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Objective: To impart the knowledge and applications of various advanced Design of Experiments
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Square Estimates for parameters — Estimation of variance — Statistical analysis in CRD & RBD.

UNIT -1V
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: ¥ e T datlon for the subject which hag :
d A. Fisher laid the foun 3
_mm?x,lug)f,stﬁ;‘;g’; 3} his book ‘The Design of Experiments’. Since then the - thes be

o Ioped and extended. Apphcatl {
T been ‘considerably deve long Qf
: ﬂﬁakmmnﬂmaergt?dui?lﬁlc};'n?n leaboratones and research in natural sclences, engmeenng :‘

nearly all branches of social smence. R i
% Eipenmentatmn prov:des what is called expenmental data in contras ‘to Qb
i ﬁta with which we have been ‘mainly conce

Zrepresented by observations on ‘the elementary

"' . not changed or modified by any attempt on the p
2 "zgservahon. 1t is often difficult to assign cause and effect by studying observatlona[ data.‘;;

“one is interested in establishing causal relationships, he should work with experimentq} g, ln,}»
’-fdata arising from: observations on. a universe or a segment thereof which have beejﬁ
* “tcontrolled’ or modified by varying certain factors in order to determine- ‘what effect, if any -

5 i;he factors have on the data. In-other words, expemmental data are the results from lﬁglcallé
dﬁxgned experiments which prowde ev1dence for or against theorles of cause and effect

“The subject-matter of the des1gn of expenment mcludes

" (i) Planning of the experiment, .- % e &
. ._(ii) Obtaining relevant mformatmn from it regardmg the stahstmal hypothems under ‘
2 study,and 2
iif) - Making a statlstxcal analys1s of the data. 3 2% .
Expenence has shown that proper conmderatmn “of the statlstlcal analys1s before the
. §'m:per1ment is conducted, forces the expenmenter to- plan more carefully the design’ of the
. experiment. The observations. obtained from :a. _carefully planned and. well—demgned
experiment in advance give ‘entirely’ valid mferences However, the " certamty of the
conclusion. 0. drawn, regarding the acceptance or reJectlon of the null hypothesis, is given
only in terms of probabxhty Accordmgly, the Deszgn of Experz.ment may be ‘defined as “the
logical construction of the experiment in whzch the degree of uncertamty wtth whsch‘t he
mference is drawn may be well defined.” . . .- .-
. In the words of Allen L. Edwards, “The e:rperimentai deszgn is called a rand.omzsed m
design. The essential characteristic of thzs deszgn is tha,t subjects are randomly asstened tothe
wpen,_mgntal treatments or vice versa. .. ° BRI

“The’ expmmr : enter may ‘easily recognise threer 1mportant phases of every ‘pro,\ect
j \:—Experbnental or Planmng Phas e
1@3 ; Btatement of problem. e

rned up to this point. Obse"vdtional d::mnai;

units of a population or of a sample and 5,
art of an investigator during the COurgg

N K B Y
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(tii) Method of randomisation be used

(fv) Mathematical mode] tq describe the experiment

(v) Hypothesis to be tested. T

111, Analysis Phase

(1) Data collection and processing.

(1) Computation of test statistics,
(iii) Interpretation of results for the experimenter.

\ ay be noted that experime PNy .
ﬁeid#g:g:ekbgék? h);ve been writtefnygnI;;r]];rn]tiarjai?;:rjlér};; :;r; :;;‘!E}"broad ot 1o ey ey vl

i . is eubject. In this ¢
eimple but highly ugefi ¢,
sclentific rezearches.

ceeds_ﬁ.fr?.her that this chapter has the zppezrance of ih
The difficulty arizes

confine ourselves to the study of some of the
frequently employed in businesg, economic ang

The reader may be warned before he pro
mosf difficult one in this text up to now.

[\

Ja W4
; ' L mainly from using rather involved
summation signs and notation, and from the rather heavy computational labour even with che simpie
examples for various models introduced. To avoid confuzion from the first Bource, the rezder is zdvised
to study with great care each of the definitions of varig / ]

- -
- ; Us BUmE and statistics. He/She must be o erfectly
sure about each mathematical expression as he/she p

: t I roceeds step by step. As tg the gecond source of
difficulty, problems involving the analysis of variance are usually zolved with COmpuUter programme
However, it may be noted, computers are no substitute for underlying principles. It iz, ?‘*f-'e:'c-
necessary, although somewhat pain fr

.

daTd

ful, for the reader to go through this chapter thorsughly before
he/she can take advantage of computers az a computational aid.

6-2. TERMINOLOGY IN EXPERIMENTAL DESIGNS (Important Terms and
Definitions)

A number of basic aspects used in the ¢
worth noting at the very beginning.

Experiment. An experiment is a device or a means of getting an answer to the problem

under consideration. Experiment can be classified into two categories : (a) Absolute, and (5)
Comparative,

ontext of the theory of experimental design are

Absolute experiments consist in determining the absolute value of some characteristics
like (i) obtaining the average intelligence quotient (1.Q.) of a group of people, (ii) finding the
torrelation coefficient between two variables in a bivariate distribution, etc. On the other
d, tomparative experiments are designed to compare the effect of two or more ubj_ects on
fome population characteristic, e.g., comparison of different manures or fcrtxhz_e_rs, _dlﬂ'erent
“nds of varietics of a crop, different cultivation processes, different pieces of land in a field
“Periment, or different diets or medicines in a dietary or medical experiment respectively.
“Treatments, Various objects of comparison in a comparative experiment are termed as
r.efatm‘mtS, e.g., in field experimentation different fertilizers or different varieties of crop or
d’fi‘fl:f:nt methods of cultivation are the treatments. tablish the effect of one or more
st of & s ime: » conducted to establis e effect o - :
T, ependeif;l];ar?izl?){e:xf:r;tzl;;ir?;j (Lthc dependent variable). Heru,.lhu independent
Mables are often called treatments or factors, which are often qualitative in nature, such as
Herent makes of machines, different advertisement channels, different ways ot pu:‘:‘k:ngmg
”:;TChundisc, and so gn. Th’c values of a response are supposed to reflect the effects of
fl:l:s:nt treatments, , ‘ . e o
anrr Perimentql Unit, The smallest division of the .expurnnunt.ll materia sy
Pply the treatmentg ané on which we make observations on the van’a.hln under stuc \ 1.~>1
“rmaq %8 experimental u.nit, e i d"(:xpe"im ents theh I.ﬂm‘ "fjlal,"(l i th(?ll.‘xpé,i!_‘_lqldt_.‘ll_l”ﬂ
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unit. In other experiments, unit may be
seeds. ; . 4+ of the times we divide the
_Blocks. In H[H'iﬂ“t“ml ,_,xpc{-umzntha m’U:]LC(::jS sub-groups or strata. These s‘:rh(éle
experimental unit (field) into l'etl:Cltl\f;lgcll:’(:;‘&f::n the field as a whole, are Brican binrz,qa’
‘hich are .o uniform amongst Lhem: 3 P S ks,
“Izlc}l']irt.-‘ll;.n};;:: ::Ea(:::lrcmcnthnf the varia};]e un(izr; study on different experimental upjg
e.g., plots, in field ex criments) are terme as yields. 1A te i _
| ;'ET.::perimental Igrror. Let us suppose that a large hoinfggef;zﬂ;s :-;;(l]dt(l)st}?l.v.ldec] intg
different plots (of equal shape and size) and different trea?mcgltﬁ a A 1;;) e ese plots. I
the yields from some of the treatments are more than t.hose of the othe i] ‘ experimenter jg
faced with the problem of deciding if the observec.l differences z;(rle really due to'trea-tm-em
offects or they are due to chance (uncontrolled) factors. In fie ex]f)elll‘lmentatmn, Wis g
common experience that the fertility gradient of the soil does nf)t h0 OW any systematic
pattern but behaves in an erratic fashion. Experience tells us that even if the same
treatment is used on all the plots, the yields would still vary due to the differences in seil
fertility. Such variation from plot to plot, which is due to randpm (or chance or nop.
assignéble) factors beyond human control, is spoken of as e:.cper"m_zental, error. It may be
pointed out that the term ‘error’ used here is not synonymous with ‘mistake’ but is a technical
term which includes all types of extraneous variations due to:

(i) the inherent variability in the experimental material to which treatments are
applied,

(ii) the lack of uniformity in the methodology of conducting the experiment or in other
words failure to standardise the experimental technique, and

(iii) lack of representativeness of the sample to the population under study.

Remark. In order to test the significance of the difference between two treatments, we first obtain
an estimate of the experimental error and then apply some test of significance. The former is achieved
through replication and for the latter we allocate the treatments to various plots at random. It is also
desired Lo keep the experimental error as small as possible so that even smaller real differences can be
detected. The experimental error is controlled through the principle of ‘local control’. The terms
replication, randomisation and local control are discussed in detail in next section (§ 6-3).

/Replication. _Replication mans the execution of an experiment more than once. In other
words, the repetition of treatments under investigation is known as replication.

Precision. The reciprocal of the variance of the mean is termed as the precision, or the

“T”O”’:t of information of a design. Thus for an experiment replicated r times, the precision s
given by :

oy

R
Var(x) ©O°

where 0% is the error variance per unit
Efficiency ¢ i . : :
0,% ;]f]!(; oy gnjlf;t ;ts;{qn Consider the designs D, and D, with error variances per vt
25 :plications ry and r, respecti m " . . . e

between two treatment means is given bgy ‘thu.twely. Then the variance of the differe
20\*/ry and 20,

2ry for .
4 21(:; 2D1 and D, respectively. Then the ratio
2

E= 5 :2;. . o 62
p . 2 O 2 2
is termed as efficie  dogs 1 0y Op*
Serm i ney of design Dy w.r.¢ D, In other 1 I . D may b
defined as the ‘ratio of the precigions of D :lnd B worlds, efficiency of Dy w.r-t. U2
. 1 9,
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V 6'5
both the designe : ; .
(fE=1 then bo gns D, and D, are gqjq to be equally efficient
more (leg ) :

1), then D, is said to ha .
IfE> 1(E< 1 0 be $8) efficiont than D,

2 fficient or sensitive
rk. An e
Rpﬂ‘lﬂ

, . design hyg
t effects. It is obvious from (6.1)

freater ability of 1 g _

that the PR ° O Qelecting the differences of
tr“amﬂ‘n - . j . “ cﬁicu:nc_\ of a design Can be inereamed by
(i) controlling. i.e., decreasing g2, the error variance per unit Thie : ‘

0 plots into small homogeneous blocks, anq * PEr unit. This is done by arranging the

i) increasing r, the number of replications.
S Uniformity Trials. As has been
._ease or decrease uniformly in any
mi:iic manner. UnifF;rmit_y trials enable us tq have an ideq
“;e field. By uniforml-t}' trial, we mean 4 trial in which the fi
:ﬁr.-ided into small units (plots) and the Same treatment ig
sheir vields are f'eco_l'dEd- From thes.e : a ‘fertility contour map’ which
cives us a graphic picture of th? Van-aFlo ‘he soi ility and enables us to form a good
fdea about the nature of the 5_0'11 fertility variation. The fertility contour map is obtained by
joining the points of equal fertility through lines.

Accordingly the field (which is expected to be heterogeneous 1.
divided into relatively homogeneous sub-groups (blocks) to control
Incidently, uniformity trials also give as some idea about the shape
used.

Remark. From the fertility
less alike in fertility than thos
pumber of adjacent plots.

6-3. THREE PRINCIPLES OF EXPERIMENTAL DESIGN

For the validity of statistical REPU(‘:ATIDN

analysis and enhancing the

precision of the experiments,

three basic principles : (a)

replication, (b) randomisation, FlANlll.')OM -

and (c) local control are DISTRIBUTION ccf.\*'._::-ag

observed according to Prof. /

Ronald A. Fisher who /

Pioneered the study of ¥

EXperimentga] design in his

tlassica] book, ‘The Design of ’/
riments’. The Fig. 6-1. due

1 i ALIDITY OF DIMINUTION
foncisher illustrates  the ESTanATE OF ERROR OF ERROR
“Dctions 0

Fn.nciples_

pointed oyt earlier, the

Sy fertility of the soil does not
direction but is distribyt

ed over the entire field in an
about the fertility variation of
eld (experimental material) is

applied on each of the units and

r.t. fertility) can be
the experimental error.
and size of the plots to be

contour map, it is generally observed th

at adjacent plots are ms
e apart. Thus a homogeneous block ¢

an be formed by combin

ins
ung

(]
!
(=

1

f the various Fig. 6-1 : Fisher's Diagram

ively simple form where only one

The desi eriment may assume a relatively annp' ks g

tr&atment vag:i‘al;)li ail: Ci)xxﬁ;idered or a quite compl_lcuted frame \? ork 1:1: tt»::lllllijl;\l\:::::\;tutx;;t-

factors. In general however, any experimental design f.-.-uuld ha\in‘\; :i;pcrung_:ntmmu vy

e of repli’cation fandamisaton, cross-cl_@SlllCﬂtiﬂn-‘ amw tr.cntuwnt on different

Similay Mmaterialg Replic:ztion refers to the repetition of the :-;1‘ e
Nimenta] unit:s. Randomisation is the use of a random process to ¢

.
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units to treatments. Cross-
experimental material to be employed fo
material’ has a broad interpretation an
event, by similar blocks of experimcnfﬂl !
experimental unit remain approxima

under investigation’.
influence of the chance factors on
treatments results in more relia
following are the chief advantages of replication :

us to obtain more precise estimates 0
that the standard error (S.E.) of the mean of a
standard deviation (per unit) of the population.
then the S.E. of its mean effect is ©
estimated from the ‘error variance’.
proportional to the square roo

FUNDAMENTALS OF APPLIED STATIST)
i____iis.

classification involves a method of permitting each yy;
r every treatment under test. The term ‘exper; it of
d it varies from one experiment to another 'I'“fntaz
naterials we mean that the characteristi i O?eaanh
-Sac

tely constant from onc trial to another.

replication means ‘the repetition of the t’eatmentr
An experimenter resorts to replication 1n order to average oyt th:

different experimental units. Thus, the repetitigp of
an is possible with a single observation. T,

" Replication. As pointed out earlier,

ble estimate th

At the first instance replication serves to reduce experimental error and thus enableg
f the treatment effects. From statistical theory we knoy

sample of size n is o, where ¢ is e
Thus if a treatment is replicated r times 7

/\F, where o2, the variance of the individual plet i
Thus “the precision of the experiment is inversely
t of the replications”. Consequently replication has an important

the efficiency of the design.

but limited role in increasing
ean effect of a treatment replicated r times is :

Remarks 1. The percentage S.E. to which the m 3
100{ (ar) - (vx)] =100 (o/%)] (1/n) = [cv./Vn] 6y

where C.V. is the coefficient of variation.

