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!fg DESIGN OF EXPERIMENT
N DE S 6-83

M 6-9. FACTORIAL EXPERIMENTS

So far we bave CODSIC.lered the testing of a number of treatments, not necessarily related
to each other, in Randomised Blocks, or Latin Squares or Graeco Latin Squares. In industrial
: apphcat.mns frequently we kn.ow that several factors may affect the characteristics in which
F we are interested, and we wish to estimate the effects of each of the factors and how the
effect' of one factor varies over the level of the other factors. For example, the yield of a
chemical process may be affected by several factors such as the levels of pressure,
temperature, rate of agitation, and proportions of reactants, etc. One might try to test each of
the factors separately, holding all other factors constant in a given experiment, but with a
little thought it might be clear that such an experiment might not give the information

Bl required. The logical procedure would be to vary all factors simultaneously, i.e., within the
framework of the same experiment. When we do so, we have what is now widely known as a
m factorial experiment.

are particularly useful in experimental situations which

require the examination of the effects of varying two or more factors. In a complete
exploration of such a situation it is not sufficient to vary one factor at a time, but that all
combinations of the different factor levels must be examine in order to elucidate the effect of
each factor and the possible ways in which each factor may be modified by the variation of
W~ the others. In the analysis of the experimental results, the effect of each factor can be
determined with the same accuracy as if only one factor had been varied at a time and the

interaction effects between the factors can also be evaluated.

In the foregoing experiments performed either in C.R.D. or R.B.D. or L.S.D., we were -
primarily concerned with the comparison and estimation of the effects of a single set of
treatments like varieties of wheat, manure of different methods of cultivation ete. Such
experiments which deal with one factor only may be called simple experiments. In factorial
experiment’” , as the adjective factorial indicates, the effects of se.veral factors of variation are
studied and investigated simultaneously, the treatments bemg.all the combinations of
different factors under study. In these experiments an at}:empt 18 m_adfa to- estnnatf: the
effects of each of the factors and also the interaction effects, i.e., the variation in the effect of
one factor as a result to different levels of other factors.

As a simple illustration let us consider two fe}-tilizers , say, Potash (K) and Nitrogen N,
Let us suppose that there aré p different varieties of Potash and ¢ different varieties of
N e A vaad a s oot o e RS PR R NCRED TR
find the effectivent s of vu'“’”%% ‘ - Nitrogen. A seg'ies of
s o lengthy and costly
and might stil 7 ik gy
conditions. Mo ' onanrgfml;lg aghout
i he variations in
x q factorial
n. In general, if
experiments

The factorial experiments
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d 3%-experiment meap,
23.experiment means an experiment with 3 factors at 2 levels each an p ans
an experiment with 2 factors at 3 levels each.

Advantages of Factorial Experiment.

1. It increases the scope of the experiment an
by giving information not only on the main factors i

2. The various levels of one factor constitute replications of oth
amount of information obtained on all factors. ; ; ; :

3. When there are no interactions, the factorial design gives the maximum efficiency ip
the estimate of the effects. ! y 3L ;

4. When interactions exist, their nature being unknown a factorial design 18 necessary to
avoid misleading conclusions.

5. In the factorial design the effect of a factor is estimated at several levels of other
factors and the conclusions hold over a wide range of conditions. :

Basic Ideas and Notations in the 2"-Factorial Experiment. Let us first consider t‘he
design of the form 2" in which there are n factors, each at two lev.els. Le\.rels may be quite
literally two quantitative levels or concentrations of, say, a fertilizer or it may mean two
qualitative alternatives like two species of a plant. In some cases one level is simply the
control group, i.e., the absence of the factor and the other is its presence.

In order to develop extended notation to present the analysis of the design in a concise
form, let us start, for simplicity with a 22-factorial design.

6-9-1. 22.Factorial Design. Here we have two factors each at two levels (0,1), say, so
that there are 2 x 2 = 4 treatment combinations in all. Following the notations due to Yates,
let the capital letters A and B indicate the names of the two factors under study and let the
small letters a and b denote one of the two levels of each of the corresponding factors and this
will be called the second level. The first level of A and B is generally expressed by the

absence of the corresponding letter in the treatment combinations. The four treatment
combinations can be enumerated as follows :

d its inductive value and it does so main]ly

but on their interactions. '
er factors and increase the

agbg or ‘I’ : Factors A and B, both at first level.
abp or a : Aatsecondlevel and B at first level.
agby or b : Aatfirstlevel and B at second level.
ajby or ab : A andB both at second level.

These four treatment combinations can be compared by laying out the experiment in
(1) R.B.D., with r replicates (say) , each replicate containing 4 units, or (z7) 4 x4 L.S.D., and
ANOVA can be carried out accordingly. In the above cases there are 3 d.f. associated with the
treatment effects. In factorial experiment our main objective is to carry out separate tests for
the main effects A, B and the interaction AB, splitting the treatment S.S. with 3 d.f into
three orthogonal components each with 1 d.f. and each associated either with the main
effects A and B or the intersection AB.

Main Effects and Interactions. “Suppose the factorial experiment with 22 = 4
treatments is conducted in r-blocks or replicates as they are often called. Let [1), la], [b) and
lab] denote the total yields of the r-units (plots) receiving the treatments 1, a, b and ab
respectively and let the corresponding mean values obtained on dividing these totals by r be
denoted by (1), and (ab) respectively. The letters A, B and AB when they referto
numbers wi ma ue to the factors A and B and their interaction AB
ReEpretvelny L e 4 o

o
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The effect of factor A can be represented by the difference between mean yielda ghtained

: pach Jevel. 5
a7 fhus the effect of factor A at the first level by of B = (abg) ~ (aghg) = (@) = (1) (s.f;a ,
simil“ly' the effect of A at the second level b, of B = (a1by) = (aghy) = (@b) = (b) . (62

hese two effects in (6:212) and (6.2124) are termed as the simple effects of the facte *

fhe average o.bserved effect of A over the two levels of B is called the main effect %€ toA
d 8 defined by :
1
A= [@h)-®) + @-)] el
A simplified form of (6:213) is given by :
A=3@-1)(b+1) o IS0

ere the right-hand side is to e expanded algebraically and then the treatment
combinations are to be replaced by treatment means.

Arguing similaz_'ly we shall get the main effect due to factor B as
J: g [
2 (@)~ +®)- ()]
3 B=3@+1)(b-1) _(6-214a)

where, again, the right-hand side is to he expanded algebraically and the treatment
combinations are to be replaced by their means.

The interaction of two factors is the failure of the levels of one factor, say, A to retain the
same order and magnitude of performance throughout all levels of the second factor, say. B.
If the two factors act independently of one another, we should expect the true effect of one to
pe same at either level of other. In other words, we should expect that the two expressions
observed in (6:212) and (6:212a) were really the estimates of the same thing. On the other
hand, if the two factors are not independent, the two expressions in (6:212) and (6-212a)
will not be same and the difference of these two numbers is, therefore, a measure of the
extent to which the factors interact and we write the two-factor interaction or the first order
interaction between the factors A and B as :

AB=} [(@b) -(5) - (@) + (D] .. (6:215)
or AB=3@-1(b-1) ... (6-215a)

where, as usual the R.H.S. is to be expanded algebraically and the treatment combinations
are to be replaced by the corresponding treatment means.

