬁ(.-c,-j_§£._z._,+§..)}
X {(x,}—fj.—i:'.j+:f..)+(§i.-§..)+(3:‘.-,--—-3':'..)}] =0
= X (=TT 47D (T —F 4TI =BT X (g =Fp =T, + T = 0,
- (the product terms will be zero since nlg;eraic sum of deviations from mean is zero).

ZZ(}!U y,—yj+y )(ru-—m, -X. +1: Ay
1

= B = —
2L (X —Xp ~X,+x. )
i J
Let us write :
) and E:J, =ZZ(IU~:_XC.,'.—E.J+E..)()'U“3'-;.—5'-._}-}':?—..)
tJ

A « .

Then, B : . (6:121)

I.‘{
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A . v
Substituting the values of ﬁ, &,-, 6J- and B in (6-114), the unrestricted error sum of 5Quareg
for model (6:112) becomes :
SSE = Minimum value of error S.S.

2

=% [y —R-6 -8Bl ~x.)] (From (6-114)]

i

2

=X X [(95-%.-5y+5.) - By -F. %+ %.)] (On simplification)

i o ) o __' 2
=ZZ(J’U“J’:'- —y..+y..)2+ﬁ ZZ.(x,;—x;-.—x.J-+x..)

Py iy

-232 2 (=% =X+ 2.) (35 =Fi =7 +7.)
J

K.,
=E_.,,y + ( ) ey — E E
=E,, - En :E”,—ﬁExy .. (6:122)
2
= Error 8.S. fory in RBD — i .. (6-122q)

Since Exyz/Exx > 0, there is reduction in SSE if we apply ANOCOVA to RBD, the

reduction in SSE due to the regression of y on x being (E2/E,) = QE
d.f. for SSE =Total d.f - (d.f. due to treatments) — (d.f. due to blocks) — (d.£. due to B)

=(rv-D-w-1D)-r-D-1=¢-Dw-1-1 ... (6-123)
Under the null hypothesis :
Hj : All treatment effects are equal, e, Hy: o, =0y = ... = o, = 0, ... (6-124)
the model (6-112) reduces to
=p+0+ B (v -x.) + g ... (6:124a)
Restricted error sum of squares under Hj is given by :
(SSE)* = ZZ ) E [y5-1-0— B Gy -.0] .. (6125)
i=1j=
The normal equatlons for est1mat1ng K, 6; and B’ are given by :
(SSE)* 0_-222 [y~ 10— B (7. ... (6:126)
— (SSE) =0=-23 [y,,- ~B =8 - B (- %.)] .. (6:127)
aB (SSEV' =0=-22 3 [ {3y~ -0~ ' (v 5.0} (x ~5.) | .. (6:128)
2 Xy

7 £ Ll

Equation (6:126) = o =Y. ... (6:129)

A
W=
Equation (6-127) = Z[yu ~fi- 9 /ﬁ(x j—X. )] 0

___—d
T T T T T T e ———
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= v_)_i.j—vjf'..-vaj-a'vG:'.J--—E..)=O
= 6=(5,-5.0-P(z,- 7. -+ (6:130)

From (6-128), we get
LY [ay- %) {p5-5. -Gy 554 6'(3‘:.J-~E..)—ﬁ’(xu-—5r'..)}J=0
LI

= IX[ey-%) {0y-F)-F =%} ] =0
LI |

= ,E JZ[(.‘I',J'—E-J +E.J;—.'_f.-) {(y,}~‘)7.J)—ﬁ'(xu~fJ)}] =0

= ; ;z (x5 -x.;) (yij=¥.,) - ﬁ' b33 (x;j —x.)2= 0, the other product terms are zero.
g 2 ¥ (x5-%.) (¥i-5.)
= = ...(6-131
2 ¥ (x; -3, N
i

Let us define :
E)/=2X JE @y — X B =3 3 (y; —V ) Ey =3 X (x, —X)(yy= ¥  ...(6132)
i [ LJ
E r
_ Etey
Br=5 .. (6133)
Hence, under Hy, the restricted error sum of squares is given by :
(SSE)* = Minimum value of error S.S. in (6-125)

2
=23 [y~ - (x-7.0] [From (6125)]
L |
2
=23 (= 70 -B (x5-7)]
i)