If x, and x, are the mean effects of two treatments replicated ry and ry times respectively, then

Var (x, —x3) = Var (x,) + Var (xy),
covariance term vanishes, since x, and x, are independent.
" Var (x, — xg) = 62 [(Ury) + (1))
where o? as usual is estimated from ‘error variance’.

S.E.(x,-x2) =0 [(Ur)+ Ur]2 } (64

=a\N2r,ifr,=r,=r, (say)
__An approximate idea of the minimum number of replications required to detect the gived
difference between two treatments at certain level of significance is obtained by applying &
to the statistic :

. _Bh__R-E NN
S.E.(x,~-x;) o\}(2/r) ‘

for a large number of degrees of freedom (see Example 6:1). ki
“dent's-‘ .

However, for small degrees of freedom, ¢ is not istri R
(ot ribuation. : ! normally d d but follows St i
distribution. In that case the (approximate) minimum numbzr t:?i?;ﬁ;:tion‘; required t¢ detect ‘

specified difference ‘d’ between th treatments at a% level of significance is given by the formula

where -sp? is the error variance pef dnit. and ¢ e b sl ¢ t‘u' level of
N omificomce and v = Error degrees of freedom so t't(x:: is the right-tail critical vainluo of ta
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rom Table VI in th‘e Appendix, we obse :
Fe es of freedom increases. For exnmp{:e\:z Ell,t.,t,};e o
025)= 1271 5 £(0:025) = 2.45 - 4 (0.on
,(0-025) : 1 | 6 (0:025) = 2.45 . t15 (0-025) = 2.13 . (0025
Thus the increase in thﬂ number of replications ill | '-02”) e il it
o small d‘: fferences will be detecteq Will result in increased accuracy, since in that
9. The most important purpose of re
ithout which we cannot
(i) test the significance of the difference between an
(ii) determine the length of the confidence interval
The estimate of the experimental error is obtained b ideri
Tl e ' consid i i
receiving the same treatment in different replicationg and th{-re is ;oegﬁgrtgfedlfffrenc? sbm e plggs
e rnative of obtaining this
3. It is desirable to have as much uniformity or homogene; i ithi
' : eity a cati
put it is not important to have a great deal of uniformity bet%ueen ripli’ccﬁ?szﬁle N

4. The adequate number of replications for various treatments in a i
knowledge of the variability of the experimental material, e.g,, fertility 2fe:£f?nmﬁe?1§1ii%if;::ﬁiiae
which is rarely _know_n and as such cannot be suggested in advance. A general rule is to get as mam;
replications which will provide at least 12 degrees of freedom for the error. This follows from the fact
that the values of F-statistic do not decrease rapidly beyond vy = 12, Usually one should not use less

than 4 replications.

Example 6-1. Calculate the minimum number of replications so that an observed
difference of 10% of the mean will be taken as significant at 5% level, the C.V. of the plot
values being 12%.

Solution. If r is the required number of replications and u be the common mean then we

: 12 - -
aregiven: C.V.=12=100. g (')‘=10—:)1 = 012p ; and x;—x9=10% of un = 0-10p
51—52 _ 010]1

= —
oNoir  012u2r

For ¢ to be significant at 5% level of significance, we should have (for large d.f.)
|t]>196 = %g\JﬂZ > 196 = r>2(196x 1.2 =111

Hence, the required (minimum) number of replications is 12 (the next integer greater

than 11-1),

Randomisation. As discussed earlier, by replication the e;tper?menter Fries to average
out as far as possible the effects due to uncontrolled factors. This brings to him the question
#allocation of treatments to experimental units so that each treatment gets an ec.u‘:al chance
of showing its worth. In the absence of the prior knowledge of the Vflrlftblllt)' of the
“Xperimental material, this objective is achieved through ‘randomisation’, a process of
2s8igning the treatmet;ts to various experimental units in a purely chance manner. The
followin j jecti domisation :

g are the main objectives of randomi . :
_ (0) The validity of tlje statistical tests of significance, e.&., th‘e t-test for Vtes'tmg ’tha-
Significance of the difference of the difference of twodmaan: or t}:ﬁeAg:lng’s:; ::tf ) l'?ansatl;i?ti i
st . : ral means, depends on ; . S
for testing the homogeneity of seve L o igndomisalibn yrovilbe a/logtoct

atistica ' s .
ible to draw rigorous inductive inferences by the use of
theory. This assumption of randomness is necessary -

ly. Randomising the treatments over the

tical (significant) values of ¢ decrease as v,

lication i .
Plication is to provide an estimate of the experimental error

y two trcatments, or

“fatistical theories based on probability
*Mce SE. (%) = /v, for random sampling on
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. ai digtortion of experimental re,
xperimental units is an essential safoguard "gd.lﬂﬂlf temperature, drift in f";lihr’sr'ltg hy
Y ¥ MU o b~ el : . . : ) y ;
experi h ag rise 1M ambien tion

un-anticipated influences SUCH % - e soil or ather systematic changes.
instruments and equipment, fertility of the s o e e S ——

(i1) The purpose of randomness is to assure }thaqverage eifost 00, &Y gr,nup’c,f,:tr-omj»rl
in the experiment, operate randomly s0 that L te(l(ift'el'ent treatments, by the repofi?’]tﬂ ;
zero. In other words, randomisation CnSl.]l'GS tha 2] environm ental effect. Rando;r;i Irm. of
the experiment, on the average are iy tbject 10 t:l'qutors of variation over which we h g
eliminates bias in any form. It cqualises even ac ave ny,

control. ication is not suffici
. isation without replication is not sufficient. [t j

R, hould be noted that randquSﬂ AL ied by an adequz
whef c;:::égmilstasti]m? of treatments to various umfsglfssi;(;%rcr;%izla-t%{ of F-tesgfnte num

replications then we are in a position to apply the tests . .
field for agriculture experimentati,

: ial, say

Local Control. If the experimental material, . :

is het(;igﬂeneous and different treatments are allocated to various tuniltsd(lf)‘IOttS) at randop,
over the :ntire field, the soil heterogeneity will also enter the uncontrolled factors and thys

increase the experimental error. It is desirable to reduce th_e BXPerlriﬁntle. 9?01‘ as far ag
practicable without unduly increasing the number of replications 0{‘1W1 dpf‘; interfering witp
the statistical requirement of randomness, S0 Fbat even smaller differences b.etween
treatments can be detected as significant. In addition to the principles of replication ang
randomisation discussed earlier, the experimental error_can further be reduced by making
use of the fact that neighbouring areas in a field are relatively more homogt'aneous than those
widely spread. In order to separate the soil fertility effects from the experimental error, the
whole experimental area (field) is divided into homogeneous groups (blocks) row-Wise or
column-wise (one-way elimination of fertility gradient, c.f. Randon%lsed Block Design) or
both (elimination of fertility gradient in two perpendicular directions c.f. Latin Square
Design, according to the fertility gradient of the soil such that the variation within each
block is minimum and between the blocks is maximum. The treatments are then allocated
at random within each block.@‘he process of reducing the experimental error by dividing the
relatively heterogeneous experimental area (field) into homogeneous blocks (due to physical
contiguity as far as field experiments are concerned) is known as Local Control.

3 only
ber of

ni

Remarks 1. Local control, by reducing the experimental error, increases the efficiency of the
design.

2, Various forms of arranging the units (plots) into homogeneous groups (blocks) have so far been
evolved and are known as experimental designs, e.g., Randomised Block Design, Latin Square Design,

ete., which are discussed in § 6-6 and § 67, etc.

Size of the Plot. The size of the plot depends on a number of factors such as the total
experimental area available, the number of treatments, the number of replications of each
treatment, the crop, and so on. If the total experimental area remains fixed, then an increase
in the size of the plot will result in decrease in the number of plots and consequently result in
an increase in the size of the block and decrease in the number of blocks. While deciding
about the number of plots, it should also be kept in mind that an increase in the number 0
plots increases the non-experimental area or the so-called guard-area by which we mean the
strips of land which are left out between consecutive plots and also between consecutive
blocks in order to reduce the flow of the experimental material from one plot to another:
Fairfield Smith, after conducting uniformity trial experiments with the same crop and then

harvesting the crop in small units, obtained an important empirical relationship betwee! the 2
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. and the plot variance. This relationghj
Jjot i€ and 1 1 e thon - clationship, known as Fairfield Smith's Vart ;
9 N -ﬁrt\:::’-t‘d h:’ the equation : - omith's Variance L.ati,
= 0N - “,‘
x = ... (65
X ) = og Vi=log V= blogx . (6:5a)

is the variance of the yield per unit area
varianes an‘m“glpl'?fs C;f' E‘llzaetufm}r an.d b, the regression coefficient, is a soil characteristic
inﬁimﬁng the re a.tmnstn? e.r een adjacent units, The limiting values of b are 1 and 0. b = 1
mOans 'th:}t a\{)enlllltenfaq_unl- 1s.composed of a random selection of x individuals, i.e., the
units making the plot of s1ze x units are not correlated. In this case (b=1), we get from (6-5)
W

where Vs from plots of size x units, V; is the

g s |
Ve ot ... (6:5b)
N ' _ TABLE 6-1

< that the precision of the experiment increases with | Name of the crop Plot size in acre:j
sn increase in the plot size. In field experimentation,| Cereals 1/10 5
she adjacent areas of land are usually correlated | .. o 1/20 3
.nd thus the value of b will be less than unity. b =0 E
means that the r units of the plot are perfectly Sugarcane 130 to 20 1
correlated and in this case we get from (6-5) V, = V, Vegetables 1/80 2

ing thereby that in such a

i : : — 5 FERTILITY GRADIENT
situation, the increase in the plot

:f;e does not result in any gain in BLOGK BLOCK I BLOCK K
gficiency.

Remark. The Table 6-1. gives the
sotimum sizes of plots for different
crops ©

Shape of Blocks and Plots.
The shape and size of the blocks
#ill usually depend upon the
shape and size of the plots. In

NO VARIATION IN THIS DIRECTION—/>

order to control the experimental o] %
error, it is desirable to divide the ~PLOTS~
whole experimental area into .
different sub-groups (blocks) such ( P

that within each block there is as |

e C but PLOT
much homogeneity as possible bu Fig. 6-2

between blocks there is maximum

variation. Further each block is to be divided into as many plots as the number ot

it tangular in shape with their long
ol i recision the plots should be rec .
Sizeh?)mefiz Thﬁ?r:géign of the fertility gradient and the blocks should be arranged one

i m i g. 62,
R e gradl;“; 'as 51;0:;12 :;L::;ﬂ; and the analysis of some of the
In the following sequences, W€ shall discus

important designs of experiments. GN (C.R D.)
6-4. DOMISED DESI il A
COMPLETELY RAN s the completely randomised

The si ot flexible design i th
the Ex:;r;lﬂf::lau]ﬁg (:u'e allotted at random {o the treatments, 50

design. In this design
at every unit gets the
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¢ e . In addition the units should be proce .
§ same chance of receiving every treatment In iment where this order is like] o oo in
random order at all subsequent stages in the experi dom to the exper: Y 10 affect
i the results. Also in this design treatments are allocated at random Xperimenta] yp
1 WALV ! A ose that we have v treatments, t},,, .
over the entire experimental material. Let us supp he whole experimental o) ¢ ith
i treatment being replicated 7; times, i = 1, 2, ..., v. Then the who d.li iyt da Materia] jq
i divided into n = ¥r; experimental units and the treatments are distribute completely 5
i random over the units subject to the condition that the.zth ]Tre.aténent OCCurs r; timeg,
B Randomisation assures that extraneous factors do not continually intluence one treatmeng,
e In particular case if r;=rV i = 1,2, ..., v, i.e,, if each treatment is repeated an equal numjp,
b of times r, then n = rv and randomisation gives every group of r units an equal chance of
H receiving the treatments. In general, equal number of replications for each treatment shoulq

be made expect in particular cases when some treatments are of greater interest than otherg
or when practical limitations dictate otherwise. Also a table of random numbers is tq be
& used to assign the units to the treatments. For instance, suppose there are v treatmentg to
‘5-; be compared and we have n experimental units available. Let thg ith .treatment be replicateq
r; times so that n =Yr;. The treatments may be numbered arbitrarily from 1 to v, and the

| 1 experimental units f;om 1 to n. r; units selected at random from t_he n units, using a table of
E random numbers, may be allocated to the first treatment ; r; units selected randomly from
R the remaining units to the second treatment, and so on.

Advantages and Disadvantages of C.R.D.