Remarks 1. From (6-214), we get an expression for the interaction of factor B with the factor A as

... (6-214)

BA =} [(@b)-@-® +®] ... (6:216)
=3@-10k-1) ... (6:216a)

which are same as the expressions in (6-215) and (6-216a). Hence, the interaction AB is same as the
interaction AB which implies that the interaction does not depend on the order of the factors.
k
2. Contrast (Definition). A linear combinction ‘21 cit; of k treatment means ¢; (i = 1, 2, ..., R) is
ok

called a contrast (or a comparison) of treatment means if Zl ¢; = 0. In other words, contrast is a linear
l=

combination of treatment means such that the sum of the coefficients is zero.
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§ hat the main effecty A
NE treatment means is zero. 5) it can be easily %{}':naltao observe that for the ng?na
Thus from (6:213), (6:214) and (6-121 troatment meansh ding treatment means ig -
as the i;lh’t:metion AhB are m““‘;’tﬁe‘ﬁe\l%cien“ of correspo
. Sum of the product o
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imilarly verified th ¢ th
e, e wai fects A and B are orthogonal contrasts. It can be si e
., ain e an

and AB are orthogonal to each other.

mbinations. Then
3. Let M denote the mean yield of the four treatment co

. TABLE OF SIGNS AND Dy
T AN EFFECTS AND INTERAGY
M=}[(ab)+(a)+(b)+(1)] :

ORS
OF INDIVIDUAL TREATMENT MEANS

4
N TE\’R"N‘%
|
=4 (a+1)(b+1)

foricl Treatment Mean .
.(6:218) | Fac ) Diyjg,,
g » @ ‘
as usual. The general mean M and the three effects
Mutually o

(ab)
A + 25 + \
rthogonal contrasts, viz,, the M 4 u y >
Man effects 4 anq B, and the interaction A 3 -
'€ Summarised in terms of the means B - s X Y
of the treatment combinations in the ‘ ¢

The signs for the mean effi

’ :
ects in Table 6-38 can be easily written according to the followipg W
w1, IS8 561 1o cach of th S e e o e T et
1 i tive sign. Thus, L Ter] : 5 3 : )
:?i%ocx:g ff’uf’si;iwtf %egl gvi?reaflrtl;gg&;vtrea%ment combinations which contain the COI’I‘espondmg .
letter otherwise a n
vario

s ; i interaction, the SIENS to he at
i s to be given. For a two factor in 10n, tacheg
Us treatment rgggf:l; grségolllatlained bglcombining (multiplying) the signs of the €oTresponding am
effects.

m
s of the ahove table enable us to express the factori
- Un solving the equations (6-213) to (6-21
columns of the

Table 6:38 enable us to express th
example, we ghal] get

al effects in terms of the
5) and (6:218) for (a), (b), et

reat
- We shall finq 4y,.nent
e treatment means in terms o

fthe factorig) effectzt. g;:
@b)=M+}[A+B+aB] . (6219
(@)= M+ [A_B_AB] . (6:219q)
and 8o on, the only point to be noted 18 that the factor 3 occurs with all the termg except M.
The Table 6.38 also enables ug to express the sim
(@) -(1) =

ple effects in termg of the factoria] effects, e.g,
first level =A _ AR
Simple effect of A when B is at

(From Table 6-38) .. (6:220)
second level = A + AB
hus we gee that if the interactiong are ah

(From Table 6:38) ... (6:2200)
sent, i.e, if AB = 0 then

A=(a)-(1)= (ab) - b)

L.e,, the simple effects ar

... (6:220b)
€ equal to the maip or factorja] effects. Thug the interaction AB may be
Interpreted ag 4 measure of the error committed ip estimating the effect of A if the factors A
assumed to he independent,

and Bare

=4
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g. From the expression (6:9184) (4. |
oy fhcw;in;l ict:hel l}‘. .Sl.;f ;.he letter i’.(g r::::t) :,f'fh?i"éb“" we oheetvs Lhab & miniis sign appents id
stica’ Analysis of gt oft,
let;D' or L.S.D. and t}:{s!th‘:mm' Factorinl oxpoeriments are conducted either in CRD.
o *“the treatment 8.8, ig g lit Y can be analysed f; the usual manner o% that in this
case dy been pointed out thatp th nto three orthogonal components each with 1 d f 1t has
a:'r;‘a ;tnt:\ain effects A and B, and the interaction AB are mutually
0 tained by multiplying the squar eans. The 8.8, due to the factorial effects A, B and AB 13
ob o effects are usually compyt €8 of the factorial effects by a suitable quantity, In practice,
ther‘l"l the treatment means (a)p& )ed from the treatment totals [a], (5], lab] ete., rather than
o (A] 1), ete, Factorial effect totals are gi’ven by the expressions :
= [ab] e [b] + [a] o [1] }

(B] = ab] + [p) - la] - [1)

.. (6-221)
[AB] = [ab) - la] - [b) - [1]

g.S. due to any factorial effect ; . Yz
rtrl::ffsxctor (1/4r), where r is the :oc tis obtained on multiplying the square of the effect total by

mmon replication number (c.f. Remark 7 below). Thus

S.S. due to main effect of A = (4)Y4r
S.S. due to main effect of B = [B1Y4r l ... (6:222)
ol S.S. due to interaction AB = [AB)Y/4r
each with 1 &, :
TABLE 6.39: AI;IOVA TABLE FOR FIXED EFFECT MODEL TWO FACTOR
(2°) EXPERIMENT IN R.B.D.IN ‘r’ REPLICATES
Source of Variation df. S.S. MS.S. Vi e R
Blocks (Replicates) A | g2 2 Sk Fr=sz/sE
X BT (r=1)
Main effect A 1 | S2= A SR Fo=si/sz
Main effect B 1| S%= Bl sRass Fp=sp/sg
Interaction A x B lyls JiBiamlABIS 4R oo oiot ks Fap=si/SE
Error 3(r-1) S?.; = By subtraction s,2g = SIZ,;/ [3(r - 1)
Total 4r-1 LX-y-7
iJ

Here each of the statistics Fy, Fg and Fyp follows central F-distribution with [1, 3 (r — 1)]
d.f. If for any factorial effect, calculated F is greater than tabulated F for [1, 3(r — 1)] d.f. and
at certain level of significance ‘say’ o, then the null hypothesis H, of the presence of the
factorial effect is rejected, otherwise Hy may be accepted.

Remarks.

6. The S.S. due to factorial effects A, B and AB, each with 1 d.f. will add up to the treatment S.S.
with 3 d.f.

7. If T, is the treatment total for the ith treatment replicated r; times; i = 1, 2, ..., k then the

contrast of the treatment totals is given by the linear combination
k

k
u= '):1 ¢; T, where _El eri=0 ... (6-223)
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S.S. due to the contrast u is given by : :
s _U (e
St =3 o 223
Thus the S.S. due to the main effect A,‘ where [A] is a contrast of treatment totals c.f. (6-223 is
given by : X P
SA = T— o= 4r 1 2%}
2rl [y

=1 ; 5
Similarly we can obtain the expression for the S.S. due to B and AB as gfl\{;in m‘(6-222)_
8. The factorial effects can be expressed in terms of treatment totals as follows :

1 [labl 1), fal_[1]

2 r r r

Main effect of A = [ (ab) - (8) + (@)~ (D] =

= o~ [ ab] - 8] + [a] - (1] ai'e
T 2r 2r
Similarly, we can obtain expressions for B and AB. Thus
Main effect of A = [A)/2r
Main effect of B = [B)/2r }
Main effect of AB = [AB)/2r

9. We can test the significance of the factorial effects directly from the factorial effect totals without
applying the F-test as in ANOVA Table.

.. (6:924)

The standard error for any factorial effect total [A], [B] or [AB] is \V4rc,2 and the S.E. of any

factorial effect mean is YV 0,%r, where ¢, is estimated by the error mean S.S,, viz., sf. Then the

significant value for the factorial effect totals significant at 5% level of significance is given by :

d = tog5 (for error d.f.) x S.E. (factorial effect total) ¢,,_,, (0-025) x \ 4r s
whereas for a factorial effect mean, the significant value is given by :

... (6-225)

2
dl = ta(r_ 1](0'025) SE,[ r. Ky - (6'22&)

6-9-2. Yates’ Method of computing Factorial Effect Totals. For the calculation of
various factorial effect totals for 2"-factorial experiments F. Yates developed a special
computational rule which enables us to avoid specific algebraic formulae, e.g., the
expressions in (6-221) for 22-factorial experiment. Yates’ method consists in the following
steps :

L. In the first column we write the treatment combinations. It is an essential part of the
procedure that the treatment combinations be wri

: tten in a standard systematic order as
explained below :

“Starting with the treatment combination I, each factor is introduced in turn and is then

followed by all combinations of itself with the treatment combinations previously written
down, e.g., for 22 ‘

-experiment with factors A and B, the order of treatment combinations will
be 1, a, b, ab and for 23

a, b, factorial experiment with factors A, B, and C, the order of treatment
combinations will be 1, a, b, ab,

C, L] b » b ) . i - rimmt:
notations, etc. see § 6-9-3,) ac, bc, abe, and so on. [For details of 23-expe

2. Against each treatment ' i ; : the
robhigtes. ment combination, write the corresponding total yields from all |

3. The entries in the third column can be split into two halyes. The first half s obteined
by writing down in_orﬁar{:h. pairwise sums of the values in column 2e§and the second halfis
obtained by writing in the same order the pairwise differences of the values in 5608
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» the whole of th —c :
repeated on column 3, an 3 Aan: e of the procedure as explained in step 3 is
i d for 25-design, the 5th column is derived from 4th in a similar
n-— - .
png:::;or;hz 2ﬁr:: izorgla.l e";f‘el'lment: there will be n cycles of this “sum and difference”
hile the other entries i b e last, viz., (n + 2)th column always given the grand total (G)
W1"1'es ondin t:ntﬁleirm the last column are the totals of the main effects or the interactions
co40 pd 6‘-41g i]je eatment combinations in the first column of the table. In the Tables
6-40 an » we illustrate Yates’ Method for 22 and 93 factorial experiments respectively:
TABLE 6-40: YATES' METHOD FOR A 22-EXPERIMENT