=X X (yy =52+ B2E X (5~ -2 P I (1~ 7 (- 7.
Lo iy iy

EJ.‘ 12 ’ E—")" ’ g .
=E, + ( E——:,) By -2 ( E,,’) (E,y")  [Using (6-132) and (6-133)]
-g, - Zo” 2 ... (6:139)
e T x_'c'

d.f. for (SSE)* = Total d.f. — d.f. for Blocks —d.f. for p
=(wr-1)-(r-1)-1=vr-r-1=r({v=- 1')— 1
*» Adjusted sum of squares for treatments (SST = S,2) is given by : 6130
SST (S,?) = (SSE)* — (SSE) |
Where (SSE) and (SSE)* are given in (6-122) and (6-134) respectively. |
. | |
df (SST) = I.i.f. (SSE)* - fi' f (:s*su) sy s et bl
=[rv-1)=1~[(r-1) (v e hpion

... (6:135)
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SST S72 _ (SSE)*-(SSE)

'—_'_-'_—_-_‘__.—— .
MST(SF):_&?._ = d.f = U"‘l i (6 1?%)
Hence the Test statistic for testing, Hy:op=0g=...=0 is given by :
: ~De-1-1
F =ﬁg£ = [(Ssﬁ))_—ll)SSE] X s _1—).8(}.)8}3- ) ~HFy_1,(r-Dw=-1=-1 - (6-:139)

is rej ‘o level of significance, otherwise we fai
fF>F, | nw-n- (o) then Ho s rejected at ‘o le gn ail

to reject Hy.

ANOCOVA Table for RBD. Let us write :
SS,, = Sum of squares duetoy =2 2 (yij -5.)°
Loy

2
_S S [(ry=Fe -5y +5.0+ (FemF) + (F5-5]
iJ

ST (T Tyt TP+ S (T T v 2T =5
i Jj i i

=E,, + T, +B; ... (6-140)
where T,, =r Z (¥i- —y..)% is the treatment S.8S. for y for RBD

By, =v X (y.j—7..)" is the block S.S. for y for RBD

and E, =2 X (yj—¥e—-y;+ y..)% is the error S.S. for y for RBD.
P
Similarly, we have

SSy = X X (x-%.)" = By + T + B ... (6141)
g

Sny = Z Z(Ig —E) (y,-j —5)
i
=33 [{(ay =T %+ E) + (X =F) + (Fy-%0
iJ

x {3 =i =5+ F.)+ (Fi=¥.)+ (Fy=F.0} ]

=Z Z (xij“;"‘_E'j"'-:f--)(y:j_yi'_:}_’u "'5;)
L

+ z r a, —I) (i,—:-}:') + 2 U(TJ—T)\S'-J";).

J
all other product terms will be zero.

SP,, = E, + Ty, +B,, .. (6:142)

where T, = E:: r(x.-x.)(y.-y.) and B, =Ev(§_j_§._) (F=5.).. (6:1420)
J

Results in (6:140), (6:141) and (6:142) give the partitioning of the total sum of squares

due toy (S8S,,), the total sum of squares due to x (SS,,) and {1 : . .
and y (SP,,). =) and the total sum of products (SP) of x
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Using the above notations, the above statistical analysis can be elegantly expressed in

the ANOCOVA Table 6-26.)
TABLE 6:26 : ANOCOVA TABLE (RBD)

E Sum of Squares and 1
| Sources of df Products Estimate | Adjusted | Adjusted d.f. !
; Variation “ SS.. SS,, 8P, of B SS,,
f Blocks r—1 By B B
' Treatments v—1 o/ ¥ Ty 6 E,

Error r-@-1D-1|E, E, E, " E,, SSE |(r-D@w-1-1
Treatment By . EJb. Bt i

+ Error riv-1) ' - = ﬁ = gf- SSE* rie-1)-1
Difference (SSE)* 1

— (SSE) °-
Note that E.'=Tu+E,; E,/=T,,+E,, and E,=T,+E, ... (6-143)

Example 6-8. In an experiment on cotton with 5 manurial treatments, it was observed
that the number of plants per plot is varying from plot to plot. The yields of cotton (Kapas)
along with the number of plants per plot are given in Table 6:27. Analyse the yield data
removing the effect of the variation in plant population on the yield by analysis of covariance
technique and draw your conclusions. The design adopted was a R.B.D. with 4 replications.

Treatments : 5 Levels of Nitrogen :
N{)=O, N1=20, N2=40, N3=60&ndN4=80kg”la. ; l

TABLE 6-27: YIELD OF COTTON (NUMBER OF PLANTS) PER PLOT

Replicate I NI No N~I lv-_) ) J.Vs )
12-0 (24) 10-5 (30) 27-0 (30) 16-5 (28) 250 (35)
Replicate I1 N; N; No Ny f_\t ﬂ
260 (40) 20-0 (25) 12:0 (25) 26-0 (22) 15-5 (28)
N N,
. N. Ny N3 Ny e
Replwate m 22.0 ?32) 30-0 (35) 200 (.?4) 20-0 (35) 143 (30)

Also obtain :

(i) Average variance for the compartso
(ii) the gain in precision obtained on us

Solution. We set up the following hypotheses !
Null Hypotheses.