Advantages. C.R.D. has several advantages explained below :

() Itis easy to layout the design.

(&) It results in the maximum use of the experimental units since all the experimental
materials can be used. '

(iii) It allows complete flexibility as any number of treatments and replicates may be
used. The number of replicates, if desired, can be varied from treatment to treatment.

|

i

i
(iv) The statistical analysis is easy even if the number of replicates are not the same for
% : all treatments or if the experimental errors differ from treatment to treatment.

|

(v) -The relative loss of information due to missin

: any other design and they do not
analysis of data.

g data is smaller in comparison with
pose any problem in carrying out the standard

“(ui)' It provides the maximum number of degrees of freedom for the estimation of the

~error variagce, whit':h increases the sensitivity or the precision of the experiment for - |
~ small experiments, i.e., for experiments with small number of treatments.

. Disadvantages. (i) In certain circumstances, the design suffers from the disadvantage -~ -
of being inherently less informative than other more sophisticated layouts. This usually
happens if the experimental material is not homogeneous.. . A
(if) Since randomisation is not restricted in any direction to ensure that the units
receiving one treatment are similar to those receiving the other treatment, the whole -
variations among the experimental units is included in the residual variance. This make® -
the design less _gﬁic_:;e_n_t:and results in less. sensitivity in detecting significant effects. As guch AR
C.R.D. is seldom used in field experimentation, where due to the fertility gradient of the S0l
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e e tal material, y; o
L wppl‘gze{;penn}en ! nal, viz,, field, ig not h

Ut design o Randomised Bl 4 Komotencons o it s bottor 1o usomore

o - ssed in § 6:6 and § 6-7, ete. atin Square Design (L.S.D.), etc. .

h‘o nogeneous or the intrinsic variability
. ;) C.R.D. is also recommended in situat i |

a 1 ikel(;ta be destroyed or fail to respond. atlons where an appreciable fraction of units is

; 6 41 ‘Stati__stical- Analysis of C.R.D. Stat

the ANOVA for a one-way classified data for fixe
carious effects to be additive) becomes

istical analysis of a C.R.D. is analogous to
d effect model, the linear model (assuming

yi_i=u+'fi+€ijsi=1121"'7U;j=1’2"

{vhére yii is the jd_eld or response from the jth
general'mean effect, 7; is the effect due to the ith

cy Ty - (5'6)

unit receiving the ith treatment, p is the
treatment, where p and 1; are constants so

n o
t‘h’at"izl-“r;”r,- ='0 and g; is error effect due to chance such that g; is identically and
1= A :
indeﬁehdenfly distributed (i.i.d.) N(0, 6.2). Then, n = Y r; is the total number of
i=1

experimental units.

- The analysis of the model (6-6) is same as that of one-way classified data for fixed effect
model discussed in § 5-2-1. If we write : 2, ), ¥ij =y.. = G = Grand total of all the n
i

observations, and

ri

2 ¥ij = ¥;- = T; = Total response in the units receiving the ith treatment, then, as in
i=1 :

ANOVA (one-way classified data),

i i {j- (vi-7-)p=2% (vg =52 )2+ .i n (7= 2
o tni=lgel , i J i= .
Lesdharn b | T.S.S: =S.8.E. +8S.T.

Where T.S.S., S.S.T. and S.S.E. are the total sum of s‘qu‘are‘s, sum of squares due to
- treatments (between treatments S.S.) and sum of squares due ta error (i.e, within treatment

5.) given respectively by

P e

.. SST.=%r(3.-¥.) =5n?(ay) il

. |
L
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_ The statistical analysis for such g desi |
| atistics _ , gn can be carri imi
discussed in § 5 2h4 [ANOVA for Random Effect Model for gr::iﬂcué];xa'?tlﬁ gnzllaﬂ?’haz
replaced by v,rmt unequal classes p, by r; and N byn=3%r, fanpicmbty
AR ;

The null hypothesis of interest will be: H,: 02=0 e‘ all the class means ar al
L., ¢ e equal.

-+ Remark. For the random effect mode] (6. ) ;
and (52901 el (6:15), the expectations of the various 8.8, are [o.f. (5-27)

SST ' : 3
E(——-)=E(MS = 0.2 ‘
wll [ %' D=0l2+ro? ... (6-16a) |

SSE\ . [ SSE |
& (rt -:) =l [t(r— 1)] = E(MSE) = o,? . ...(6-16B) |

~ 65.RANDOMISED BLOCK DESIGN (R.B.D.)

In field experimentation, if the whole of the experimental area is not homogeneoﬁs and
- the fertility gradient is only in one direction, then a simple method of controlling the
. variability of the experimental material consists in stratifying or grouping the whole area
into relatively homogeneous strata or sub-groups (or blocks or replicates, as they are called),
perpendicular to the direction of the fertility gradient. Now if the treatments are applied at
random to relatively homogeneous units within each strata or block and replicated over all

the blocks, the design is a Randomised Block Design (R.B.D.).

In a C.R.D., we do not resort to the grouping of the experimental site (space, material or
time) and allocate the treatments at random to the experimental units. But in R.B.D.
treatments are allocated at random within the units of each stratum or block, i.e.,
randomisation is restricted. Also variation among blocks is removed from variation due to
error. Hence, if it is desired to control cne source of variation by stratification, the

experimenter should select the R.B.D. rather than C.R.D. . '
Remarks 1. Since all the treatments are to be applied withi_n each block, in each_block we take as
many units (or plots) as the number of treatments. With this design each treatment will have the same
number of replications. If we want additional replications for some treatments, each of them must.be
applied to more than one unit in a block. o gL :

i 2 It is assumed that though the gen
relative effects of treatments are same in a

eral level of results is different in the different blocks, the
11 the blocks apart from experimental error. In other words, .

there is no interaction between treatments and blocks. In practice we interpret this as meamng: that :
the interactions, if any exist, are not appreciable compared with the treatment effects. Interactions will . = .

~ D separable from experimental error and if the interacp}ons are large, .the'experime_r}t ;§nd}'__‘yie!d e SR e
. Misleading results. ' : 1

3. Since its developme out | a8 bec emely pe u]armalargennmbepof _
3.8 bout 19265) R.B.D. has become extremely pop _ 3 ‘
fields, Iér';:ef;?ﬂ%?;’? ﬁ%’gﬁgtﬁap&me and easy to analyse and these points have made it -the.w ; |

- . 7) being its closest rival.” <L -
- Popular of i i in Square Design (L.S.D.)(c.f. § 6:7) being MW s W
Opular of all the designs with Latin Sq - ducing the effects of trends. Thé design is not

_ AR.B.D. provides a‘method of eliminating or recuce ‘alone but applies whenever the

limited -ty axod s O e eriments in industrial plants alone but applies whenever the -

Urialg gre s?rﬁgm;\?gg ai-rll’efxi‘fggé n?ii?nﬁr space and the possibility of ETHematia mnaumur tmnda :

BBy g e sy ol apror is Teduped and the trediment comparisons are
‘By means of grouping, the experimon domised designs.. . . . f g

Wade more sengitive than wi pletely ran Wi oo oot MmN S R
nore sensitive than with completely ran A SRR ,. -
. Any number of treatment an .‘@‘?f'-'f"’--'-““%%wﬁgiﬁl?m“‘ﬁmm“’1"3&"%‘#‘“@%‘ T it s
Othep d""'ﬁf.;ﬁ?'ﬁﬂménts is large (20 or more) the eflic TR R B

- er designs that are more efficient than RBD. =~
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nissing, the ‘missing plot’ technique discyg

ivi Inits are 1 ;
dividual t od. Some extra computational labour g

sed ip §

y from some in
7. When data » howeyer

X i
6-8 enables the available results .'(')‘:l‘l‘)fhfell:]lgqil;{‘;l;s less convenient in this respect than C.R.D,
involved, and if the gaps are numerous g

p -+ itg agricultural origin, the randomised-blocks degjor, ;
. Appl.r'cat‘l.ons of’R.B.I?. ?{;iﬂgfe]ststodg;y. o instance, to det_:ermine the differencf?il,f
widely ‘.ls.ed i typekb sof machines (treatments), we may isolate the possible effeey,
grcld:l(:tt;\i'fl’;g;-:r?ciSjghccnffli?:ieency among operators (blocks) by randomly selecting operatigpg
.1:'::1 then randomly rotating machine .assignments in suc;.:h a “125;3;‘::;:'6( ;E::}:l i()ﬁp:rat:r WOrlfs on
all the machines. The basic idea here is to compare trea1 mer:: (B rent machineg)
within a block of relatively homogeneous experimental materia Ccla ame ot!::erator_;,.then
repeat the comparison on another block (z}nother operator) ,han Sod_On or additiona]
repetitions of the comparison. The primary dlil‘ference bereen the preceding n}Odel and the
present one lies in the manner in which various experlmental unllts are assxgncfd. In the
completely randomized design there are no blo-cks. each of _whlch musﬁ receive every
treatmen{ level; there are no restrictions on assigning experlmental un.lts to trea‘tmem
levels. In the randomised blocks model the sub-divisions of blocks oi_‘ experimental units are
randomly assigned to the treatments after the blocks have been deliberately arranged to be
homogeneous. '
Layout of R.B.D. In agricultural experimentation, the layout of R.B.D. can be illustrated
as follows : -
Let us consider five treatments A, B, C, D and E each replicated four times. We divide
the whole experimental area into four relatively homogeneous strata or blocks and each block
into five units or plots. Treatments are then allocated at random to the plots of a block, fresh
randomisation being done for each block. A particular layout may be as follows :

Block I A E B D C
Block I E D cC B A
Block 111 C B A E D
Block v A D E C B

For randomisation, we may use Tippet’s random number tables. Let us select oné digited
numbers in the order of their occurrence in the table leaving zero and numbers greater "
5. Suppose we get a random permutation of the digits from 1 to 5 as : 1, 3, 5, 4, 2- So in the
first block we allocate treatment A to first plot, B to 3rd, C to 5th, D to 4th and E to 2nd plot
Similarly, we find fresh random permutations for each ;)f the oth’er three blocks and allocate
the treatments accordingly,

Advantages of R.B.D. Chief advanta

.. M . ges of R.B.D. i s follows :
(1) Accuracy. This design has bee Shily e GHhnGc ap

n sho ¥ +rate than CRD: o
most types of experimental work. ’131:2 ttz(l)illilei[?']\[tg:heg}i:e?t’ ?r ag-gl {tl‘lt-sntlhlr'lc‘qiduul 8.5
. usually results in a decrease of error mean q‘-s etween S.5. |
(@) Flextbility. In B.li.D. No restrictions are pl;;:e;l on the number of treatments o :1;
HU!.llbf..jl‘ ‘ul ll'u_pllcutl!ﬂ.' In general, at least two replicates are required to ¢ty out “
test of significance (I'actorig] design is an exc Itim : ? I dd't?on control (chec_-}thc
some other treatments may be ingludeq more tﬁ 45 AT i | nplications m
analysis. an once without comp
(i) Ease of analysis. Statistical analysig ig gim
the error of any treatment can be isol
omitted from the analysis without com
[Also see Remarks 3 to 7 to § 6:5.) <o

ple, rapid and straightfol'“'ard' 1s\&ma}! be
a.ted' and any number of treatmen
plicating it.

5
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Disadvantages of R.B.D.

i) R.B.D. may give misleading results if blocks are not homogeneous

1) g

(ii) If the data on more than two plots possible to keep large blocks homogencous.
tedious and complicated. IS missing, the statistical analysis becomes quite

6-5-1. Statistical Analysis of R.B.D.
Ifin an R.B.D. a single observation is m
analysis is analogous to ANOVA for fixed e
cbservation per cell [c.f § 5-3-1] and
additive) becomes :

}'U=],I+T,‘+bj+fo';(i=1, 2,...,f;j=1,2,...,r) ... (6-17)

?rde on each of the experimental units, then its
i t?ct model for a two-way classified data with one
the linear model (assuming various effects to be

where

¥y is the response or the yield of the experimental unit receiving the ith
treatment in the jth block :

U is the general mean effect ;
7, is the effect due to the ith treatment;

b; is the effect due to jth block or replicate
iid

and g5 '~ N(0, 0.9,
where K, t,’s and b;’s are constants so that i 7,=0and i bj=0 ... (6-17a)
If we write : : - -
2 2 y; =y..=G = grand total of all the ¢ x r observations.
‘ :Y ¥ij =¥i-= T; = Total for ith treatment.
é ¥ =¥, =B;=Total for jth block,
then heuristically, we ‘get

Z z (y,, -;.. )2 = z z [G'-, '—5;..) + G;J—'y) + (‘Yu —;l'. _y‘j +5f_..)]2
i J [
J = r 3G -7+ tE G- 7+ LE 5 =5+ 5. )
i J [

the product terms vanish since the algebraic sum of deviations from mean is zero. Thus
7SS. SS.T +SS.B. +SSE.
where 7.S.S. is the total sum of squares and S.S.T, S.S.B. and S.S.E. are the sum of squares
due to treatments, blocks and errors respectively, give by2 2
- 12 T =Sy= --_-“)
788 =3 3 (y,-5..), S.S.T. =St r;(y. y
oy

S.SE. =S;=TSS. -SS.T -S.S.B.

— — 32
SSB. =85=tXG.-¥y-),
) : iti it i hose
s partitioned or split into three sum of squares w
Senea the total sum of squares 8 B T' S.S. Therefore, by Cochran's theorem,

i degrees of freedom of .
o e e s by 0t 08 dently distributed as x*-variate.