Treatment Total Yield from
Combination all replicates
(L @) 3 @ Totats
T (1] (1] + [a] (1] + [a] + [b] + [ab] | Grand Total
@ [a] (6] + [ab] lab] - [b] + [a] - (1] Al
b (5] o] - (1] [ab] + [5] - la] - [1] [B] |
ab [ab] [ab} - [b] [ab] - [b] - [a] + [1] [AB] |
TABLE 6-41: YATES' METHOD FOR A 23-EXPERIMENT
Treatment | Treatment |
Combination Totals Effect
(1) (2) (3) 4) (5) Totals
q° [1] (1] + [a] = uy (say) | u;+ ug=v, | vy + vy =w, | Grand Total
a [a] [6] + [ab] =ugy (say)| ugz+ug=ve | Vg + vy=wq [A)
b [b] [c] + [ac] = us (say)| ug+ug=vs | vs+ Vg=ws [B]
ab [ab] [be] + [abe) =uy(say)| ug +ug=vy | v7+ vg=wy [AB]
c [c] [@] =[1) =us(say)| ug—uy=vs | va—U;=ws (8}
ac [ac) [ab] — [b] = ug (say)| ug—us="vg | Ug—U3=Ws [AC
be [be] [ac] — [c]l =uq (say)| ug—us—vy | Lg—Vs=1wy [BC)
abe [abc] [abc] = [bc) = ug (say)| ug—ur=vg | Vg—V7=ws [ABC)
. TABLE 6-42
Example 6-9. An exPEﬁmﬂ.-t was | Block . Fisiets (1bs per plat)
planned to study the effect of sulphate of | 1 (1) . P kp
potash and super phosphate on the yield 23 25 a2 38
of potatoes. All the cognbz'natgvga g o T o (1) k kp
levels of auper phabplidte [Q cetel 00l ¢ ’}f‘ ' A - 38
cent ‘ b Ul PEPATEY - AT
mlphate(g;) ,‘W , [0 cent (ko) and 5 cen uk ;b
(1)
) RS TR
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Solution. Taking deviation from y = 29, we re-arrange the data in Table 642 jp g

ks :
Table 6-45 for computations of the S.S. due to treatments and blocT p— 1 4,
Treatment Blocks FEWEIC
Combination I II I v Totals, T,
(1) -6 8 0 -1 -10
k =i 7 -9 2 -4
P -7 11 -9 =5 - 10
kp 9 9 1 5 24
(Block Totals) l
B, -8 24 -17 1 G=0 o
J q ..
B} 64 576 289 1

H, : The data is homogeneous with respect to the blocks and the treatments.

N=4x4=16;G=0;R.S.S.=§_:Ey,;,-2=660 L
L) il

. G2 (09 RE: |
C.F. = Correction Factor = N=16 = 0 -

Total S.S. = RSS - C.F. = 660 — 0 = 660 ol

930
Block S.S. =13 B2-cF. - %+ 97 = 29941 4 = 23250
Treatment S.S. = 4l ST2-CF. = 100 + 16 -;100 + 576 _ 722 - 108 __ ._
Error S.S. =660 —(232-50 + 198:0) = 229-50
We now compute the factorial effect totals by Yates Method.
\ TR TABLE 6.44: YATES' METHOD FOR 22-EXPERIMENT
Treatment Total Yield Factorial effects S.S.
Combination | from all blocks totals (5) = (4)214r
(1) il oo (3) ) '
i "Ml.. iy =10 ~14 0=G (0)%/16 = o=-C.F‘
cm* B 1 40 = K] (40)=l1s=100-=$
| £ .0 Q816 9=
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K 1
P % 100 100 392 512 10-56
KP { o 49 1.92 512 | 1056
Error a 49 49 1:92 512 | 1056
Total 2295 25.5 41 £ -5

otals 15 660 e - 3 e

e ——

(critical) value, there are no significant main
The blocks as well as treatments do not differ significantly.

Since the blocks do not differ significantly, we conclude that there is no special
contr%butlon from' fluctuations in soil fertility and thus the division of the whole
experimental area into blocks does not result in any gain in accuracy.

Remark. It may be noted that

Sk + S + Skp = 100 + 49 + 49 = 198 = Treatment S.S.,
as it should be.

6-9-3. 23-Factorial Experiment. In 23-experiment we consider three factors, say, A, B,
and C each at two levels, say, (ay, a,), (by, by) and (cy, ¢;) respectively, so that there are 23 = 8
treatment combinations in all. Extending the notations due to Yates for a 22-experiment, let
the corresponding small letters a, b and ¢ denote the second level of each of the
corresponding factors. The first level of each factor A, B and C is signified by the absence of
the corresponding letter in the treatment combinations. The eight treatment combinations in
a standard order are

or interaction effects present in the experiment.

‘1, a, b, ab, ¢, ac, be, abe,
where, for example
1=apbocy, a=a1bocy, ab=a1bicy, abc=aibicy, ete.

23-factorial experiment can be performed as a C.R.D. with 8 treatments, or R.B.D. with r
replicates (say), each replicate containing 8 treatments of L.S.D. with m = 8 and data can be
analysed accordingly. In 23-experiment we split up the treatment S.S. with 7 d.f into 7
orthogonal components corresponding to the three main effects A, B and C, three first order
(or two factor) interactions AB, AC, and BC and one second order interaction (or three factor
interaction) ABC, each carrying 1 d.f. As in the case of 22-experiment A, B, AB, BC, etc.,
when they refer to numbers will represent the corresponding factorial effects.

Remark. The second order interaction ABC is a slightly difficult concept t.:o grasp than !:he first
order interactions and it can be interpreted in various ways. For example, we might 1r}terpret_1t as the
difference in the interaction AB calculated at each of the two levels of C. Howevgr, in practice three
factor interactions are usually small relative to the main effects and the two factor interactions and for
practical purp'oses quite frequently they can be neglected. Very rarely, cases arise where second order
interactions are important. : actay ald ot 54 a9 W EAO0 (8D S viTs

Main Eﬂ'ect: and Interactions. Following the same notations for treatment totals and
treatment means as in 22-factorial experiment, the simple ’ﬂee‘bbfl A, (!ﬂay,  in given by the
differences in the mean yields of A as a{}!ell%lﬁ‘ ?&%’ﬁ'!%@'ﬂ 4 e sl o, o

@1, at other levels of the f: , - il v BN
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i ts.
The main effect of A is defined as the average of these 4 i i

o L(1)
A =1 [(abo) - (bc) + (ac) = () + (ab) - (b) + (@) ] ,
= 1 [((abe) + (ac) + (ab) + (@)} = ((be) + (©) + (&) +(1)

=i@-DG+Dc+1), '
where, as usual the right-hand side is to be expanded algebraically and then the ¢, Wi
combinations are to be replaced by the corresponding treatment means. Thus main effect i |

: i the plots to which the factyy
of the difference between the total of mean yields frqm : A ﬁ;i'{;
applied at second level (a;) and the first level (ap). Similarly the main effects of the famﬁw\

and C can be obtained to give

I

B =3 [{(abc) +(ab) + (bc) + b} - {(a) + (c) + (ac) + (1)}] (Gm}

=i@+ @G- (c+1) - 62280)

= ¢ [{@bo) + ®0) + (ac) + (@)}~ {(@) + (B) + (ab) + (1)} ] . (62)
=7@+ DG +1) (-1 ... (6:2299)

The average effect of A (one level of C) at the level b, of B . '
=3 [@)-©+@-)] (From (6:226)

The average effect of A (one level of C) at the level b, of B :
=3 [(@be) - (be) + (@b) - )], (From (6226)

If the factors A and B were independent then we would expect that the average effectof
A will remain the same at either level of B. In this case mean of these two average effects will
given the main effect of A, as obtained in (6:227). But if the factors A and B are not

independent, then a measure of their interaction AB is given by half of the difference :

between the average effect of A at the second and the first level of B.
Symbolically, we have

AB = [ {(@be) - (be) + (@b) - (b)) - {(ac) - (&) + (@) (1)) ]

= ¢ [{@bo) + (@b) + (¢) + (D} = {(be) + (b) + (ac) + (@)} ] | w
=%(¢;-1) (b~1) (c+1), ...(6&".‘1;

as usual. Similarly we can obtain expressions for the interactions BC and AC as given belot.