H01571=T2“13=T4=T5’

ns of treatment means, and
ing ANOCOVA over RBD.

i.e., the treatments are homogeneous.

: ¢ reneous.
: e« B b by bes iy the blocks or replicates ara LomogST
: i OR : 1= 02 = Dg= 04, &-&» ‘ _

- Alternative Hypotheses: -
. Hy,: At least two 1;'s are different.

| :7'} i Hy; : At least two bj's are different.
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We shall use the ANOCOVA technique to test these hypotheses.

y : Yield of cotton per plot;

x (Concomitant variable) : Number of plants per plot

TABLE 6.28 : CALCULATIONS FOR VARIQUS SUM OF SQUARES _
Yield of Cotton (in kg.) along with the number of{Jlants per plot
Treatments | Replication I Replication II Replication I1I| Replication IV Total—_
X y X y x y x g X y ]
N, 300| 105! 250| 120| 300| 145| 240| 85| 1090| 455
N, 24.0| 12.0| 28-0| 155| 350| 200| 260 19-0| 113-0| 665
N, 28-:0| 16-5| 25-0| 20-0 320 22-0 35-0 25-0 | 120-0 835
N3 35-0| 25-0| 400! 26-0 24-0 20-0 16-0 18-5| 1150 89-5
N, 300 27-0] 220 260 35-0 30-0 30-0 29-0 117-0| 112-0
Total 147-0 { 91-0 | 1400 99.5 | 156-0 | 106-5| 131-0 | 100-0 | 574:0| 397-0
=Gx)| = G(y)
In the usual notations, we have
n =vr =5x 4 = 20; G = Grand total of all the observations.
For x. G=G(x)=574-0; n=20
2 4)2 29,47
CF (Correction Factor) = [G)] = (574) = St L =16,473-80
n 20 20
RSS,, =2 X x;2=30%+252 + ... + 352+ 302
i J
= 3,001 + 3,261 + 3,658 + 3,657 + 3,509 (Row-wise S.S.)
= 17,086-00
Total S.S. (SS,,) = RSS,, - CF(x)=17,086-00 — 16,473-80 = 612-20
1472 + 1402 + 1562 + 1312
R,. =SS (Replications) = - —— == = CF(x) = 218 _ e

= 16,541-20 — 16,473-80 = 67-40
1092 + 1132 + 1202 + 1152 + 1172

T,, =SS (Treatments) = 1 — CF(x)
65,964
=74 - C.F. = 16,491-00 — 16,473-80 = 17:20
E,, =SS(Error)=T,,~-R,, ~ T,, = 612:20 — 67-40 — 17-20 = 527-60
Fory.
[GH2 (39702 157609
CFy) == —="%5 =9 —="7.88045

RSS,, =% ? ¥ =(10:5)2 + (12:0)2 + .., + (30)2 + (29)2
= 536-75 + 1,145:25 + 1,781-25 + 2,043-25 + 3,146-00 (Row-wise 5.S.)
= 8,652:50 :

i

Scanned with CamScanner



V. < I N S ¥ ) - BT s T Y WA ¥ I TR W N TEE A TR TS R S T T A S WS R e — =

DESIGN OF EXPERIMENTS 6-61

) Total SS (SS,,) = RSS,, - CF(y) = 8,652:50 - 7,880-45 = 772-05
(91:0)% + (99-5)2 + (106:5)? + (100-0)?

R,, = SS(Replicates) = g - CF(y)
é
. 39,523

= =570~ CR() = 7,904-70 - 7,880.45 = 2425

.5)2
7,, = SS (Treatments) = 09"+ (666)? 4 (8352 + (89-5)2 + (11207 _ 0\
4
34,019

= S5~ CF(y) = 8,504-75 — 7,880-45 = 624.30
E,y =SS(Error) = SS,, -~ Ry, - T, = 772.05 — 24-25 — 624-30 = 123-50

For Product xy. S.P. = Sum of Products
_Gx)Gly) (574.0) x (397-0) 227878
CF(xy) = n = 20 == 2’0 =11,393-90