Scanned with CamScanner



FUNDAMENTALS OF APPLgp ¢

6:20 ' - — Al

TABLE 6:10: ANOVA TABLE FROM RB.D. |
. a3 r S,S. M-S.S. V .
Source of variation d.f. ik - e arianece W E
Treatments t-1 ST , Sr= T'I(t -1)
: : 2 2 S;,(r . 1) FT = 2,9
Blocks or Replicates si b Sg | 8B*® 7lsh
2 _ g2 Fp=gt ;
Error or Residual t-1(r-1 Si sg=Sg/t—-1)r-1) B = sy/g)
Total rt-1 T
M.S.S. of treatments and replicates (or blocks) are tested for signiﬁcamm
mean S.S. : ) '
Under the null hypothesis Hy : T3 =T2 = ... = T against the alternative that al] 75 e
equal the test statisticis : g

2 »
Fp=Z ~Fl¢-D,@¢-1) -1
SE ]
ie. Fpfollows Fcentral) distribution with [(¢ = 1), (¢ = 1) " — DI d.f. Thus if Fr is grogy
than tabulated F for [¢ — 1), (¢ = 1) (r = 1)], d.f. at certain level of significance, usually 53
then we reject the null hypothesis H,, and conclude that the treatments differ significantly f
F, is less than tabulated value then Fr is not significant and we conclude that the data dongt
provide any evidence against the null hypothesis which may be accepted. x5
Similarly under the null hypothesis Hyp, : by = ba = ... = b, against the alternative that¥s
are not all equal, the test statistic is :

s .

Fg=%~Flr-1,r-1)(-1)]
SE

and we can discuss its significance as explained above. ‘

.Remarks 1. The following formulae reduce arithmetic to a great extent for the caleulation of
various S.Ss.

Let us write : ) GﬁzzyﬁandN=rt 68
5 b :
Raw 5.5, (7.5.5) =2 23 ; Correction Factor (C.F) e (15
Total S.8. =T.5.5. =X X (y;~5.* = R.S.S. - C.F. . (619
%
\ Ty T ;
8.8, due to Treatments =S.8.T=r (5, ~7.)2 = Lo CF = ):,- ! CF G
. . : < . ‘ r ; - ¢ - r -, - . Y
r i . i

woere Yo =Ti= L yy,is the total yield from the ith treatment |
| | P ' Tyt Y B? 9
8.8, due to Blocks = §.5.B, = b B Wi

el o 8.8, md— ~ CF at— - CF. -

cowhere 5 =Bi= % 30,18 tho total yield from the jth block

7 88 duete E""”‘SSE« = T'S.S.~S.8.T. -S.8.E.
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Thus we seé that neither Fy nor F, are significant and consequ;:ntly H,, and
retained, i.e., we may regard the treatments as well as blocks to be homogeneous.
L. Remarks 1. Here one degree of freedom is lost for total S.S. and consequently for ¢
- the estimation of the missing value from the given data. o ; _ : ot ‘

; is H, : 7y =T, = T = ...T, had been rejected, then we would have proceegeq furthe,
2000 for ﬁzn;ifnt::.rg}i’g?:iil 805{ ére‘fgtmé;ts giﬁ'er ::igniﬁcanyly{ as discussed in Remark 2 § 6.1, and u:;;;
{  (6:39) for treatment pairs one of which contains the missing observation. s .

6.6. LATIN SQUARE DESIGN (L.S.D.)

In R.B.D. whole of the experimental area is divided into relative}y }.mmogeneou
(blocks) and treatments are allocated at random to units within each b]
randomisation was subjected to one restriction, i.e., within blocks. But

- experimentation, it may happen that experimental area (field) exhibits fertility in st
cultivation might result in alternative strips of high or low fertility. R.B.D. will be e

‘the blocks happen to be parallel to these strips and would be extremely ineffici
blocks are across the strips. Initially,

Hyy mayp,

TTOr 8.8. dye % _;‘_j:l.

b

S groups
ock, ie., ol
in fielqg -
Tips,e.g.
ffective if
ent if the
fertility gradient is seldom known. A useful methog of
eliminating fertility variations consists in an experimental layout which will contro]

variation in two perpendicular directions. Such a layout is a Latin Square Design (L. S.D)

- Remark. The Latin square differs from the randomised block design in that the treatments are
- arranged in complete groups in two directions, the two classifications being orthogonal to each other

and to the treatments. In a Latin square every row and every column is a complete replication. The
i ; effect of the double grouping is to eliminate from the errors all differences among rows and equally all

3 differences among columns. Thus, the Latin square provides more opportunity than randomised blocks
E - for the reduction of errors by skillful planning.

: The experimental material should be arranged and the .
experiment conducted so that the differences among rows and columns represent major sources of -
i variation. ' - ‘

Layout of Design. In field-plot experiments, the Latin square is usually laid out in the
conventional square with the rows and columns corresponding to possible fertility trends in
_two directions across the field. In other types of e i

: rrespond with initial w
~ In this desigg. the number of treatments is equal to the number of replications. Thus in
-case of m- treatments, there have to be M X'm =m?2 experimental units. The whole of
- experimental area is divided into m?2 experimental units (plots) arranged in a square so that
~each row as well as each column contains m units (plots). The m treatments are then
« allocated at random to these rows and columns in such g way that every treatment occurs
~.once and only once in eazh row and in each column. Such a layout is known as m x m Latin
Square Design (L.S.D.) and is extensi Y used in agricultural experiments. For example, if

ich the treatments, say,
ical order is called a Stand
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. For 2 x 2and 3x 3 Latin
standa;d_square exists; as giveixqtiﬁr;?é 03 Ig mg
" i O it .
F ; B | A e
Fora 4 X 4 Laifm Square Design, 4 standard | ' ; ; | :
_zq;;fes are possible as given in Figures 652 to 2 x 2 Standard : 3 S‘:amiiar?i
’ . ‘ 2 7 .V . x
B0 i LSD LSD
Fig. 63 ~ Fig.64

4 x4 STANDARD LATIN SQUARE DESIGNS e
B|C|D A|B|C|D

DiA|C Bla|p|cC
A{D|B c|lp|{B|A
B C|B|A plclal|B

~ Fig. 6-5(a) | Fig. 6-5(b) " Fig. 6-5(c) ' Fig. 6-5(c)

b From a standard Latin square, we can generate a num in squares uting
: therows, columns and treatments, which agre known as trat:xesl);:fn?:t?;: sets of Iiynlz)xez{nnm
The number of squares that can be generated from a standard m X m Latin square by
permuting the rows, columns and letters ( treatments) is (m !?. These are not necessarily all
. different. If all rows except the first and all columns are permuted, we generate [m!x(m—-131
- squares. o T e e s
. .. Total number of possible Latin squares of order m xm G ignd i

; =m ! x(m —1)!x [Number of standard - squares} ... (6:40)

ares that can be

B
A
D

>lOla

Wi 21Q
»lwlalo|

C

oTa = ?\'
>lo)a t'a\
Qlw|>»|Y

Sla|w|»

Dla|w|»

. The following Table 6-21 gives the total number of m x m Latin squ

' ,Cbnstructed for different values of m. |
... . - TABLE621:TOTALNUMBER OF LATIN SQUARES e
Number of Standard mim-1! | TotalNo. of Latin

Squares B), v o ] DTS,

BT = 12 5 b oot ek v i WA
24x6 =144 | ... 576 |
1 120x24 =2880 . | ©.161280 |
720 % 120 = 86400 81,285 1,200 = :j-

sy A 9408
o e ' ible ai ents increases very rapidlyas
" 'Th o that the total number of possible arrangemerc ery rapidiy as.
ﬁtﬁe'va"ll:ezg ::- (the size of Latin square) increases, thus making it rather impossible to
" ‘tabulate all such ‘arrangements for higher values 0 m. Fisher and Yu{gs have tabulated R
tabulate o =3 Latin Squares in Tables X7 and XVI of Fisher and Yotes' Statistical Tubles . -
for 1::1“51"31' Br S ‘.-_ﬂt;l:rwﬁ,;gauéié'métﬁx"gachf‘treahp@nt"glppears once in each row and once in ° .
- Remark. Thus i0 0, o of the treatments, o Cl e ia basic to this design. Therefore, tables of
ach column. Random} fen. aged in asgigning of the treatments to. the rows and columns, always - -
random numbers are 0%V 0, pears but once in each row and each column. A table of random
ding that each USRI ot in o 7% or 8208 P squate, The teta} womber of poss
raenta dapends UPD o of i square; From the Zable 621, we chesrys TEA% 12

1
i
- BB -

il
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Latin square there are 12 possible arrangements and in 4 x 4 Latin Bquare there are 574 posgib|
arrangements. The number of possible arrangements increases very rapidly as n? (number of ¢e!l;;:
increases. When n = 5(5 x 5) there are 1,61,280 different squares, when n = 6 (6 % 6) there are some §13
millions. Thus, use of random numbers for selecting the arrangement is very helpful. '

Advantages of Latin Square Design (L.S.D.) 1. With two-way Brouping o,
stratification L.S.D. controls more of the variation than C.R.D. or R.B.D.

The two-way elimination of variation as a result of cross grouping often results in gm,
error mean sum of squares. Thus, in field experimentation if the fertility gradient is in ty,
directions at right angles to each other (i.e., if there is a diagonal trend in fertility) or in gne
unknown direction then L.S.D. is likely to be more efficient than R.B.D. In fact L.S.D. can e
used with advantage of those cases where the variation in experimental material is from twg
orthogonal sources. As regards the applications of L.S.D., Professor Fisher* says, “If
experimentations were only concerned with the comparison of four to eight treatments or
varieties, it (L.S.D.) would be not merely the principal but almost the universal design
employed.” In the words of Kenney and Keeping, “The Latin square is a device for
controlling two sources of error at once. In field work, the treatments are so allocated among
the plots that no treatment occurs more than once in any one row or any one column of the
Latin square. Variability among rows and among columns is removed from the error. This
serves to control variability due to gradients of soil fertility in two directions at right angles
across the field.”

2. L.S.D. is an incomplete 3-way layout. Its advantage over the complete 3-way layout is
that instead of m3 experimental units only m? units are needed. Thus a 4 x 4 L.S.D. results in
saving of m3 = 4% — 42 = 64 — 16 = 48 observations over a complete 3-way layout

3. The statistical analysis is simple though slightly complicated than for R.B.D. Even
with 1 or 2 missing observations the analysis remains relatively simple.

4. More than one factor can be investigated simultaneously and with fewer trials than
more complicated designs.

Disadvantages of L.S.D. 1. The fundamental assumption that there is no interaction
between the three factors of variation (i.e., the factors act independently) may not be true 1%
general.

2. Unlike R.B.D., in L.S.D. the number of treatments is restricted to the number of
replications and this limits its field of application. L.S.D. is suitable for the number of

‘treatments between 5 and 10 and for more than 10 to 12 treatments the design is seldo®
used since in that case the square becomes too large and does not remain homogeneous.

3. In case of missing plots, when several units are missing the statistical analyst®
becomes quite complex. If one or two blocks in a field are attacked by some disease OF pest
then in R.B.D. we can easily omit the data for these blocks without complicating the analy® ’
at all whereas this is not possible in LSD because in LSD the number of rows, columns 22
treatments have to be equal, A much more complicated analysis is necessitated in L
experiment under similar conditions.

4. In the field layout, R.B.D. is much easy to manage than L.S.D., since the former canbf_
performed equally well on a square or rectangular field or a field of any shape whereas 1°
the latter approximately a square field is necessary, =

4 he
Remark. It should be emphasised at this point that the Latin is not suitable when ¢ .
‘number of treatments is large as there will be as many replications ass&‘:&:;eare treatments. oreovel:
when we have more treatments, it may be difficult to allocate the rows and the columns to 8
variability in an efficient manner, On the other hand, when the number of treatments is very ®

mauu
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,quare&oennotpmv:des
q Iﬁ" ror variance. ufficient number of degrees of freedom to give a reliable estimate of

¥ 5&1. Statistical Analysis of :
] JU'lﬂ e Let yu G, Gk = 1, 2, mx m L.S.D. for One Observation per Experlmeﬂtn!

tation) in the ith row, -» m} denote the response from the unit (plot, in field

Jth column and rec
2 eiving the kth treatment. The triple
G, j» B assumes only m?2 of the possible m? values of an L.S, selected by the experiment. If S

represents the set of m2 values, then symbolically (i, j, k) € S. If a singl
3 gle observation is
made per experimental unit, then the linear additive model is :

ViR =R+0+B+ T+ 5,6 j, e S | .. (6-41)
pis thedc!;!:;tant mean effect; a;, B; and 1, are the constant effects due to the lth row,
f,,rh cdumn an treatment respectively and e;; is error effect due to random component

med to be norma]ly distributed with mean zero and variance o,2i.e., e.,;. ~ N (0, 0.%).
[f we write b \

G= y = Total of all the m?2 observatmns

R; =y;.. =Total of the m observations in the ithrow

. Cj=y.;. =Total of the m observations in the jth column

Tb = y.; = Total of the m observations from kth treatment,

t.hen heunstxcally, we have

2
Y (ya-¥.) = (G =70+ G =R G =5 ).

LrkeS LJkES
+ W= Yie =¥ o —Y¥- k+23"~-)]‘
—mZ(y. -y )2+mZ(v,—y )2+m5'..(v a=y-Y

+ (J’uk“y: =YY h+23’ )2
g;heS

fbepmduct terms vanish, since the algebraic sum of deviations from mean is zero.