51

L BC=@+ D (b-1)(c1) v c
O S iR ed g Ty 5 1 (6' \ '-.-:
AC=1@-1B+1D(c-1) v o Nl
From (6-226), we obtain the ions i \cti . 7 \
the facior C as fulloae 5 —A?:mm W ,@xvﬁho interaction of AB at the lo\'ﬂ;%f‘“i%

Interaction of A
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» L.e., the interaction ABC is given by half the
rom the second expression. Thus symbolically

1
AB = [(abe)~ (be) - (ac) + (¢) — (ab) + () +@-)]

1
=3@-1Db-1)(-1) ... (6-231)
as usual.

Remarks 1. From the expression of various factorial effects, viz., A, B, C, AB, BC, AC and ABC in

tions (6:227) to (6 : 3 v
;?-::ent on the letzt_ © (6:231), we see that a minus sign appears in any factor on the R.H.S. if it is

2. It can be easily seen that all the seven factorjal effects, viz., main effects A, B and C, first order

interactions AB, AC and BC, and second order j i
$he treatiiont meens. rder interaction ABC are mutually orthogonal contrasts of

3. It can be easily seen from the symmetry of the results that
AB =BA, AC=CA, BC=CB
and ABC = ACB = BCA = BAC = CAB = CBA }
4. If we write M for the mean yield of all the eight treatment combinations, then

...(6-232)

M =3 [(abc)+(ab) + (ac) +(bc)+(a)+(b)+(c)+(1)]

=3@+1)B+1) (c+1) ... (6:233)

The Table 6-44 gives the divisors and the signs with which the means of various
treatment combinations are to be combined to obtain the general mean M and the 7 mutually
orthogonal contrasts, viz., the factorial effects A, B, C, AB, AC, BC and ABC.

TABLE 6-44: TABLE OF SIGNS AND DIVISORS GIVING M AND FACTORIAL
EFFECTS IN TERMS OF TREATMENT MEANS FOR 23-DESIGN

Factorial Treatment mean o LT
Effect (1) (@) (b) (ab) (c) (@c) (bc) (abc)
M + - + + + B + - 8
A - + - + - + - + 4
B = = + + - - + s 4
C - -~ - - + + + + 4 |
AB + — - + + - - + + ‘i
AC + - - - = + = i 4 |
BC + + = = - - + + 4
ABC e pe & - + - - + 4

Th ting this table for the main effects and the first order'interacti.ons is
Same ; ;&Z:Oi?;ﬁ;:igngm.. give a plus to the treatment combinations which contain the
small I ok 'di g to the factorial effects. The signs for the second order
interaction can be obtained on combining (multiplying) the signs of A, B and C or BC and 4,
or AC angifp IR TR

g - L 4_':‘ s i .

H d;"idih!-." a0 = T 7_',".:‘.:.- . "

I &y 4y LAl i 31 3 3 L =yt iy L
;’;-Wr-"iﬁﬂf"rf-%k.ﬂ'- o )’.\ Fo IO P P R
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: A, jthl
. rved at ith level of A, jth leve] opp
Model of 23-Design. If y; is the response obse 3.experiment becomes : B, \

i 2

level of C in the Ith replicate then the linear ?t;del f(':pf;) e
; a + i ki

J’w=u+0t,-+6+7,,+(aB)U+(ay),k+( )ik } ,

y J (i,j,k=0'1;l=1’2""’ r) ,(3,23{]

where y is the general mean, o, B; and Y are the Eﬂjec':s o t.he zt?fli:ilfzi: i;i};]]e‘;el of ang

kth level of C respectively, (af); and (aY)i are e it ffect of jth 1 i With j
level of B and kth level of C respectively, (B is the ‘nteraCtl.og ?thelcevelj me1 o B ong

kth level of C, (afy)y: is the interaction effect of ith level of A with ) 015 and ki, leye

of C, p; is the effect due to the Ith replicate. € whicih representuthe. error e.ﬂ'e.ct ﬂeﬁ
chance are i.i.d. N(0, 6,2). The above parameters are subject to the following restrictiong . i
1 1 r 4

and the sums
Y (@B)y, ZBVm Xl  and (0B

are equal to zero respectively, when summed over either subscript for all the valueg of the
remaining subscripts.

Statistical Analysis of 23-Design. By using the Table 6-44 of divisors and signs of a9
factorial experiment, the various factorial effect totals can be expressed as Mutyall
orthogonal contrasts of the 8 treatment totals. Thus, e.g., o

[A] = [abc] — [be] + [ac] — [c] + lab] - [b] + [a] - [1]
[AC] = [abc] = [be] + [ac] = le] - [ab) + [b] = [a) + [1] ..(6:235)

and so on. Another convenient way usually used for numerical computations of finding the
factorial effect totals is the Yates’ method as discussed in § 6:9-2.

In the analysis of 23-design we split the treatment S.S. with 7 d.f. into 7 mutually
orthogonal components corresponding to seven factorial effects, each carrying 1 df
Obviously, the factorial effect totals are contrasts of the treatment totals and hence on using
the result in (6:223a) le.f. Remark 7 § 6:9-1], the S.S. due to any of the factorial effect is
given by :

0t O

B = ... (6:236
Zl ra 8r ( !

Le., S.8. due to any factorial effect, main or interaction is obtained on multiplying the square

of the factorial effect total by 1/(8r), where r is the common replication number. Thus, for
example |
2
S.8. due to main effect A = Ar with 1 d.f.
8r Y
i ... (6:286a)
S.S. due to interaction BC = "8y With1ldf, |
and so on,
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ANOVA can : ; g
TABLEc now be carried oyt as given in the following table :
P 6-45: ANOVA TABLE FOR A 2°-EXPERIMENT IN ‘ r* RANDOMISED BLOCKS
Source of df [5G iy e sy
Variation A S.8, MS.S. = SE% Variance Ratio ‘F’
Replications : 1)—]-__—______ ¥ 5 X
o=
(Blocks) G Gk Fp="% ~Flr-1,7r-1)
r-1 Sz
Main Effects
A 1 2
Sa = [A1Y8r 6= Fu 2 syl s~ F(1,70r—1)]
2
4 x SB= [Blzfﬂr Si:S; FB=SB2J"SE2 “'"F[l, 7("—‘ 1)]
c 1 Sc? = [C1Y8r 8.2=8S¢c? Fe=sc%sg?* ~ F[1,7 (r - 1)]
1st Order
Interactions
AB 1 Sag’ = [AC)Y8r | spp2 = 8,2 Fup = sup?lsg? ~ F[1,7(r — 1)]
AC 1 Sac* =IAC)%/8r SAC? = Sac® | Fac = sac?sg? ~ F[1, r — 1)]
BC 1 8302 - [BC]WBJ‘" Sﬂcz = SBCZ FBC = Sacr“)’SEz - F[]-,? (r - 1)]
2nd Order
Interaction
ABC 1 Sapc® = |ABCIY8r | sypc? = Sac? | Fape = sapc¥sg? ~ F[1, T (r — 1))
ng = By SE2
Error 7r-1) subtraction sg* = Tr-1)
Total | 72°-1
=8r-1

The hypothesis of the presence of a factorial effect is rejected at a% level of significance
if the corresponding calculated F-statistic in the Table 6-45 is greater than tabulated F,; 1,7
(r — 1) otherwise the hypothesis may be accepted.

Remarks 5. The S.S. due to the seven factorial effects (main and interactions), each with 1d.f. will
add up to S.S. due to treatments with 7 d.f;

6. The significance of the various factorial effects can be tested directly from the factorial effect
totals by using t-test based on error d.f. as explained below.

The S.E. of any factorial total in a 2%-experiment is given by :
(2%.ro,2)V2 = (8r ¢, 2)V2
which is estimated by S.E. of each factorial total = (8r 55?2, where sz is the error mean S.S.

Form the expressions for the factorial effects, the variance of each main effect or interaction 18
given by :
i i 1 2 Eﬁ
Variance of each factorial effect = 7575 x (8 0,%) = R

Hence, the S.E. for any factorial effect is estimated by :

3‘2 V2 (g2 \V2
S.E. of each factorial effect = ('2;') = ( 2 ) v (6:237a)
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lue for any factorial effect total at a% loye .