RSS (Products) = RSS,, = 3.3 xy = (30-0 x 10-5) + (25-0) x (12-0)
+ ... +(35-0) x (30-0) + (30-0) x 29,0)
; 1,12”57)34-1.-010,916 +2,541 + 2,691 + 3,302 [Row-wise sum of products xy]
Total SP(xy) = RSS(Products) — CF (xy) = 11,704-00 — 11,393-90 = 310-10
R,, =SP (xy) for Replicates

1
= [(147:0x 91:0) + (140-0 x 99.5) + (156-0 x 106-5) + (131-0 x 100-0) | - CF (xy)

57,0210
B 5
T,, = SP(xy) for Treatments

— CF (xy) = 11,404-20 — 11,393-90 = 10-30

1
= 7 [(109-0 x 45:5) + (1130 x 66-5) + (120-0 x 83-5)

+(115:0 x 89-5) + (117-0 x 112:0)| - CF (xy)

45,890-5
=
E,, = SP(xy) for Error = Total SP(xy) - R, - T,,
=310-10 — 10-30 — 78-73 = 221-07
TABLE 6-29 : SUM OF SQUARES AND PRODUCTS

— CF(xy) = 11,472-63 — 11,393-90 = 78-73

Verasion 4 55(x°) SS(xy) S5 y9 MS(yy) Foy)
; D @) (3) (4) (5) (6)=(5) + (2
Replications | 4—1=3 | R, = 6740 |R,=1030 | R, =2425 8-08
| Treatments |5-1=4 |T,=1720 |T,=7873 |T, =62430 | 15608 %@-299;& - 1517 '
Error 3x4=12 | En=52760 E, =221-07| E), = 123:50 10-29 SRl K :
:ﬁi 20—1=19| SS,, = 61220 | S,, = 310-10| SS,, =772:05 s
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1d (y) from plot to plot for the linear (regressim') :

We shall now adjust for variation in yie _ ! .
effect 2; the number of plants (x) per plot. An estimate of the coefficient of regression (8) of

y on x is given by :
221-07

E, "
et 5 =0-4190 = 0-42
B= E. = 52160 . o
The adjusted (corrected) error sum of squares for y, adjusted for this linear effect ig
iven by :
gl y | (B, 2
Adjusted Error S.S. for y = Adjusted (E,,) = E,, — ﬁ E,=E, — —“‘LEM
(221-07)?
= 12350 — o~ — 123-50 - 92-63 = 30-87
= 123:50 527-60 123-50 — 92-63 = 30

(OR : BE,, = 0-4190 x 221-07 = 92-63)

The estimation of ﬁ results in loss of 1 d.f. for error sum of squares, which now becomes
12-1=11.

Next, the variation in treatments is also to be adjusted for variation in x. For this, we
prepare the following Table 6-30, for (Treatments + Error) sum of squares.

TABLE 6-30: S.5 AND S.P. FOR (TREATMENTS + ERROR)

Source of Variation SS(x2) SP(xy) SS(y2) ‘
Treatments T, = 17-20 T,, = 7873 T,,=624-30 |
Error E,. =527-60 E., = 221-07 E,, =12350 |
Treatments + Error E,, =544-80 E,’ =299-80 E, =1747-80 |

sz’ = Txx + Exx , Exy’ = Txy + Exy ’ Eyy’ = Tyy + Eyy
The S.S. for (Treatments + Error) for y is adjusted for linear (regression) effect of x on ¥
exactly similarly as the error S.S. and is given by : )

SSE™ = Adjusted S.S. for (Treatments + Error) for y = B -t

.80)2
= 747-80 - %%Lo) = 947-80 - 164-98 = 58282
Finally, the ‘Treatment 5.5 for y adjusted for the linear effect of x on y is given by :
Adjusted (Treatment 5.5.) for y = SSE* — Adjusted ( E,,)
= Adjusted (Treatment + Error) .S, for y - Adjusted Error S.S. fory
= H82-82 — 30-87 = 551-95

TABLE 6-31: ADJUSTED ANALYSIS OF VARIANCE TABLE

Source of Variation d.f. S.8. MSS. Variance Ra“'",__:jj J s
(1) (2) B [ (@)= (@) v en - Fr o !
Treatments 4 55195 | 13?-9_9_';_»_'1‘,1_% 13221}93 w011
e oyl | 12 Lw 1l 3087 | 281 |
{ Treatment + Error, ). 16~ 1=15 | 58282 o
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Conclusion. Tabulated Fy 11 (0-05) = 3-36.
Since the calculated value Fy = 49-11 is much grater than the t
is highly significant. Hence, we reject {he null hypothesis of equality of treatment means and

conclude that the treatments diffey significantly as regards their effect on increase of yield

of cotton. Moreover, from Table 6 28, we conclude that the treatment N, is the most effective,
followed by N3, N3, N; and N, respectively,