: TSS. =SSR.+SS.C.+S8ST. +S.S.E.
'ﬁmT.S.S is the total sum of squares and S.S.R,, S.S.C,, S.S.T. andS.SE.representsum
ﬂf squares due to rows, columns, treatments and error, respectlvely, given by :

TSS. = ¥ (E-7.l; SSR ° «—Sa—mZG. ~FL R
g}les

. 88C. = s?;-mZ(y,--y Ik SS"T»=Sr=rn§(7e-s—yu.)’.and"'v :
ssz s"sfrss. SSR ~88C -SST." &

R ‘- e e w0 L TTABLE 8191 ANCVA- TABLE FOR mxm L.S.D.
- [Bour ée‘of”V&n" jotton | df T 88 L Vaﬁanéa'thio:‘F'
L e TR s,, s,,-s,,«m 1. |Fr=salsg
(olumns e il 86, sc“sc“m 1) Fc=8c183,;;_;5“. ey
m- 1 By srasrl(m ~ & = F-ang-I«Sg.,»}.}.}_

"_,'_(ni—gll(m -_2l- S} : sgngl(m 1)(m~2)

. .mz — 1 “ ; ._"" '—‘,‘n;'&,‘ i
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Lot us go :‘,_t_ug:::g f?& t;’ H wt. m ,. .1,3.., .a,,,.. o,

For colimi aimf;f. e L My Py = ﬁs: :Bm: (? and
Furtrentmeutnﬂba S Bg,'n ”u n e i |
Alterna otheinl b ;
M;;:"::\':t?? S4B L AL leaat tWO a"n ate dlﬂ‘emnt
Forcolumn effects, *  Hip 1At feast two ﬁ, ¥ aro (;]ilﬂﬂ(';?:tt (

Hy, : At loast two /'8 4 are ;
e t’::;nmi t::r::t;‘;;.' Fclr& Fy follow (central) ¥ diatnbution with (m - 1), (m- I) (m k
under the null hypotheses Ho, Hp and H, respectiVely 3 .
o LetFy=Fy ((m«l),(m-i)(m 9)) be the tabulated value c}fj‘IF or gmf Fl) i lj(mﬁ_
4. at the level ofs:gmﬁcance o’ Thus ix‘ Fn > F,, we re;gqf oo 804 i Fy S Fy, we gy x|
reject Hog. . . T e T e
: ,;Sxmﬂarly,wecantestforﬁop and]{m, e b R it Gk
. 2 w.Remarks 1. For numencal computationa of varxous sum of squares, the follgwxng f“mulae . ‘
\.\muchmomennvementtouse. ik o aneiniiseio ol ig Caei = e

Letuswnte Nommbe, oo igis e }
T yu="Sum of all the m3 observations
i ﬁd.i) €5 R
hR = Sum °f the Obsewatlons from the units in the ith row. Sl

L ¥;=C= Sum of the observations from the units in the jth column % g B
Yk = Ta = Sum of the’ observatmns from the umts receiving the kth treatment bt

Con'ectxon Facto:- (GF) G2/N ek A i (6'426)

RaWSS (R.S.S. )-— kit Z yuk SUR siguisala el
(u,h)es b

...) RSS CF

gy

(l.J,k) 8

&}

f_;S;STf_Szsz(y 1,-y )2 *-‘“‘Z TRE"'CF\ & Zyke-CF 3
e T

2. Standard Emr (S E )nf the dzﬁ'erence between any two treatment maang” by
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e uare Estimat
sh umetes: W, o, B; and:, Zsf’i P?rzameters: The least square estimates of the
< re:u)iuﬂl sum of squares E given by’ »--, M) in (6-38) are obtained by minimising

E =
fi_]%gs(yuk H—o;— B"T&)z

§ i Wﬂhng et:l::e principle of least Squares, the normal equations for estimating 4, o;, B;
gw

1 are

‘j‘:" M Q_E = 0": z 3

‘ HEC ik eS (y.,;, a -

a“f’uogu.bzxzes(y”‘_u_a‘—ﬁfr")

BE 3 ees (*)
b —— 0 = - - A

fi-a;j; aB} , % 5 (J'u} ll aj R

b IE A A A

; —m ()= P e B s O s R

i a0 (i..?):c.‘i ba-n-o B’ W

ﬁl;ero S; is the possible pair (j, k) associated with a fixed value of i and similarly we can
: deﬁhe S;and S, ; and n, o, ﬁ, , and T, are the estimates of j, ; , B, and 1, respectively.
In order that (*) has a unique solution, we must have

I&aiﬁ,=2?.=o ... (6-50)

TRy
H« W

: Smeo u. oceurs m times for each i, we have from (6-39)

| Sy Y o= mEa. 0 ... @)
| lfiig, o G.). k) &S

;. Similarly, we have |

S Y f= T Tu=0 R = (i)

’
Gk eS (1.5, k) €S

i F“l'ther since in an L.S.D. each i and eachj occur exactly once w1th each & in tnplet ({25 P
e ”*) ES and consequently S, consists of m pairs (i, ) and, we get on using (6-40),

T &= ¥ &=%&=0 X B= % B=0

G, &) tS‘ - (U) €S G, k) eS,

MR B N (11)

o \ A

T : =ma, X B =m

‘t= m b ll E&S a‘ & (lrﬂesj 7 3

Us‘“g(i) (u; and (ui) we getﬁ'nm(*)
: A A. ki A b e
o = u y L om0} = s h Y } e e
L - ' A A R :
m{p -FB‘,-) = ﬁ, e F 2 S Lt =m(p+T) = T FYr—Yeoo o
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6:6-3. Variance of Estimates. From model (641), we have

Yoo =mp +moy +2B X% e
yj =mp + 2o +mpy 4 Lu  *+Ej r - (652
yop=mp o+ 2o +2p +mu e
Yo =ML+ mIy; +mEP; +mAT + Een
then, from (6-42), we get
T AP - T ] -E-'-
yi--‘ll""at*‘ix-- ’ -Z'J" M+EI+ 7 _._(5.520)
Yep=NL+Tp+€.; Y..=H+E..
Since g;, ~ N(O, o.2), we get E(y...)=p - (6-52p)
2
Var (i) =E [i-E (]} )]2 =E[y..-1] [From (6551), (6:52)] and (6-52b)]
2
=E@.)2=Var€.) =5 .. (653)
0=V —F o= G+ —F. = E(B) =t [Using (652a) and (6-523)]

Var (@) =E [0-E()’=E (8- )%= E (5.~ 5...)?

=E(%.2)+E(%.2)-2E (E;.E..)

0,2 o©,2 1 i ;
= 7‘;— + ;1—2—1;”-1—2 (c.2. m) }, asin R.B.D.

Var (o) (mm_21) O |
{

... (6+53a)
Similarly, we shall get

Var ( ﬁj) = (%) 0,2 = Var ( %k) ... (6-53b)

6-6-4. Expectation of Sum of Squares.

SSR =m 2 (y;.-5.)2=m 2 (0 + €. = E..)2
=m | X o2+ N(E. ~ )2 42 Zo; (% —E...)]
« BSSE) =m [T o+ B {3 & -5 | 423 0B, —E...).I |

ofN 2 02+ E {EE2—m t...2} + o]

i lE_ 02+ 3 E (%.2) - m K5

sl g2\ . @¢2]
e 20 5] Be | 0,2 E
@ >,-:°‘* +§‘ (m) i mz]‘rm[z o2+ m, =t _ e
) S ! R m. . m
=m 2 o2+ (m -1)g2

4
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SSR e
2 E( ) m - 12"‘-2*% = EMSRl =024 .. (6545
li’ A
~ Similarly, we can show that oo 5 Mm 8.5. dae to rows ”“'t 8
ESSC) =m 2824 (m-1)0,2
j
SS8C m
. Ews0=p(559) ., m 3 g G
, _ i
gnd E(SST')szn?-;-(m-l)o'z
SST
= ... (655}
- _ 2
SSE =;’.j,zi:e5 (J'm-y.—.,-y.j.—y.,,,-yﬁm)
= =, };fes (6~~~ 4 227 {On wsing (65257
I L A
| = ”is leijk2+3i--z+i.j.2+'£..52+4E...2]
* 2{' EijkEi«- it 7 E, —8,;,,3..;, +2 E,jg?:....
P T 4T By 4T, B -2 B - T B T B ]
We have 7
a2
E(E,ﬁz) =G¢2; E(E;..2)=(E.j.z)=E(-€..§2 =— and E( E..)z—'_'"f - (&5T)
;'ssul 1 =
E(e;n€:..) =E | g (‘!'—f;— =;;E(E,ﬁz)"—' (" £2’s are independent) . {857a)
Similarly ' ;L 409 b _
- . o, vim = LR 1
E(g; €.;.) = E(e s..;,)=7; % O _ | ... (6578)
i Eel'k 1 2 y e i
E(ge..) =E | e (‘--f-ﬁ——2 =-—E(e.,fj= Y Nt .- (6-57¢)
Zﬁy& Zeyz o &z Vik | |
E(%.T4) =E ( )( ) zE(eu;’) "m‘§ e . {6-37d)
o @3 84T e EAE T
E(E;.. €. 2 =E(Z, Y b)ﬂ i R . (6-57e)
E(e; 5 4y [m( ) mz( m)l*"'["'s“‘*”]‘mz | (s«svf,-::

RO Thetwoluml havemelmnummmmmmlhuthm)
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6-38
Similarly, : | 3
o o, . (657g)
E(€; €. =E(e. £..)= ;?’EE L
Taking expectations of both sides in (6:56a) and substituting ir 2), we
get :
11,1, L
E(SSE)=ij):k'es o2 {1+E+m+m oz
gk : 2
2 1 1.1 2 2 2
+d (-%—}rﬁ_-n_;"'_nﬁ"' m2Tm2 " m2 m? om?! ol
6 4 2 77
=m? g2 (1+3— - ;1_+;;§ - ?)—02(m 3m + 2)
=(m-1) (m—-2) 6,
e = ¢’ ... (658)
= E(MSE)=E [ T 2)] = o,

—.  Error mean sum of squares (MSE = sg?) provides an unbiased estimate of
the population variance o 2. Under the null hypotheses :

HO'JZ(I]_:(XQ:...:C!,“:O ; Hq}iB1=B2=...=Bm=oandH0-;:Tl=T2=...=Tm=0
... (6-39)
We get from (6:54), (6-55) and (6-56) respectively :

SSC
E ( SSR =

SST
) = E(IMSR)=0¢,2 ; E( _—
m-1 m

m-1

):E(MSC)=U,,2 ; E(

) = E(MST) =¢.2
l

... (6-59a)
i.e., each of the mean sum of squares due to rows, columns anc! treatments gives an unbiased
estimate o, under the null hypotheses Hy, Hog and H, respectively.

6-6.5. Latin Square Design—Random Effect Model. The linear model (for random
effects) in LSD is given by :

Yijgk =R +Ti+ci+t+ €y,

... (6:60)
where

u is the general mean effect,

r; is the additional effect due to ith row

¢; is the additional effect due to jth column

t) is the additional effect due to kth treatment (i,j,k=1,2,...,m)

and i 'SNO,062),i=1,2,...m 1

¢ '~ N©0,62),j=12,...m 600)
! N©,02),k=1,2,,..m ’ S
Eijk ) N(O,62) Vi, j, k=1,2, vy M
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e — 6:39
and Ti, Cj» &k AN E, are dlstnbuted ind
E(r) = E(e =BG oy i ;D:ndtlan; of each other, go that
y o = r &y ey
z::‘::))—l;(r?_ » Var(c)) = = E(c?) = g2 ‘
Cov ( k (th‘ ) 012 » Var (E k) E (E{ bQ) = 0- 2 L . ree (6'60b)
Fin¢j) = Cov (ry, ¢,) = Cov (e, t) =0
Cov (r Euk) Cov (c Euk) = Cov (t, Eix) = 0
From (6-60), we get c J
i =mu +m".‘+2_,cj + 2 b+ €;.. )
J k
Y. =mu +Zr,-+m- .
‘ ¢ + § th + €. .. (6-61)
Yor=mu +Zr;‘+2cj+mtk +E. }
i j
y...=m2u+m2r,~+m20j+mztk+a...
EQip®) =EM+ri+ci+ b+ ) = 12+ 6,2+ 62+ 02+ 02 [Using (6600)] ... (6:62)

E(y;.2) =E(mp+mr; +Y, i+ 2t +g.)°
J k

=m?n? + m? E(r?) + X E(c? + X, E(t2) + E(g;..2)
i k

[All covariance terms vanish, because of (6-605)]

= E(¥:..2) =m??+ m26,2 + mo .22+ m 62+ mc,2
('." &..2 is the sum of squares of m i.i.d. observations)
=m?2 (U2 + 6,2) + m(c .2 + 6.2 + G,.2) ... (6-62a)
Similarly from (6-61), on using (6-:60b), we shall get
E(y;? =m2p?+ o2 +m(o?+0o’+0.7?) ... (6-62b)
E(y.;2) =m? 2+ 6D +m (02 +62+0.7 : .. (6:62c)

E(y..2 =E [mzp, +mYri+mXci+m % ty + €...]2
i i
_ [m4p2 + m2mo,?2+m?2mao?+ m?2mo?+m? 0,2]

=m?2 [m2u2 +m(o2+02+02+ 6,2] . (662d)
— 1
.. E(SSR) =E [Z (5?,—.. —y...)2] =K [;H‘Zy,-..” -C.F.]
=E [ Zyl —-— ——“ZE(Y; _2"E(‘Y~--2)
m i

_1 [Z {m2 @2+ 0,2) +m (a 2 4 0,2 + 0, )}] - [m2 {m?+ m(c,2 + 62 + 6,2 + 0,2}]
m i g

+ [From (6:62a): and (6-62d)]
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*m0'2+0'2+0'2)+02]

- y +(] 2) — mzpvz ( r c ¢ ]

—"12 (}.|2+ 0‘,-2)4""1 (062'1"0}2 g) [

2 2
=(m2—m)o,.2+(m-1)622=(m—1) [m o,° + ¢ ]

(s?,) = g2 + mo,? ... (B.63)

B )= mo2 4o = EOMSE)= E

m-—1

Similarly, we can prove that

E(SSC) =(m-1)(c2+mo?d = E md}"’"

= E (MSC) = E(sz) =62+ m o2 ... (664

and E(MST) =E(s;) =02 +mo ... (663)

E(SSE) = E [TSS -SSR —-SSC - SST]

2

L Y...