From (6:337), we cobtain the significant va :
- o da= t_"“{oﬂ)xtars,')‘” (3.2375)

The factorial offucts will be significant at a% level of significance if the corresponding factopy,

efivct totals exceed the value of d, in (8-237b). _ .
. Proceeding m :: lc:?‘-c;mgn we obtain the factorial effects in terms of the treatment totalg

¥ Main a&t of A = A4 Interaction AB = [AB]/4r
Main eifoct of B = [B)JMr Interaction AC = [AC)/4r ... (6:23g)
Main effoct of C = [C)M4r Interaction BC = [BCl/4r

694, 2" Fuctorial Experiment. The results and the notations of 22 and 23 eXperimentg
can be generalised to the case of 2* experiment. Here we consider n factors each at 2 levelg,
Suppose 4, B, C, D, ..., K are the factors each at two levels (0, 1). Corresponding smal] letterg
@, &, ¢, d, .., & denote the corresponding factors at the second level, the first leve] of any
factor being signified by the absence of the corresponding small letter. The treatment
combinations, in standard order, can be written as :

1, a, b, ad, ¢, ac, b, abe, d, ad, bd, abd, cd, acd, bed, abed,
e, ae, be, abe, ce, ace, bee, abee, de, ade, bde, abde, cde, acde, bede, abede, etc,
For 2*-experiment, the various factorial effects are enumerated as follows :
Main effects : *C; in number
Two-factor interactions : "C, in number
Three-factor interactions : "Cy in number

n factor interaction : "C, in number
Hence, the total number of factorial effects in 2"-experiment are :
‘Cx + .Cg L SR, a'Cu - [nCQ +"Cl+ T & il‘Cﬂ] -1

=(1+1yr-1=20_1, ... (6:239)

Main Effects and Interactions. As in the case of 22 and 23-experiments the results for

the main effects and interactions can be generalised to the case 2"-experiment. Thus, for n
factors A, B, C, D, ..., K, the main effects and interactions are given by the expression :

1
i‘m[(a:l)(btl)(czl)(d: VR :tl)] ... (6-240)

the mtrelpondl.ng sign in each factor being taken as negative if the corresponding factor is
m in the factorial effect whose value we want. As usual, the R.H.S. is to be expanded
algebraically and then the treatment combinations are to be replaced by the corresponding
treatment means. The factorial effect totals can be obtained every conveniently from
trumz‘ it mu, :: thl-! gﬁeraiii:;:a;n of F. Yates' method as explained in § 6.9.2 for 22 and
experimen’ out , for 2" experiment we o - $
it . pmu:e.' xperiment we shall need n cycles of the ‘sum
. Audysu of 2" design. It will be seen that all the factorial effects (main and
mtencno!:) are mutually orthogonal contrasts of treatment totals. Hence, having obtained
the factorial effect totals by Yates’ teachniquei, the S.8. due to each factorial effect is given by :

P L

e T2 L. (6:241)

where [ ] is the factorial effect total,
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d. . y S siaais O v e &7
Blocks "‘*‘**—L«-.._.__r . 98 _ M8
] ik ShefBl_4p 2 Sk
N m -
L Treat e e 2 ey
eatments »
" 2 2T} 2
el Sp= %L ~CF igch by
'Main effects Ll 7B |
? A
: 1 2 2
B ; Sa = [AYr, 2n 5 =85
"; ' Sh = [BJYr.2n 5= 85
K i . -
: Sk = K12/ 7.2» Ly
Two-factor Interactions % “ o
AB 1 g2 _ 9 2 2
AC AB-'[AB] /r.2% SAB=SAB
1
BC Sf{c = [AC]2 T2 Slic =04c
1
Szzac =[BC)2/r.2» Sgc = 51230
Three-factor Interactions
ABC
ACD N Sasc = [ABCJ2 / r 20 sanc = Ssc
3 Shcp = [ACD]2/ 191 Skcp = Sac
n -factor interaction 1 2 . 2
ABCD..K Sap.x=AB..K]*/r.2" saB.K = SkB_K
Error (r-1)2r-1) o Byigib . 2 S%
= tract ./ ST
£ = By subtraction =507 @
Total r.2n-1 Raw S.S.-C.F.

The block effects and the factorial effects (main and interactions) can be tested for
significance by comparing their mean S.S. with error S.S.

Remarks 1. S.S. due to (2 - 1) mutually orthogonal factorial effects each with 1 d.f. will add up to
treatment S.S.

2. The main effects and the interactions can be obtained in terms of factorial totals as follows :

. ial t total
Factorial effect (Main or Interaction) = Facton? 2‘?,ff(ic o .. (6:242)

Example 6-10. The Table 6-47 gives the layout and the results of a 29 factorial design laid
out in four replicates. The purpose of the experiment is to determine the effect of different kinds
of fertilizers Nitrogen (N), Potash (K) and Phosphate (P) on potato crop yield.
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TABLE 6.47 : 22FACTORIAL EXPERIMENT LAID OUT IN 4 BLOCKS
Block 1 Block 2 Block 3 Block 4
nk kp p kp  p k nk p 1 np kp np nk p 3
291 391 312 373 407 324 272 306 323 87 324 423 361 272 103 324
I k& n akp n nkp np 1 nk k n nkp k1 nkp kp
LIOI 265 106 450 L89 449 338 106 334 279 128 471 302 131 437 435

N
The block totals, the treatment total and the grand total are summarised in Table 648

TABLE 6-48 : BLOCK AND TREATMENT TOTALS

Solution. H,: Blocks as well 1:2,289 fuas b 425
as treatments are homogeneous. Block 2:2,291 n 426
Block effects are eliminated by | Totals 3:2,369 E 1,118
carrying out the analysis of the 4:2375 oE 1’203
above design as an R.B.D. for .4 Treatment w >
eight treatment combinations Totals B 1,283
and four blocks. The initial np 1,396
calculations are, therefore, as kp 1,666
follows : | nkp 1,807

Total number of observations =

4 X 8 =32; G = Grand Total 9,324
2
Correction Factor = 5—2 = 27,16,780-5

Total S.S. =R.S.S.~CF.

= [(291)% + (391)2 + ... + (437)2 + (445)2) - 27,16,780-5
=3,182,118-0 - 27,16,780.5 = 4,65,337-5

4
Replicate (Block) S., = 1 I B?-CF.= -2—’1—7ﬁ—;”9—8§ ~ 27,16,780-5 = 843.0
J=

8
Treatment S.S. = i 2 TASC = lﬁ@i@_ﬁﬁ - 27,16,780-5 = 4,56,995-5
i=1 |

Error 8.8, = 4,65,337-5 — (4,56955.5 + 843:0) = 7,539
We shall now break up the treatment S.S. with 7 d.f. into 7 orthogonal components each
with 1 d.f. For this, we use Yates method for finding the vs_lri?n_a' factorial effect totals and

.

TABLE 649 YATES' METHOD FOR FAC ' G
cfﬁ?.‘;’.f‘;ifn Total Yi?ir:.':: e
o 425
T 426
S g b e
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o 1,203 3,473 254 5 wi) | B3 - a920
! 2
i p 1,283 1 15 i | ELoz775126
2
: o8 1940 85 794 168 [NP] WT?‘ = 882.0
l o 1,666 113 84 | _es wr) | P 142805
|
2
l nkp 1,807 141 28 =b6 [NKP] ﬁ%’i = 980
TABLE 6-50: ANOVA TABLE FOR 23-FACTORIAL EXPERIMENT
Source of :
i d.f. Vi Tabulated
Jareaon A 2 H53, Ratio (F)
Replicates 3 843-0 | 281-0 <1 Fg 9 (0-05) = 3-70
Treatment 7 4,56,955-5 65,729-35 181.83* F; 51 (0:05) = 2:50
N 1 3,612-5 3,612:50 10-06* | Fy 1 (0-05) = 4-32
K 1 1,60,178-00 | 1,60,178-00 446-10% 4-32
NK 1 392-0 392-00 1-09 4-32
. 1 2,77,512:5 2,77,512:5 773-01* 4-32
NP 1 882-0 882:0 2:45 4-32
KP 1 14,2805 14,280-5 39-7* 4-32
NKP 1 980 98-0 0-27 4-32
Error 21 7,539-0 359-00
Total 31 4,65,337-5

From the, ANOVA Table 6-50, we find that

(i) Replicates or blocks are homogeneous.

(i) Treatments differ significantly. Among the factorial effects, all the main effects N, K
and P, and the interaction KP are significant.