(i) Comparing two Treatmen

abulated (critical) value, it

t Means. Since the v lds f iff
ditfer signiicantly, wo proect b Sty ¢ yields from different treatments

' X pairs of treatment means differ gj ificantly.
For this, we shall first adjust the treatment mean yields for the regression of yieldin(y) on th};
number of plants (x) per plot. The adjusted mean yield (Y;) for the jth treatment is given by :
Yi=5i-B(z-%)

... (6-144)
where x; and ¥, are the observed mean valy :
respectively for the jtL, treatment. so fho s es of the number of plants and the plot yield

- I < x; 1/ .
= _-— = yl'
1 rjglxu 4 ] yx""rjglyuzz
= 1 Gx) 574
B.I]d X == i mm—— L =2
n ‘T‘ Jz-x‘f n - 90 -
Substituting in (6-144), we get
?i =5’_i—0'42(5i—28'7) (*)
TABLE 6.32: ADJUSTED MEAN YIELDS
Average = - A : ) ==
Treatment Plant No. _ ;L ; 8.7 ﬁ (%-%) (I}]:Tsc%;u:}:tiiid) Adjugied mean ;f]
- =X — 20 =042 (% — 9RQ. =V — .~ 287) |
7 2(%-287) 5 Yi-B & -287)
1: N, |109 -1 -0 . . ]
0 o 2725 43 0:61 —ié =11-38 Y,=1199 i
|
2:N 113 66- v
1 4= 2825 | —0-45 -0-19 % = 16-63 Y, =16-82 t}
3:N 120 83:5 v I
: —2— = 30-00 1-30 0-55 4 =20-88 Y3=2033 i
4: 5 895 ¥,-2236 |
N3 | 115 = 28-75 0-05 0-02 4 =22:38 Y =2236 |
. |
. 112 V. = 0. f
5:N, 14i?_=29'25 055 0-23 -4____28.00 Y5 =2777 !

Next we have to obtain the standard error (S.E.) of the differen(.:e between pair of
adjusted treatment means. Finney proved that the average S.E. of the difference between a
Pair of two treatment means is given by :

; 2 »
gﬁé ( " M.S.S. due to treatments ﬁ:)r;u:)”2 - 2spr (1 +__§J_)]

> E:x —r— (U - 1) Eu

SE(Y;-Y)= [

... (6:145)
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where sﬁu = Adjusted M.S.S. due to error (Table 6-31)
and r = Number of replications ; v = Number of treatments.

Substituting the values from Tables 6-:31 and 6-29, we get

2 x 2:81 —ﬁ'—zo—-)]m—[mos (1+ 4-30 ”uz
Z (“4x527-60 = 52760

SE.(Y;-Y) =

= 1405 x 1-0081 = \/1-4164 =1-19 . (%)
Average variance for comparing two treatment means = 1-4164.

Critical difference (C.D.) between two adjusted treatment means is given by :

C.D.(Y;-Y) =S.E. (Y, —Y) X tyqg5 (for adjusted error d.f)
=1-19 X ¢;; (0-025) = 119 x 2-201 = 2-62
Two treatment means will differ significantly if :

Y;-Y; > CD.(Y,-Y) =262
From Table 6-32, we conclude as follows
Treatment 1 (V) differs significantly from each of the treatments 2,3,4 and 5.
Treatment 2 (N,) differs significantly from all other treatments.
Treatment 3 (N,) differs significantly from treatments 1,2 and 5.
Treatment 4 (N3) differs significantly from treatments 1,2 and 5.

Treatment 5 (N,) differs significantly from the treatments 1,2, 3 and 4.
Treatments 3 and 4 do not differ significantly.,

Al

Since the average yield Y is maximum, treatment 5(N,) is the most effective in
increasing the yield of crop.

(it) Efficiency of ANOCOVA over Simple R.B.D.

The variance of the difference between two treatment means without adjusting for the
linear effect of the concomitant variable x, Le., for simple R.B.D. is given by :
2 53 (for y) 2E,,

Bo

Vi=W5-5)=

[From Table 6-29}]

(£) The average variance (V) of difference between two adjusted treatment means,

adjusted for the linear effect of x on y is given by :
Vo=V(Y,;-Y)=14164 [From (*)]
(ii) Efficiency of ANOCOVA in RBD over simple RBD is given by :
7= Tiieg = 36324
Percentage gain in efficiency = (3-6324 - 1) x 100% = 263:24% = 263%
The gain in precision is 2:63 times.

e R SRR 5 T o)
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