L lyy2_= ..2+2——]

=E[2 y‘ff"‘g—m%y""g—m%y”' m%'yk m?

s |
# [e.f. Remark 1 to § 6-7-1, equations (6-43) to (6-47)]

1 2 (112 2 2 2 9
= m? (u2+or2+0c2+0t2+082)z—;n—.m {m (12 + 6,2) + m (6.° + Oy +0‘e)}
. 24 0.2 —— 2( 2+02)+m(62+02+02)}
——-.m{mz(u2+(5c3)+m(cr2+0, +ce)}—m.m{m I A . 5 :
m

+ 32- . m? {m2u2 +m (0,2 + 02+ 02) + 022} [From (6-62a) to (6-62d))
m

=02(m2-m-m-m+ 92) = (m2—-3m +2)c,2=(m—-1) (m -2) 0,2
- EMSE) = E(st) = .
E[(m—l)(m—?.) o = K (s2)
Hence, MSE provides an unbiased estimate of o2,
6,2 = MSE . (6-660)
Estimates of 0,2, 6,2 and o2 From (6-63), we get
EMSR)=c2+mo? = (o2+ma?)=MSR
i 62+mo2=MSR = G?= M‘M,;ﬂ [ From (6-66a)) ... (667)
Similarly, E(MSC) = 6,2 + m 6,2 [From (6-64)]
= (62+mod=MSC = 62-M5C ;MSE ... (669
E(MST) = 0,2+ m o2 [From (668) = 4.2 MST—MSE (66
m
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th ’ Hypothe_sm. The appropriate hypothesis for te

%geﬂt factors;, ﬂ;., TOWS, t;olumns and treatments are . stipg the equality of means due to
s (l) or - G =0 .

against g .o2
i . 22 _ r:62>0 . )
40 (u) Hp:  o2=0 against Hy, :52s0 3 ’ -
0o i) Hu: 07=0  apaingt g%, ... (670)
il

‘nder these null hypotheses, we get from 66
E(MSR) =0.? ; E(MSC) =g 2"

i, g of the mean sum of squares due to ro
g

3), (6-64) and (6-65) respectively :
and E(MST) = ¢ 2

ws, columns and treatments gives an unbiased

Fate of 0,2 under the null hypotheses : H ;
% nbiﬁ : c:d estimate of G2 §:H,, H, and H, respectively whereas MSE always
| /Hence, a8 1n t}l:e 'fixed effect model, the test statistics for testing H,,, H,, and H,, are
- "gi;‘,en respectwely y:
i3 = =2 MSR F 3
o R = MSE m-1,(m—1)(m-2)
Aed] _ MSC (6'71)
Hg &= MSE ~ Fm—l.(m-l)(m—2) »
MST
- md. F, = MSE =~ "m-1Lm-Dm-2

' Hence, the ANOVA table for LSD for Random Effect Model is similar to that of ANOVA
table for fixed effects.

"' Remark. From the above discussion we observe that the computational procedure for finding the
 various sum of squares and the corresponding statistical analysis of the Random Effect Model is exactly
gimilar to that of the fixed effect model of LSD. However, the conclusions drawn from the analysis of
these models are quite different. In the fixed effect model, the conclusions drawn are valid only for the
st of treatments used in the experiment. On the other hand, in the random effect model, the
‘wnclusions drawn are valid for the entire class of treatments from which the given set of treatments
ued in the experiment, is drawn as a random sample.

TABLE 6-20 : ANOVA TABLE (LSD) (RANDOM EFFECT MODEL)

Box, .. Sourcesof | @&f Mean S.S. | E(MSS)
3 B - Variation
Raauiy, rficiency of LD | Rows SO -
it ab}:? for La::)in Squs;re Design | Columns mml s;- o + m ao?
(Rand:) uvlng}f mt treatnzg%tg) f(i):; Treatments m=1 s,2 o2 + m o2
8 o) is giVeilcilsl Tl‘zgle 6-20. Error (m=-1) (m-2) °E o
Y \ , I_Eﬂtﬂl——‘ m?-1 stfi-.
;Pf.ﬁﬁency of LSD Relative to RBD. ix it ¢
Cas 2 be the error mean sum of squares for RI}D with

e 1. Ro LS locks. Let sg' , o iy
ws of LSD a; fhe‘;fﬁciency of LSD relative tq RBD is given by :
2 st § G S8 TR . ¢ R AT AT JTRGTY B3
Sg*. PR N S 2 e BT e R , .. (6:72)

el S"fLSD) as blocks. The
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1 we apply uniformity trials: to LSD which-conaists in using the same troatme

the m? units, there are no trontment variations; Congequently the W"‘“‘T‘"“‘ f.
error d.f. Therefore

Error d.f. (duo to uniformity trials) = (m = 1) (= 2) + (m ~ 1).= (m = Dim= 241)n 1y

=\

=

i f [ Thi) " 9 67,”
Error 8.8, = (d.f)x Mean §.8. = (m - 1) 8z (874
Now, if we conduct the same experiment as RBD with rows as blocks, there arn

Tie
variations due to columns, Hence, the columns d.f. and column 8.8 (add to the error df, ;m,i
error s.s,) respectively.

Hence, for RBD
Errord.f, =(m-124+m-D=m-1(m-1+ H=mlim-1)

(From (g7
and Error S.S. =(m-1)? s% +m-1s (From (6-74))
v, Error mean square for RBD (with Rows as Blocks) ;B
2
2 (m—l)z.seﬁw(m—l)s?_(m—l)sE+sc (
SE- = m(m _ 1) = m . - e 6¢75)
Hence, the efficiency E; of LSD relative to RBD (with rows as blocks) is given by :
_sg? s+ (m—1)sg?
‘ El - SE2 - msE2 vas {6'76}
we can re-write :
2 2 2 2 2
msg + (s; — Sg) se—sg\| 1
El - E i E =1+ (“__'—) : '_2' £a4 (6.76a)
msg m SE
From the ANOVA Table 6-:20, we observe that .
2
S, —§
E(sf—s%) = E(sf) -E (sé] =g+ mol-62=mc? = Est ( E) = g2
Substituting in (6:76a), we get

2
E, =1+:—;2 = E;>1 ... (6-76b)

E;=1if 0.=0i.e., both LSD and RBD (with rows as blocks) are equally efficient if 5= 0,
otherwise (o, #0), LSD is more efficient than RBD.

Case 2. Column of LSD as Blocks. As in case (1) as a result of uniformity trials in
LSD,

and

Errord.f. =(m-1)? }

(*)
Error S.S. =(m-1)? 3}23

If we conduct the same experiment as RBD with columns of LSD as blocks, there will be

no variations due to rows. Hence the row d.f. and row S.S. for LSD add to the error d.f. and
error S.S. respectively

Hence for RBD with (columns as blocks),
Errord.f.=(m -12+(m-1)=m(m -1) ]
and  Error§.5. = (m -1 sz + (m - 1) s
. Error mean square for RBD (columns as blocks) is :
2 2
2 (m—1)2SE"+(m—-1)SR

_ sp+m—-1s>
g = m(m — 1) =3

(From (%)

4_.__—‘

Scanned with CamScanner

dd t4 the

h



eN .OF EXPERIMENTS ./ © ¢

6-43
fﬁ c1enC.V E; of LSD relative to RBD (with coly

; 2, mns as blocks) is given by :

o B, =% _SRtm-1)5}

i s m s .‘ . (6TT)
Rewriting, We have '

17 - I sp + (m—1) 62 2
AR 2=h—2—£=1+ Sr—sg\ 1
t m sg m 2
#"As in case (1), from Table 6-20, we shall get -
R 9 o 2 2
E Sp — Sg =m g2 SR —Sg
( ) r => __m = Gr2 . (6-770)
0,2
Ey =1+—3 = E>1
SE

 Thus, E2 = 1 lf G, = 0i.e.,, LSD is equally efficient as RBD (with columns as blocks) if
= 0, otherwise LSD is more efficient than RBD.

6 7. Efficiency of LSD Relative of CRD. As in the above cases (1) and (2) in § 6-7-6.,
ﬁrst of all, we apply uniformity trials to LSD so that

Errord.f. =(m—1)? } i

Error S.S. =(m —1)? sE

Now, if we conduct the same LSD experiment as a CRD experiment, there is no local
control. Consequently the d.f. and the S.S. for blocks and rows will add to the d.f and S.S. for

error respectively. Thus, for CRD.
Error d.f. =(m—1) + (m — 1) + (m 1D=m?2- 1 [From 6-78)]

and Error S.S. =(m—1)? so+(m—1) sp + (m — 1) s

. Error mean square ( ) for CRD is given by :

2 2
(m 1)2sE+(m 1)sR+(m 1)s,_. 512q+sc+(m—1)s£-
=
m?-1 (m+1)

..-(6-78)

2 Error S.S.

B = Errord.f. :
Hence, the efficiency E3 of LSD relative to CRD is glven by :
w e . (679

(m + 1) SE

Re-writing, we have
2 2
’ 312;+s,_.+(m+1—2)33

@_f_sa,t(_"_t_ﬂfh :
_ (m-1)sg

Ea, 3 (m—1) &

- But, from Table 6 20 we have " e g
RS (HR ! )

y Biiys ‘z;. S @ it 2: L3 e 2, V= ¥ : (sc —SE) . mU{; H Bt L T E e s T TE Y et v s Fus -
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Ea ‘ 2402 '} At ol avibeia
(m+1)sg ) L : . .
"Thus, Ej = 1, if and only if o, = 0 and o, = 0 i.e,, LSD 18 equally efficient as CRD ¢ o
only if ¢, = 0 and o, = 0, otherwise LSD is more efficient than CRD. |

’ N ‘ lative to CRD [See Remérk ‘
Remarks 1. As stated in working out the efficiency of RBD re ! k1t
6:6:6, Aliter Method], the results in (6-76), (6:77) and (6-79) are ba?iezlj ;23113 thq biﬂé% assumption thai
exactly the same experimental units are used in either of the RBD an asin .

. onci ies of field experim,
2. Some results on Efficiencies. Cochran W.G., on the basis of a series of f Perimeng
conducted at Rothamsted and associated centres during the years 1927 to 1934 obtained the follomng
results for the efficiencies of LSD relative to RBD and CRD.

Efficiency of LSD relative to RBD = 137%
Efficiency of LSD relative to CRD = 222%
Now 100 : 137:222::4-50:6-17:10

This implies that approximately 10 replicates of a CRD are equivalent to 6 replicates of a RBD apg
4 or 5 replicates of an LSD, to achieve a particular accuracy.

These figures may be regarded as an indicator of the type of results that may be obtained with
different experimental material.

6-6-8. Estimation of Missing Values in Latin Square Design. Let us suppose that in
m x m Latin Square, the observation occurring in the ith row, jth column and receiving the
kth treatment is missing. Let us assume that its value is x, L.e., y; = x.

R = Total of the known observations in the ith row, i.e., the row containing ‘x’.

R

)

~ C = Total of known observations in the jth column, i.e., the column containing ‘r".

T = Total of known observations receiving kth treatment, i.e., total of all known
treatment values containing ‘x’.

S = Total of known observations.

Then

o 2 2

SSR.= Sliain), + constant w.r.t. x — (EJ%T’C)

‘ 2 2

S.S.C.= (C+x) + constant w.r.t. x — (S+—x)

m m2
T 2 2
S.S.T. =( ta) + constant w.r.t. x - (S_+_3_c)_

E = Residual Sum of Squares (S.S.E.)=T.S.S.-S.S.R.-S.S.C.-S.ST.

|
=x2-5;[(R +x)2+(C+x)""+(T+")2] +2 Q_;T;—)E

We will choose x 80 as to minimise E.

JE 2
G B =0=2x—"m-(R+C’+T+3x)+-—-_...4(§l;x)
= (m?=3m+2)x=mR+C+T)-28 GOt L )
A mR+C+T)-25 s oy O3 o8 mosk 48 0
i . m=-1(m-2) o T e (O

; Remark. The same procedure may be followed for estimating more than one, say k missin _,"7?1“79- e
and then missing values are obtained by solving k-equations simultaneously. Nt

J
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At\zalysis. After inge FHin 6-45
 gmthe usual analysis of variance, suﬁti‘et.e Stimated valup for missing observation, we
s, Adjusted treatment S5 is obtaing py S F: 7 total S5, and consequently for

by subtract;

2 acting the
R VT
; mthe treatment S.S.

; fr0 gtandard Error (S.E.) of the difference betw

nds to missing values is given by g V2
ﬁi’: nts, one of which corresponds tq mig 5

statistiod

... (6-80a)

een two treatment means, none of which

' 4im. The S.E. of difference of the means of two
Sing observation is given by :

|7+ w=sms]
Sg| — + 2
m  (m-1)(m-2) ]
ovided the treatments show significant effect.