Remarks 1. One way of interpreting the positive interaction of NK, is that Nitrogen and Potash do
not act independently of one another, the presence of both enhances their individual effects. Similar
interpretation can be given to the interaction NP. It may be noted that the interaction effect KP is
negative co that when Potash and Phosphate operate, the full joint benefit of each is not achieved.

2. The significance of the various factorial effects, main and interactions can be tested directly
from the factorial effect totals as follows :

S.E. for any factorial total = \r.2¢ sg>=4 \! 2 x 359= 10716
- Significant value for any factorial effect total, say, at 5% level of significance is :

d = t,,(0-025) x 107-16 = 2-080 x 107-16 = 222-89

Comparing this value with the factorial effect totals (modules values in columns 3 and 4 of
Table 6-49, we find that all the main effects, viz., N, K and P and the interaction KP are significant, the |
other factorial effects being non-significant, a result which was obtained from the ANOVA Table 6:50.
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6:10. CONFOUNDING IN FACTORIAL DESIGNS

empll::y::;::::::‘L;:l:i]'::l;::;::ﬂ';‘:mllhv |‘nnn|n-r of fml,ur:ﬂ m.ul ll,n levels at which they are
consequsntly the binék q;y : mmber of treatment 4:mnhnml,m'n.q increases r;:'rtlw,r rapidly ang
SEsch h‘(‘n-(.mvnt s 1l‘ ‘e has to be vnlnr;u-tl" In many nxpcsrnnu'm..q even a glrxx{lc: replicatioy,
for a 210 factorial ex 1‘".!1.'11.1()!] may ruqmrcj far .t.(m many r!x;)f'rlrntcr)t;:nl um’tﬂ. For example.
sxperiment of this P‘-H?llmlt, a (‘nfnpletu factorial would require l,lﬂ‘M units. A large #¢ala
het = 8 M e magnitude may involve a number of blocks and different treatments The
e t.?m.gt.nelty introduced as a consequence of the size of experiment results in extraneo

vanatxorf which will add to experimental error. As a consequence of increase in the block ;i;“
or handling such a huge experiment, the purpose of local control (one of the basic pﬂ'nm'plf
of a good design) is defeated due to the following two reasons : :s

(1) It is sometimes impracticable to get one complete replicate units which are relativeiy

homogeneous, and
. (l:i) The greater heterogeneity is introduced in the experimental error and reduces the
discriminating power of the tests of significance (¢, F' tests), thus vitiating the conclusions ¢,

be drawn.

Hence the precision of a factorial experiment is adversely affected if the treatment
combinations are large in number. In order to maintain homogeneity within the blocks, the
experimenter must either cut down the number of factors (which, of course, will mean losg of
information) or use an incomplete factorial which investigates the main effect of the factors
and their more important interactions under uniform conditions by suitably sub-dividing
the experimental material into smaller homogeneous blocks. The heterogeneity of blocks ig
allowed to affect only interactions which are likely to be unimportant.

The process by which unimportant comparisons are deliberately confused or mixed up
or entangled with the block comparisons, for the purpose of assessing more important
comparisons with greater precision is called Confounding. Confounding may also be defined
as the technique of reducing the size of a replication over a number of blocks at the cost of
losing some information on some effect which is not of much practical importance.

The device of confounding consists in subdividing the replicate into two or more equal
subgroups (blocks) and the various treatment combinations into two or more groups of equal
size following certain rules by which we sacrifice some information on certain higher order
interactions and allocating the treatment combinations of any group to any block at random.

Important Remark (Orthogonality and Confounding). Let X; ;i =1, 2, ..., n be i.id
r.v.’s distributed as N(0, 02). Let us consider their two orthogonal contrasts U and V defined

as follows :
Us 2 WXy L ks0
i it .. (6:243)
V=2 X, Z =0
i=1 i=1
n
s.t. I Api=0 ... (6:2430)
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e

= 3 e =
-'_:‘1l=.u35\-\i‘\=0; :\Lk:{]
3

[ X)s are iid. MO, o%) and using (6:243a)]

Thus l. a. 1 . mdependenm- and normally distributed. Hence, if the orthogonal
R Y [ and Vare used to estimate certain effects, the errors in these estimates will not
be .n’lme? anc_l w? i ‘that these estimates are orthogonal. According to F. Yates,
oriAQgORAnty of @ desigm is the property which assures that different effects will be capable of
Saparess m"’n?{‘?m GRd festing without any enianglement. In an orthogonal design there are
no problems of independent estimation of various effects and their tests of significance. For
example, C‘R']?.' % R?B‘D‘ and LS.D. are arthogonal designs. The deliberate introduction of
59“‘“’"}“’3"”_"*"-" in @ design, in order to get better estimates and fests on important
comparisons is called confounding.

The amﬁce Oftml‘founding consists in mixing up inseparably or entangling the effects of
unile interactions with the block effects. In confounding, between block information
termed as inter-block information which is contained in block comparisons, is ignored and
can be obtained by estimating variance between blocks within replicates which are treated
alike.

6-10-1. Confounding in 2%-Experiment. In a 23-experiment, the eight treatment
combinations require 8 units of homogeneous material each to form a block. If we decide to
use blocks of 4 units (plots) each then a full replication will require only two blocks. In this
case 8 treatinent combinations are divided into two groups of 4 treatments each in a special
way so as to confound any one of the less important interactions with blocks and these
groups are allocated at random in the two blocks.

For example, let us consider confounding the highest order interaction ABC. We know
that interaction effect ABC is given by
ABC =7 |(abe) - (be) ~(ac) + (€)=~ @b) + (b) + (@) - (1)]

= [(abo) + (@) + (8) + () - (@b) — (@e) - (b0) - (1) | o (6244)
Thus in order to confound the interaction TABLE 6:51:ABC CONFOUNDED WITH BLOCKS
ABC with blocks all the treatment ) Block1: (1) (ab) (ac) (o)

. : L Replicate
combinations with positive sign are allocated Block2: (@ () () (abe)

at random in one block and those with

negative signs in the other block. Thus, the arrangement in Table 6-51 gives ABC confounded
with blocks and hence we lose information on ABC.

From (6-244), we also observe that the contrast estimating ABC also contains block
effects, effect of block 1 minus the effect of block 2. The other six factorial effects which are
also contrasts, viz., A, B, C, AB, AC, BC each contain two treatments in block 1 (or 2) with
Positive signs and two with negative signs so that they are orthogonal with block totals and
hence these differences are not influenced by differences among blocks and can thus be
estimated and tested as usual without any difficulty.
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TABLE 652

For carrying out the atatistical analysis, the Source of variation k . .((f/--f.h }
various factorial effects and their 8.8. are Blocks \ 2r - 1) I:
estimated in the usual manner by using Yates’ A 1
method with the modification that neither th.ﬂ n \ 1 ".
S.S. due to the confounded interaction 1§ o | ] ,i
computed nor it is included in the ANOVA Tabl.'e. AB \ ” Il
This confounded component 18 contained in C ; ] |
the (2r — 1) d.f. (in case or r replicates for the A \ 1 ‘
above experiment) due to blocks. The d.f. in the BC \ |
ANOVA Table will be as given in Table 6-52. Error 6(r-1 |
Total \ 8r-1 .

4 3 5 ;———-..,
. 2 - o> T i
Error S.S. is obtained as usual by subtraction, .e., Sp=T1.8.8 - Sa—Sp—Sc—SaB—Ssc~ Sir'

inati in two blocks of 4 units each :

Remarks 1. In the above arrangement of treatment combinations in ' wea
find that although interaction ABC is confounded with blocks, all other factéonf?l ciifects aire measured
within blocks and are not confounded with blocks. Effect totals of confounded e ects are also termed a4
Interblock Comparisons and those of unconfounded effects as Intrablock Comparisons.

2. In similar manner we can confound any interaction with blocks. For example, the interaction Ap
is measured by

Ac =i@-DG+DE-D]

=1 [(abe) + (@c) + ®) + (1)~ (@)~ (©) — (@b) - (bo) | . (624da)

Hence the interaction AC will be confounded TABLE 6:53: AC CONFOUNDED WITH BLOCKS

with blocks if the 8 treatment combinations are Block 1: (abe) (b) (@) (1) '
divided into two groups with combinations abc,

ae, b, 1 [all with plus sign in (6:244a)] in one Block2: () (ab) (ab) (be)

—
group and those with negative signs, viz, a, ¢, ab, be in the other group. The arrangement in
Table 6-53 confounds AC with blocks.