... (6-81)

For a detailgd discussion on the estimation of missing ob ion i i
datistical analysis, see § 6-9 in Missing Plot Technique. g observation in LSD and its

TABLE 6-21
Example 6:7. A n Column
erperiment was carried out to - s
determine the effect of claying : rotals (R,)
the ground on the field of| Rowl I I m Iv | totats
barley grains; amount of clay I D B C A
used were as follows : 29.1 | 189 | 294 5.7 83-1
A:Noclay . 1 (& A D B s
B:Clay at 100 per acre . 164 102 | 212 19-1
C: Clay at 200 per acre I A D B C 1053
D:Clay at 300 per acre. 54 388 | 240 | 370
The yields were in plots of v B C A D it l
8 metres by 8 metres and are 249 | 417 9-5 28-9 7_
gwen in Table 6-21. Column | 758 | 1096 | 841 | 907 | 3602
Totals (C)) |
(@) Perform the ANOVA and calculate the critical difference for the treatment mean
yields. . . ]
(b) Calculate the efficiency of the above Latin Square Design over (i) R.B.D. and
(ii) C.R.D. . o
(c) ;’liild u:; er ‘A’ in the first column was missing. Estimate the missing value and carry
out the ANOVA.
Solution. The four treatment totals aée. .124.5 b
A : 308, B : 869, ' ’
 Grand total G = 360-2, N = 16. .
~ o F. = 202 - 81090025

" Raw 8.8 = (29-1)2 + (189 + L (05) + (28:9)7 = 1005208
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6-46 FUNDAMENTALS® OF 'APPLIED S'_rf‘l'ﬂc\s
Total S.S. = 10,052:08 — 8,109-0025 = 1,943:0775
SSR. =1[83-1)2+(66:9) + (105 2)2 4 (105:0)2 ] ~ 8,109-0025
= 3—3—’4—1& _ 8,109:0025 = 259-3125 |
SS.C. =1[(758)2 +(1096)? + (84:1)? + (90-7)2] — 8,109:0025
= 33—0—?41'19 _ 8109-0025 = 155-2725
SS.T. =1[(30:8)2 + (86:9)% + (124:5)% + (118 .0)2] - 8,109:0025
= 29_241@ _ 8109-0025 = 1372-1225
Error S.S. = T.S.S. - S.8.R. - 8.8.C. - S.8.T. = 156-3700
TABLE 6-22: ANOVA TABLE FOR L.S.D. i
fgrl"i;cfioor]: d.f. S.5. MS.S. Variance Ratio ;

&) @) (3) ) = (3)+(2) |
Rows 3 259-5375 864375 | Fp= g-g%:g =332 <476 ;
Columns 3 155-2725 51-7575 = gé:gg’zg =198 <476 i
Treatments | 3 | 1,372-1225 | 457-3742 |Fr= %?% = 17-55 > 4-76
Errur 6 156-3700 26-0616
Total 15 | 1,943-0775

Tabu]ated F3 6 (0 05) =4-76

Hence we conclude that the variation due to rows and columns is not significant but the

treatments, i.e., different levels of clay, have significant effect on the yield. To determine
which of the treatment pairs differ significantly, we have to calculate the critical differe

nce

(C.D.)
S.E. of difference between any two treatment means TABLE623
=sp =\ (2/m) = V(2 x 26-0616/4) = 3-609 | Treatment | Mean Yield ' | A= M
C.D. = 3-609 x tg.g95 (for error d.f.) C 31:1250 1-625
= 3609 x 2-447 = 8-83. D 29-5000
We now arrange the treatment means : =1
in their decreasing order of magnitude as B 217260 14-025 |
given in the Table 6-23. A 77000 T l
We, therefore, conclude that :
(i) The difference between mean yields of C and D is not significant arllldl(ti};eg) rm;ty
0

therefore be regarded alike as regards thelr effect on yleld Slmllar argume!’it
pair D and B,
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. e treatments C'and B apa
W yields, since the difference ng:f;
étment C is to be preferreq t, t

¢ Jeft. -
: “.?#"f(b)E‘fﬁciency of L.S.D.:

o polative efficiency of LS.
s (i) Rela 2 D2 over RB.D. when
: sc +(m —1)sg

ificant]y .

een thesi,rdrgferen? from each other as regards their

reatment p eg? yiwld"' viz., 9-4 exceods the C.D. As
g + Slmilar argument holda for any other

rows are taken as blocks is :
o P m sg 4% 260616 - = 12465
pelative € iciency of L.S.D. over R.B.D. wh
8122 o Sz en columns are taken as blocks is

~DSE _ 864375+ 3 x 260616
msg 4x26.0616 - 10792

(ii7) Relative efficiency of an L.8.D. over CR.D, s :

2 . 2
SR+Sc+(m-1)sg 116-3798
(m+1)s:  130-3080
Hence, the gain by using Latin Square Design

(i) instead of R.B.D. is 25% when rows are taken as blocks and 58% when columns are
taken as blocks.

(i) instead of C.R.D. is 66%.
(¢) Missing observation. Using (6-80), we get the estimate for missing value -
5&:\ N 4(99:8 + 704 + 25-4) — 2 x 354-8
3x2 c
" Statistical Analysis. As a result of replacing the missing figure 54 by its estimate
12-18, Corrected or Adjusted S.S. are obtained as follows :
' Raw S.S. = 10,052:08 — (5-4)° + (12:13)2 = 10,170-06
G? = (360-2 — 54 + 12:13)° = (366:93)" = 13463762
C.F. =G?/16 =8,414-85
Total 8.8. =R.8.S.-CF.= 10,170-06 — 8,414:85 = 1,755-21
YR? = 33,473:26 — (105:2)° + (1052 - 54 + 12-13)? = 34,934-54

SSR. = %9%‘5'—5—% _8,414-85 = 31879
YC2 =33,057-10 - (75-8)% + (758 =54 + 12:13)% = 34,122-66
C. = 314%3-956_3_ 8,414-85 = 11581
Y72 =37,924-50 - (30-8)% + (80:8 - 5+4 + 12:13)° = 38,384-36

Adjusting factor for treatment S.S.is [:.t”. (6-80a)] : .
(3 x 254 +99-8 + 70'4_-_3_.5_‘21____'8)_ - ,(:__ll)gé@_ = 326-40
(3 x 2)? g %

= 1-6605

=12-13

| - 38384:36 0 1405 _ 30640 = 854:84
Adjusted 8.8.Tm gt o 85 (iz? 40 : )854 84

- Ad] B = TSS - SSR-8SC - SST (Adjusted) .- v o
AR T 75521 ~ 81879 - 116:81~ 854:84.= 468:TT s il
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648,
: TABLE 6.24 : CORRECTED ANOVA FOR LSD ( MISSING OBSEFNATIOh’I) Al i
Source of Variation d.f 8.8 Mean S.S. Vanancﬂi‘
| (1) (2) (3) (4) = (8) +(2) F____hN

31879 106-26 L 106-26 i
X ’ Fr = 5375 =114
Columns | 3 | 11581 38-60 F.<1
Treatments (Adjusted) 3 854-84 284-95 Fr= ————-29%41?55 = 3.06
‘ |
Error (Adjusted) 14— 9=5% | ' 46577 93:15 .
Total 15—-1=14*% | 1,755:21

Note. 1 d.f. is reduced for the d.f. of total S.S. and consequently for Error S.S. chaUSE one missing
observation has been estimated and its estimated value is used in computing the various S.S.

Tabu]ated F3. 5 (005) =541

Since the calculated values of Fg, F, and Fr are less than the tabulated value, more of
them is significant. Hence, the treatments do not differ significantly.

Remark. If the treatments had differed significantly in this case also, then we would have used
the result in (6-81) in computing the Critical Difference (C.D.) for the difference of treatment means,
one of which involves the missing observation.
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Duncan's new multiple range test

In statistics, Duncan's new multiple range test (MRT) is a multiple comparison procedure developed

by David B. Duncan in 1955. Duncan's
MRT belongs to the general class of

multiple comparison procedures that use
e Studentized range statistic g, to compare sets of means.

David B. Duncan developed this test as a modification of
the Student—Newman—Keuls method that would have
greater power. Duncan's MRT 1s especially protective
against false negative (Type II) error at the expense of
having a greater risk of making false positive (Type I)
errors. Duncan's test is commonly used in agronomy and
other agricultural research.

The result of the test 1s a set of subsets of means, where in
each subset means have been found not to be significantly
different from one another.

Contents

. 1Definition

- 1.1Procedure
- 1.2Critical values
. 2Numeric example

. 3Protection and significance levels based on degrees
of freedom

. 4Duncan Bayesian multiple comparison procedure
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Duncan's new multiple range test

. 5Criticism

. S.1Different approaches to the problem

Definition:

Assumptions:

1.A sample of observed means,which
have been drawn independently from n normal
populations with "true" means,respectively.

2.A common standard error .

This standard error is unknown, but there 1s
available the usual estimate,which 1s
independent of the observed means and is based
on a number of degrees of freedom, denoted

by . (More precisely, , has the property

that 1s distributed as with degrees of freedom,
independently of sample means).

The exact definition of the test is:

The difference between any two means
in a set of n means is significant provided the
range of each and every subset which contains
the given means 1s significant according to
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Duncan's new multiple range test

an  level range test where , and 1s the number
of means in the subset concerned.

Exception: The sole exception to this rule is
that no difference between two means can be
declared significant if the two means concerned
are both contained in a subset of the means
which has a non-significant range.

Procedure:

The procedure consists of a series
of pairwise comparisons between means. Each
comparison 1s performed at a significance level ,
defined by the number of means separating the
two means compared (for separating means).
The test are performed sequentially, where the
result of a test determines which test 1s
performed next.

The tests are performed in the following
order:

The largest minus the smallest, the
largest minus the second smallest, up to the
largest minus the second largest; then the
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Duncan's new multiple range test

second largest minus the smallest, the second
largest minus the second smallest, and so on,
finishing with the second smallest minus the

smallest.

With only one exception, given below, each
difference is significant if it exceeds the
corresponding shortest significant range;
otherwise it 1s not significant. Where the
shortest significant range 1s the
significant studentized range, multiplied by the
standard error. The shortest significant range
will be designated as , where is the number
means 1n the subset. The sole exception to this
rule is that no difference between two means
can be declared significant if the two means
concerned are both contained in a subset of the
means which has a non-significant range.

An algorithm for performing the test is as
follows:

1.Rank the sample means, largest to
smallest.
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Duncan's new multiple range test

2. For each  sample mean, largest to
smallest, do the following:

2.1 for each sample mean, (denoted ), for
smallest up to

2.1.1 compare to critical value

2.1.21f  does not exceed the critical
value,
The subset is declared not siginificantlly
different:

2.1.2.1 Go to next iteration of loop 2.
2.1.3 Otherwise, keep going with loop 2.1

Critical values:

Duncan's multiple range test makes use
of the studentized range distribution in order to
determine critical values for comparisons
between means. Note that different comparisons
between means may differ by their significance
levels- since the significance level is subject to
the size of the subset of means in question.

Let us denote  asthe  quantile of
the studentized range distribution, with p
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observations, and  degrees of freedom for the
second sample (see studentized range for more

information). Let us denote as the standardized

critical value, given by the rule:

If p=2
Else

The shortest critical range, (the actual
critical value of the test) is computed as :

For ->o0, a tabulation exists for an exact value
of Q (see link). A word of caution 1s needed
here: notations for Q and R are not the same
throughout literature, where Q is sometimes
denoted as the shortest significant interval, and
R as the significant quantile for studentized
range distribution (Duncan's 1955 paper uses
both notations in different parts).

Numeric example:

Let us look at the example of 5 treatment
means:
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Treatments

T1

T2

T3

T4

TS

Treatment Means

9.8

15.4

17.6

21.6

10.8

Rank

With a standard error of ,and  (degrees of
freedom for estimating the standard error).
Using a known tabulation for Q, one reaches the
values of

Now we may obtain the values of the shortest
significant range, by the formula:

Reaching:

Then, the observed differences between means
are tested, beginning with the largest versus
smallest, which would be compared with the
least significant range  Next, the difference of
the largest and the second smallest 1s computed
and compared with the least significant
difference .
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If an observed difference 1s greater than the
corresponding shortest significant range, then
we conclude that the pair of means in question
1s significantly different. If an observed
difference 1s smaller than the corresponding
shortest significant range, all differences sharing
the same upper mean are considered
insignificant, in order to prevent contradictions
(differences sharing the same upper mean are
shorter by construction).

For our case, the comparison will yield:

We see that there are significant differences
between all pairs of treatments except (13,12)
and (TS5, T1). A graph underlining those means
that are not significantly different is shown

below:
T1I T5T2T3T4

Protection and significance levels based on
degrees of freedom:

The new multiple range test proposed by
Duncan makes use of special protection levels
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based upon degrees of freedom. Let  be the
protection level for testing the significance of a
difference between two means; that is,

the probability that a significant difference
between two means will not be found 1f the
population means are equal. Duncan reasons
that one has p-1 degrees of freedom for testing p
ranked mean, and hence one may conduct p-1
independent tests, each with protection

level . Hence, the joint protection level is:

where

that 1s, the probability that one finds no
significant differences in making p-1
independent tests, each at protection level
1s , under the hypothesis that all p population
means are equal. In general: the difference
between any two means in a set of n means 1s
significant provided the range of each and every
subset, which contains the given means, 1s
significant according to an  —level range test,
where p 1s the number of means in the subset
concerned.
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For

various value of r as follows:

, the protection level can be tabulated for

Protection probability of falsely
level rejecting

p=2|0.95 0.05

p=3/0.903 0.097
p=4|0.857 0.143
p=5|0.815 0.185
p=6/0.774 0.226
p=70.735 0.265

Note that although this procedure makes use of
the Studentized range, his error rate 1s neither on

an experiment-wise basis (as with Tukey's) nor
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on a per- comparisons basis. Duncan's multiple
range test does not control the familywise error
rate. See Criticism Section for further details.