Replicate

2. The above rule can be generalised to confound any interaction effect with blocks in a 2"-design.
Example 6-11. Analyse the following 2° completely confounded factorial design :

Replicate 1

Block I 1 (nk) (np)  (kp)
101 291 373 391

Block II (nkp) (n) (k) (p)
450 106 266 < 312

Replicate 3

87 334 324 423 '

131 272 361 445
Blockvi | @ ®) @ | g ypy |k ) ® @) |
128 279 323 | |47 103 302 324 |

Replicate 2
Blos 1z | 23 bt 14 ) "*P)\

106 306 338 407
Bron “Inkpl ) S TG \

449 789 T Inn’ N4
Replicate 4

b
LY

3 ol

 (N-Nuwgen; P-Phosphate; K=Powsh)

LR
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lution. Since in the BN _
i: of 4 plots (’Jﬂd\mitui]st‘ abgve 2! factorial experiment, replicate has been divided into
bloCb; tions in diffe : b]a : confounded design. A careful examination of the treatment
com mad adl ‘INote t]l'r:r.'t ocks reveals that in each replicate, the interaction NPK has been
C?nfou? ' ke Oad,l replicate, the treatment combinations in the block containing
T have n_n]or .m}l el\ien_ number’ of treatmentg common with npk.]. Hence the above design is a
93 {actonasw;it the mterfactlon NPK completely COnfounded[;vi'tﬁ blocks.
Tl}:e f’.s - 1(11e to tthe SIX unconfounded factorig] effects, viz., the main effects N, P and K
and the frst orcer interactions NP, KP and NK are obtained byJYates' technique as usual.

TABLE 654  YATES' METHOD FOR FACTORIAL EFFECTS AND S.5.

il S.S |
eatment | Totals o -
L . . 3 Effects = [Effect TotalsF/32
I 425 851 3,172 9,324 G C.F. = 27,16,780'5
n 426 2,321 6,152 340 N] 52 =3,612-5 |
k 1,118 2,679 86 2,264 (K] Stz 1,60,178-0
nk 1,203 3,473 254 112 [NK ] S? = 392:0
p 1,283 1 1,470 2,980 [P] S§K= 2,77,512-5
np 1,396 85 794 168 [NP] S2 = 882-0
kp 1,666 113 84 —676 [KP] S =14,280-5
nkp 1,807 141 28 -56 [NKP ] Not estimable

S.S. due to treatments = S%+ S2+ S¥+82 +82 + 82 = 4,56,857-5
. i NP NK KP By &
(Since NPK is completely confounded with blocks, its effects enter into the error S.S.)

R.S.S.=31,821180 ; CF =§- =0824%_ 57 16780-5

Total S.S. = R.S.S. — C.F. = 31,82,118-0 - 27,16,780-5 = 4,65,337-5
1
Block S.8. = [(1,156)2 + (1,133)2 + (1,157)2+(1,134)2 + (1,168)2 + (1,201)2 + (1,209)2

+(1,166)2] - C.F.

= LOBTEAR _ o7 16,7805 = 1,3425

Error S.S. = Total S.S. - S.S. due to Blocks — S.S. due to treatments
= 465337-5 — 1342-5 — 4568575 = 7137-5

TABLE 6:55 : ANALYSIS OF VARIANCE TABLE

Source of Variation d.f S.S. M.S.S. Variance Ratio
Block 7 1,342'5 191-8 <1
Treatments 6 4,56,857-5 7,360-5 2911
N 1 3,612'5 3,612'5 9-11
K 1 1,60,178:0 | 1,60,178-0 403-90
P 1 2,77,512:5 | 2,71,512:5 699-90
NK o} 3920 392:0 098
NP 1 882:0 882:0 2:20 ?
KP J bk 14,2805 14,280-5 36-01 |
Error R B AT o R L Ve A
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LA St
s tabulated value of '%
.59, the tat fo
. blocks is less than 2 othesis. ¢ 3
Since caleulated value of ¥ for ect the null hyP )

d.f. at 5% level of significance’, we fail to reJ Hing /s not gffective.

- Conjoun }
O i ML

Hence, we conclude that confounding 18 1 nsider a 2 . e
6:10-2. Partial Confounding. Let us ¢© h) replicated times, (say). In Such aeheh
replicate is divided into two blocks of 4 u;l i : chy factorial effect In mer r};a plicate’ D:&q

3 : nfoun . in all t :

B e o

8, 1t 1s not necessar . one sing i p
several factorial effects may be confounded In © able 6-56 confounds the interai;ith‘
Oy

% ; in )
following plan (2° experiment replicated 4 times) IV respectively.

3 factorial experiment (Whepe

ABC, AB, BC and AC in the replications 1, I7, III and S
TABLE 6.56 : PARTIALLY CONFOUNDED 2
Rep 1 Rep I1 Rep 1T Rep 1v
e — 2V
Block - & - . ; = 2 : ]
4—_____-——.—____.——_7 \
abe ab abe ac abc ab abe o
a ac ab be be ﬂ; ac 0
b be c a a b )
c (1) (1) b (1) c (1)\‘:
Inieraﬂtion AB BC .
Confounded ABC

.

In the above arrangement, the main effects A, B and C are orthogonal with block totalg
and are entirely free from block effects. The interaction ABC is completely cor}foundEd With
blocks in replicate 1, but in the other three replicates, the AB C is orthogonal with l?_Jlocks ang
consequently an estimate of ABC may be obtained from replicates _H' I and IV. Similarly it
is possible to recover information on the other confounded interactions AB (from replicates|
II1, IV), AC (from replicates I, II, III) and BC (from replicates I, II, IV).

When an interaction is confounded in one replicate and not in another, the experimentis
said to be Partially Confounded. Since the partially confounded interactions are estimaeq
from only a portion of the observations, they are determined with a lower degree of precision
than the other effects.

-tnalysis of Partially Confounded 23-Experiment. Let us suppose that a number of
repetitions, say r, of the above pattern or layout are performed such that the positions of the
replications, blocks within replications, and plots within blocks are randomised. The analysis
of 2%-partially confounded design differs from that of the ordinary 23-factorial experiment
replicated 4 times only in the calculation of the partially confounded interactions, each
interaction being estimated only from the three replicates in which the given interactionis

not confounded. Tl?u-s, the S.S. for the interaction AB, say, is calculated from the replications
L IIT and 1V, the divisor for (AB)? being 24 instead of 32. Similarly we can obtain the S.5. fﬂf

the interaction AC (from replicates I, I, I1I) and BC (from replicates I, II, IV). The SS

blocks and for the unconfounded effects (Main effects A, B and C) are Ob,tained in the usud
Remarks 1. The above canfounding scheme provides ful] i . p % ' ﬁi‘
effects A, B and C and partial (3/4th) information regarding th;n:;;ng:;:d rffgr‘:xontgq AC

Y

and ABC (since only 3 of the 4 replicates provide estimates of AB, AC, BC and ABC).
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2o Analysiy o 'L
gappore Lhat » nu{tﬂwf:'rm”v confounded denign with 4 replications and v such repetitions, fet us
1 oL repotitione, sy, r, or the above pattarn or layout are performed such that the

yoriblione of {lu r . ndormised, Then
I[Iw slrveturg of ”"l‘)lkmﬂum.' lek' within roplications and plots within blocks are ra biion
b 1) N( ’VA l"h"l Wi” bies ny “iv‘.n in ’!'ubl‘, 657,

TABLE 6. 57 TARL &
E 657 ANOVA TABLE FOR AB, AC, BC AND ABC PARTIALLY CONFOUNDED
WITH ‘1" REPETITIONS IN 29.DESIGN

|S‘fl'v- . SSUS—-— '
() Hlnci‘”” of Tariagion i O, Sum of Squares |
| LT SR /- o e B ,
e it 1 % (tatal of block - (Grand total2 |
1 sty lic . !
; eplicates 4r 1 1 Y (total rjfmplicamf_ﬁfﬁ%dzrl“_@f i
i o A : :
5 1) Blnck;‘wnhm replicates Ar (By difference) |
; }'} 1 A]%)32r i
| . 1 (B1%32r |
; ' 1 | (C)% 3z2r
| A", 1 AB | %/ 24r
| 4w 1 AC ) %/ 24r
| ne 1 (BC 1%/ 24r
| " 1 ABC | %/ 24r
‘f' . Mmor 24r -7 (By difference)
%_ 32r -1 Total S.S.

3. Calculation of S.5. due to Confounded Effects. It has already been explained that
5.8. for confounded effects are to be obtained from those replications only in which the given
effect is not confounded. From practical point of view, these S.S. can be obtained from the
table of Yates’ Method for all the four replications by applying some adjusting factor (A.F.) to
the confounded effects. The adjusting factor for any confounded effect is computed as follows :

(1) Note the replication in which the given effect is confounded.

(i£) Note the sign of (1) in the corresponding algebraic expression of the effect to be
confounded.

If the sign is positive then

A.F. = [Total of the block containing (1) of replicate in which the effect is confounded].

~ [Total of the block not containing (1) of the replicate in which the effect is confounded]

=T,~-T,,say ; ...(6-245)
If the sign is negative, then
AF.=T,-T; ...(2-245a)

This adjusting factor will be subtracted from the factorial effects totals of the confounded
effects obtained from Yates Method for all the 4 replicates.

Example 6-12. Analyse the following 2%-Factorial experiment in blocks of 4 plots,
involving three fertilisers N, P and K, each at two levels.

" Replicate] ~ Replicatell  Replicate 1l

np npk (D k |p ., [(0 npk nk p lﬂm [k nk @ np
Block | 1111 75 Mg [P 8] 108" lock 75 100 5592

g. o kL, npk p R
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Solution. Since each replicate has

confounded in each replicate.
has been confounded in replicate IIL
H, : The data is homogeneous wit

Taking deviations from 87, we prepare the foll

and S.S. for Blocks.

FUNDAMENTALS OF APPLIED STATIST|cg

been divided into 2 I

Replicate 1 confounds NP, replicate

TABLE 6:58 : CALCULATIONS FOR VARIOUS S.5.

T —

slocks, one effect hag been
11 confounds NK and Npg

h respect to blocks and treatments.
owing Table 6:58 to com pute the total § g

SR

Correction Factor = B 0
=R.S.W.-C.F.

21054
S.S. due to Blocks = 2 l—i'— —EE, an=
i

Total S.S.

H

4

= 8,658
10,024

= 2,606

Treatment Replicate I Replicate 11 Replicate II___| Tr ;ﬂfMent l
I
Combination | Block 1 | Block 2 | Block 3 | Block 4 | Block 5 | Block 6 __,fﬂs‘_‘i,
5 A5 3 L 7 e 34 Ty
P - 1 13 — a = it
. 47 !
np 14 — — 28 5 |
k -32 — — 8 — -5 -29 |
nk — -12 -7 — 13 g -6 “
pk L 28 s 3 £12 — 19
npk 24 — 8 — — -11 21
Block totals -6 20 52 32 -26 -72 G=0
(B)) .
B2 36 400 2,704 1,024 676 5,184 YB;%= 10,024
—
G?

RS.S. =(-12)2 +(38)%+ ... + 82 + (-11)> = 8,658

The S.S. due to interactions NP, NK and NPK are not estimable directly from the table of
Y ates’ method, but they will be estimated indirectly.

TABLE 659 : YATES' METHOD FOR 23 PARTIALLY CONFOUNDED EXPERIMENT

ooy i Yates’ Operations
Combinat’;cfn 5?:?; I 11 (FactoriIc;é‘Eﬁ‘ects) oy é_x—].:—
% I -6 -44 -5 0 =G
n -38 39 5 48 = [N] S2 =96-00
p -8 -35 23 158 =(P] S? =1,040-17
np 47 40 25 66 = [NP] Not estimable
k ~29 ~32 83 10 =[K] | 82=417
nk -6 55 i i | T 'Q.-,_['l}[K],_- Not estimable
Pk 10 Lt sl Tl B | S =267 . ifi
wh | w2 | | 108 < WPK) | Notestimable |
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Interaction, which is confounded in replicate 1, ig eatimatod by

NP=3{m-Dp -1k )

Here the sign of ‘1" is positive. Hen st ich is to be
. : YIS ce, the adjust factor (A.F.) for NP which is to
obtained from replicate 1 [e.f. equation (6-245) is ggvenlgs : i

AF. for NP = (101 + 111 + 75 + 55) - (88 + 90 + 115 + 75) = 342 — 368 = ~26
Adjusted effect total for NP becomes : [NP'] = [NP] - (-26) = 66 + 26 = 92
Similarly A.F. for NK = 400 — 380 = 20
and A.F. for NPK = 276 - 322 = —4¢

Hence, adjusted effect totals for NK and NPK are
[NK']=2-20=-18 and [NPK"]=-108 - (-46) = —62

$2 =85 dueto NP = qz 9272
NP e [NP*]? = 16 =529
S2 =88 dueto NK = s _ (182
NK ; oxg \NK'|? =5~ =2025
_R9)2
SNIZ:’K =S.S. due to NPK =m [NP*]‘Q‘ =( fg) = 240-25

TreatmentS.S.=S§=S§+S[2{+S§P+SN

[Note that the sign of 1 in the estimate of NPK is ~1.]

K

Error S.S. =T.S8.S. — S.S. Blocks — S.S. Treatments

= 8,658-00 — 2,506 — 1,932-75 = 4,219-25.

+S2+8 2 =193251

TABLE 6-60 : ANOVA TABLE FOR THE PARTIALLY CONFOUNDED 23 EXPERIMENT

Source of if Sum of MSS Variance Tabulated
Variation iy Squares e s Ration F Value of F
Blocks 5 2,506-00 501-2 1.31
Treatments 7 1,932-51 276-07 <1 Fo.5 (5, 11) = 3-2
N 1] 96-00 96-00 <1 Foo (5,11) =5-32
P 1 1,040-17 | 1,040-12 2.71 Foos(1,11) = 4-84
NP 1 529-00 529-00 1-38 Fy.01(1,11) = 6-08
K 1 4-17 4-17 <l
NK 1 20-25 20-25 <}
FR. 1 - 267 L e
NPK 1) PRl | P T e i |
Error 9 A (BB3-HT IR | aneiianraini sl
T‘@tal 23 E o6 ey 33
From Table 6-60 it ctor N, P, and K
or interactions are not:
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6:10-3. Advantages and Disadvantages of Confounding. The only and the greatest
advantage of confounding scheme lies in the fact that it reduces the experimental error
considerably by stratifying the experimental material into homogeneous su-bsets or sub-
groups. The removal of the variation among incomplete blocks (freed from treatments) within
replicates often results in smaller error mean square as compared with a randomised
complete block design, thus making the comparisons among some treatments more precise,
The following are the disadvantages of confounding :

1. The confounded contrasts are replicated fewer times than are the other contrasts and
as such there is loss of information on them and they can be estimated with a lower degree of
precisions as the number of replications for them is reduced. In the confounding scheme, the
increased precision is obtained at the cost of sacrifice of information (partial or complete) on
certain relatively non-important interactions. It may be pointed out here that an
indiscriminate use of confounding may result in complete or partial loss of information on the
contrasts or comparisons of greatest importance. As such the experimenter should confound
onlguthose treatment combinations or contrasts which are of relatively less or no importance
at all.

2. The algebraic calculations are usually more difficult and the statistical analysis is
complex, specifically when some of the units (observations) are missing.

3. A number of problems arise if the treatments interact with blocks.

6-11. A 2"-FACTORIAL EXPERIMENT IN 2-BLOCKS PER REPLICATE

In Example 6-13 we considered a 23-factorial design in 2 blocks (of equal sizes) per
replicate. In such a layout, we confound one factorial effect in a replicate and this is generally
the higher order interaction.

Let us now consider a 2"-factorial experiment conducted in 2*-blocks (k = 2, 3, ...) of equal
sizes per replicate.

) Total number of experimental units = 27,

Total number of blocks = 2*.

n

Number of units (plots) in each block = % = 2"k

Thus, we have 2" treatment combinations in each block and these are assigned at
random within the units of each block. In each replicate, there are 2* block totals, giving rise
to (2% — 1) orthogonal block contrasts, which will be orthogonal to the (2% — 1) treatment
contrasts in the replicate.

2. Generalised Interaction. The interaction obtained on multiplying the symbols in
two effects/interactions together and equating the square of any letter equal to unity is called

the generalised interaction of the given effects. For example, for any two effects X and Y, the
generalised interactions are given in Table 6-61.

TABLE 6-61: GENERALISED INTERACTIONS

% Y Generalised Interaction
_ We have the following general A . BC AxBC =ABC
rule in confounding : AB CD AB xCD =ABCD

“If any two effects linteractions| ABC | BCD | ~ ABCXBCD =ABCD =AD
are completely confounded with| ABC | CD |  ABCxCD =ABC’D =ABD

rad

blocks, then s alised| ABC | ACD |  ABC =A*BCD =BD
interact | ABD ~ ABD =AB!CD? =AC ‘
worlgi 1 SARC i BC xCDE =ABC'DE =ABDE |
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