Duncan Bayesian multiple comparison
procedure:

Duncan (1965) also gave the first
Bayesian multiple comparison procedure, for
the pairwise comparisons among the means 1n a
one-way layout. This multiple comparison
procedure 1s different for the one discussed
above.

Duncan's Bayesian MCP discusses the
differences between ordered group means,
where the statistics in question are pairwise
comparison (no equivalent 1s defined for the
property of a subset having 'significantly
different' property).

Duncan modeled the consequences of two
or more means being equal using additive loss
functions within and across the pairwise
comparisons. If one assumes the same loss

Scanned with CamScanner



Comparisons of

Means Procedures

7/1/2019 Design and Analysis of Agricultural Experiments - Dr. Awadallah Belal Dafaallah 1
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Introduction:

are also
noun as means separation or multiple
comparisons.
( They are not statistical designs.
d They are methods or means of comparing
different statistical means or averages within the

designs.

7/1/2019 Design and Analysis of Agricultural Experiments - Dr. Awadallah Belal Dafaallah 2
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U In any design in AVOVA table, F-cal for
treatments can be either significant or not
significant.

1 If F-cal for treatments is not significant (there
are no real differences between the treatment

means), therefore, there 1s no need to compare
the treatment means.

U If F-cal for treatments is significant (there are
real differences between the treatment means),
therefore, there 1s a need to compare the
treatment means.

7/1/2019 Design and Analysis of Agricultural Experiments - Dr. Awadallah Belal Dafaallah 3
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d Then, F-test just shows without the details of

whether there are real differences between the
treatment means or not.

d To get the real differences between the
treatment means we use means separation
methods which could be classified into two

types of tests.
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Comparisons of means procedures |

f - ]

~ Tests planed before Tests planed after carrying out
carrying out the experiment| the experiment
. Orthogonal contrasts | il
. DMRT |
- Tuky’s test |

f‘Ortho gonal polynomial

contrast - Norman — Keules test |
- Scheffes test |
- Dunnett test l
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Tests planed after carrying out the

experiment:

L Least Significant Difference (LSD)

L Duncan's multiple range test (DMRT)

7/1/2019 Design and Analysis of Agricultural Experiments - Dr. Awadallah Belal Dafaallah 6
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Least Significant Difference (LSD):

1 LSD is considered by many researchers as the
best method to compare multiple means for
easy holding and then to the accuracy of the
access to the correct results.

(] This test also called protected least significant

difference, because the Fisher (author) does not
recommend using the test unless the F-cal for
treatments 1s significant.

 LSD is original T-test which is used to compare
differences between two means.
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The use of LSD test:

v' It is preferable to use LSD test when the f-cal
for treatments 1s significant.

v' It is not preferable to use LSD test to make all
possible comparisons between treatment

means.

v' It is preferable to use LSD test to compare the
mean of control treatment with the rest of the
treatment means.
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An example:

» With reference to the example, where the aim is
to study the effect BAP on micro-propagation
of Papaya (Carica papayal..).

» After experiment carried out insuring that F-cal

for treatments 1s significant, the researcher

decided to use LSD.
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Table. 1 Effect BAP on Micro-propagation of
Papaya (Carica papayal..)

Concentrations of 0.0 0.5 1.0 1.5 2.0
BAP (mg/l) mg/1 mg/1 mg/1 mg/1 mg/1

‘Mean of root
length (cm)

SE+ 0.566
CV % 7.73

1275 13.25 14.00 1575 17.50

* Number of treatments = 5
* Number of replicates = 4
* Degree of freedom = 15
* Mean squares = 1.283
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Steps for LSD test:
Lest significant difference is calculated from
the following equation:

|
‘ 2M.S.E.
L. S’. D — tl,:l_ ::-:jl l:_-v:l ll

r

[ESSHID

tl:l = x:i I:"Fj T Value

two means

| )
;‘ >M.S. E. Standard error of differences between

N T
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1) Get T value from table of T-distribution with:

(] Probability level = 1% or 5%

] Degree of freedom for error = 15

{1—0,95)1 — 2.]_3 |
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Table of T-distribution

. Degreesof
Freedom

Probability, p

0.05 0.01 0.001
63.66 636.62
9.93 31.60
5.84 12.92
4.60 8.61
4.03 6.87
3.71 5.96
3.50 541
3.36 5.04
3.25 4.78
3.17 4.59
3.11 4.44
3.06 4.32
3.01 4.22
2.98 4.14

295
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2) Calculate standard error of differences between
two means.

||2M.S. E. '2 *1.283

| r 4

3) Calculate lest significant difference:

= 2.131+« 0801 =1.71
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4) Organize or arrange treatment means ascending

or descending.
5) Table of mean differences.
6) Compare differences with LSD value.
Any mean difference greater or equal LSD value

considered significant
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Means Mean differences

Ti_T2 Ti_T3

Treatmen Concentration
t number of BAP

arranged
descending

17.50 : 4.25*  3.507

2.0 mg/l

1.5 mg/l 15.75 3.00 2,50 1.75%

Ns Ns
1.0 mg/l 14.00 1.25 0.75

Ns
0.5 mg/l 13.25 0.50

0.0mgl 1273
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7) Summarize the mean differences using
common line method or letter method.
Common line method:

Concentrations
20mg/l 1.5mg/l 1.0mg/!1 0.5 mg/1 0.0 mg/l
of BAP (mg/1)

Mean of root

17.50 15.75 14.00 13.25 12.75
length (cm)

SE+ 0.566
CV % 7.73

* Dafferences which are not significant are given a

common line.
7/1/2019 Design and Analysis of Agricultural Experiments - Dr. Awadallah Belal Dafaallah 17
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[etter method:

Concentrations

20mg/l1 1.5mg/l 1.0mg/l 0.5mg/l 0.0 mg/l
of BAP (mg/1)

Mean of root
17.50a 15.75b 14.00c 13.25c 12.75¢c
length (cm)

SE+ 0.566

CV % 7.73

* Differences which are not significant are given a

different letters.
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Scanned with CamScanner



8) Results and discussion:

* BAB concentration of 2.0 mg/l, significantly,
increased the root length of Papaya trees as
compared with the rest of the concentrations.

* BAB concentration of 1.5 mg/l, significantly,
increased the root length of Papaya trees as

compared with the concentration 0.0, 0.5 and 1.0
mg/1.
* There are no significant differences in the root

length of Papaya trees between BAB
concentration of 0.0, 0.5 and 1.0 mg/I.
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164] EXPERIMENTAL DESIGNS |

. |
parametric test for analysis of varianfce are also’ illlus!ratbd
in the last chapter. We begin with the descr(ptson nd
illustration of some lmportant gap tests for use subsu quum
to the analysis of varlance

4.1_ "The Least Significant Difference ' (LSD) ‘l'est
. (extension of t-test) T '

F-test is used usually when there are more than wo
groups to be compared, This test tells us about the overall
significant difference, if any, but does not tellfus which one
group is different from which other group. ']n such cases we
have to resort to t-test or some other derived techniques.
Least Significant Difference (LSD) test is one such tachnique.
This is basically a Student"s t test using a pooled error

variance. (MSW or W|th|n-group variance) computed in

analysis of variance technique. The standard error of differ-
ence between the two means used in-t-test i. e. (cp) is

rep‘aced here with errbr variance used in the F-test i. e.
(82 or MS ) )

t=(M,—M,) oy : . ot

. t#ch = M,—M, = least significant difference and
oD = \}_ZM'S;Tn where'n=number of observations per mean

tid"btla compared (when: n is same in all groups)
" LSD = tx v 2MS T

(When n, is different from n,, o' =+/ MS /n,+MS  In,

We can determine LSD at .05 or .01 level from the tabulated
t value at .05 or .01 level for df = df for MSW

Illastration

We have followed data of an agricultural experiment on
some vield with six treatment means 28.8, 24.0, 14.6, 19.9, 13.3
and 18.7 made up by five observations in each treatment. The
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TESTS SUBSEQUENT TO ANOVA 165

F-test wilhy error variance MSW = 11.79 shows significant
difference,

LSD at5% = t.oox ¢2MS /n ==2,064y2.(11.79)/5=4.5
LSDat1y =t ;o x ¢ 2MS  |n=2.797y2(11.79)/56=861

(given.t.u5 =2.064 and t. 01=2 797 for df = df for MS = 24
in above example.

+ Thus, any two treatments

with a difference equal
to or more than

above value are said to be statistically
sagnlflcantly different, Thus observed dlffarences betTeen three

ofthogonal comparisons, viz. X, — X, = 4.8, X, — X{| = ,5.3,

and X,—x, = 5.4 are all significant at 5% though not at 1%
llevel other pairs do not differ significantly.

This' LSD is useful for making orthogonal (independent)
or even non-independent comparisons (in which sa'lme mean
is compared more than once with other means;. H'owevar.}it

fs commonly misused when we make comparisons |suggested
by data, not initially pl?nned

\
| '

-For example, it can be shown that with three hreatments )

the observed value of t.for the greatest difference v].zill exceed
the tabulated 54 level about 13% of the time; with six
treatments the figure is 40%, with ten treatments 60% and
with twenty treatments 90y, of the time. Thus when an
pxperimenter is making a t-test at 59, level, he actually
tests at 139 lovel for three treatments, 409, level for six
treatments and so on. Hence it is not desirable to make
more unplanned comparisons, suggested latter by the data.
In such cases, especially to make multiple and non-indepen+
dent comparisons, other tests such as Duncan’s multiple-range
test, Tukey's w procedure, etc, have been developed.

4.2 Duncan’s New Multiple-Range Test

In 1951 Duncan developed a multiple comparisons test
to compare each treatment mean with every other treatment
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Tukey's range test

Tukey's range test, also known as
the Tukey's test, Tukey method, Tukey's
honest significance test, or Tukey's
HSD (honestly significant difference) test,l is
a single-step multiple comparison procedure
and statistical test. It can be used to find means
that are significantly different from each other.

Named after John Tukey,2! it compares all
possible pairs of means, and 1s based on

a studentized range distribution (g) (this
distribution is similar to the distribution

of t from the t-test. See below).2! The Tukey
HSD tests should not be confused with the
Tukey Mean Difference tests (also known as
the Bland—Altman diagram).

Tukey's test compares the means of every
treatment to the means of every other treatment;
that 1s, 1t applies simultaneously to the set of all
pairwise comparisons
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and 1dentifies any difference between two
means that 1s greater than the

expected standard error. The confidence
coefficient for the set, when all sample sizes
are equal, 1s exactly for any . For unequal
sample sizes, the confidence coefficient is
greater than 1 — a. In other words, the Tukey
method 1s conservative when there

are unequal sample sizes.

—
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Assumptions:

1.The observations being tested
are independent within and among the
groups.

2. The groups associated with each mean 1n
the test are normally distributed.

3.There 1s equal within-group variance
across the groups associated with each
mean 1n the test (homogeneity of
variance).

The test statistic:

Tukey's test 1s based on a formula very
similar to that of the #-test. In fact, Tukey's
test 1s essentially a 7-test, except that 1t
corrects for family-wise error rate.

The formula for Tukey's test is:

where Ya 1s the larger of the two means
being compared, Y3 1s the smaller of the two
means being compared, and SE is

the standard error of the sum of the means.
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This g, value can then be compared to

a g value from the studentized range
distribution. If the g, value is larger than the
critical value ¢, obtained from the
distribution, the two means are said to be

significantly different at level Ll

Since the null hypothesis for Tukey's test
states that all means being compared are
from the same population (1.e. u1 = o = uz =
... = k), the means should be normally
distributed (according to the central limit
theorem). This gives rise to the normality
assumption of Tukey's test.

The studentized range (g) distribution[edit]

The Tukey method uses the studentized
range distribution. Suppose that we take a
sample of size n from each of k populations
with the same normal distribution N(u, °)
and suppose that s 1s the smallest of
these sample means and  max 1S the largest
of these sample means, and suppose S is
the pooled sample variance from these
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samples. Then the following random
variable has a Studentized range
distribution.

This value of ¢ 1s the basis of the critical
value of g, based on three factors:

1.a. (the Type I error rate, or the
probability of rejecting a true null
hypothesis)

2.k (the number of populations)

3.df (the number of degrees of freedom
(N — k) where N 1is the total number of
observations)

The distribution of g has been tabulated
and appears in many textbooks on
statistics. In some tables the distribution
of g has been tabulated without

the  factor. To understand which table it
1s, we can compute the result for k = 2 and
compare it to the result of the Student's t-
distribution with the same degrees of
freedom and the same a. In
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addition, R offers a cumulative
distribution function (ptukey) and
a quantile function (qtukey) for g.

Confidence limits:

The Tukey confidence limits for all
pairwise comparisons with confidence
coefficient of at least 1 — a are

Notice that the point estimator and the
estimated variance are the same as those
for a single pairwise comparison. The
only difference between the confidence
limits for simultaneous comparisons and
those for a single comparison is the
multiple of the estimated standard
deviation.

Also note that the sample sizes must be
equal when using the studentized range
approach.  1s the standard deviation of
the entire design, not just that of the two
groups being compared. It 1s possible to
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work with unequal sample sizes. In this
case, one has to calculate the estimated
standard deviation for each pairwise
comparison as formalized by Clyde
Kramer in 1956, so the procedure for
unequal sample sizes 1s sometimes
referred to as the Tukey—Kramer
method which is as follows:

where n; and n; are the sizes of
groups i and j respectively. The
degrees of freedom for the whole
design is also applied.
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Source :

1. S.C. Gupta and V.K. Kapoor : Fundamental of Applied Statistics — Sultan Chand & Sons,

Fourth Edition, 2015.

2. Panneer Selvam: Design And Analysis of Experiments, Prentice Hall.
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