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For failure within time fa, the probabi-

lity is
‘I

Rt = [ fice) de. f
Hence, for failure in the interval from
time #, to time f,, the probability is \

! !

[ rutey at — [ sucer e

’ ’ 4, 12 i

= f : fa(¢) de. FIGURE 4-1

This represents the area under the PDC between 7 and #; as shown in
Fig. 4-1.

4-2 CONSTANT HAZARD

The simplest case that we can consider is that which has a constant hazard
rate. In this, we assume that the failure rate remains constant with time.
This corresponds to the middle zone in Fig. 3-5. The data obtained for a
large number of tests indicate that a constant-hazard model is appropriate

in many cases.
Let Z(t) = A, a constant. The time integral.is then given by

[z ae=[ rae =, (4-4)
where ¢ is a dummy variable. Hence, from Eq. (4-1),
R(t) = exp [~ | 2(§) dg1 = exp [ ), (4-53)
Ft)=1—R(t)=1— e (4-5b)
Similarly, from Eq. (4-2),
(4-6)

Ja(t) = Z(1) exp [— f; Z(¢) dE] = de~™.

These four functions, Z(¢), R(t), F(t), and f4(t), are represented graphically
in Fig. 4-2. As shown, the reliability at t = 0 is one and decreases
exponentially with time. When ¢ becomes very large, the reliability becomes
negligibly small. The probability of failure is initially zero and it
approaches one as t becomes large. Using Eq. (3-28), we can easily calculate
the MTTF for a constant-hazard model. We have

MTTF=Jmtht=Jm Vil A ;
o (1) 0e ar Tl T A 4-7)

Hencc,.for a constant-hazard model, the mean time to failure is simply
the reciprocal of the hazard rate,
A constant-hazard model assumes that the parts do not deteriorate with
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(ime The rate at which the random failures take place is assumed to be
| 11 R(t) —
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FIGURE 4-2
However, there are cases in which

constant throughout the test period.
parts or components wear out progres
the failure rate increases, but this eventua
constant-hazard condition. Thus, if A = 0.1 per hour, W
failures to occur in a population of 100 items during the
same number of failures will occur between the 150th hour and the 151st
hour of operation in a population of 100 items that have survived
150 hours. A simple hazard model that admits deterioration with time

(i.e., wear) will be considered in the next section.
as the exponential reliability

The constant-hazard model is also known
case and is quite important in reliability analysis. For this, the probability

sively with time, and consequently
lity is not considered for the
e can except 10
first hour. The

e t is given by

that the component will fail within tim
Ft)y=1—e™™, (4-8)
‘i‘;‘:tﬂ:eug.robabi.lity t.hat- the component will function satisfactorily for at
its of time is given by
R(t) = e, (4-9)

E .
xample 4-1 It is observed that the failure pattern of an electronic system
to failure of 1000 hours.

fi . .
V‘;}L‘;‘Vﬁ an exponential distribution with mean time
. is the probability that the system failure occurs within 750 hours?
nce MTTF is 1000 hours, 1/A = 1000, From Eq. (4-5b), the probabi-

lity of failure within 750 hours is
F(1000) = 1 — e=750/1000 o5 | — e-975 = 0,528.
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Example 4-2 1t is found that the random variations with respect to
in the output voltage of a particular system are eXponentially distr(')bhme
with a mean value of 100 V. What is the probability that the outpyt 1buteg
will be found at any time to lie in the range 90-110 V? Voltage
This will be recognized as a problem similar to a reliability problem ;
we identify the voltage output as the probability density function i thlf
failure density function in the case of survival tests) and MTTF W.i’thz

mean value of 100 V. It is given that the probability density function 44
regards the voltage, from Eq. (4-6), is f4(t) = Ae=*', For such an exponentia)|
distribution function, the MTTF is the reciprocal of the hazard rate, j.e

MTTF = 1/A. Hence, A = 1/100.
The probability that the voltage is within a value ¥ (which correspongs

to the probability that the failure occurs within time ) can be obtaineq
from Eq. (4-5b) to be F(V') = 1 — e~*. The probability that the voltage

lies between ¥, and V> is given by
F(V2)) — F(V)) = (1 — e s) — (1 — e V1) = e~ — eV,
With V=90V, V,=110V, and A = 1/100, the probability that the
voltage is between these two values is
© F(110) — F(90) = e=90% — =100 — ¢=90/100 _ o~110/100

= =99 — o111 = 0,667 — 0.593 = 0.074.

4-3 LINEARLY-INCREASING HAZARD

As stated in Section 4-2, when there is wear or deterioration of parts or
components, the failure rate increases with time. The simplest model that
we can consider in this category is one in which the hazard increases

linearly with time. This is shown in Fig. 4-3a.

R(t)
n ' it e
T Iy F4() .
. d ///Slope =K
‘/-K_/-é _—_'__/ — |
P I
.'
T T
(©) i @ K
FIGURE 4-3

Let Z(t) = Kt, where K is a constant. Then, the time integral of this
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fynction 18 V" by
t
r 20) dE = Io ke dt = K1*[2. (4-10)
0
From Eq. (4'1)9
ay = oxp [ [ 2O #1 =7 [~ K12, @1
Therefor®s
= 1 — ROh e = &2
From Eq. (4-2),
@413)

/{
f(t) = Z(t) exp [= [[ 2 a1 = Kre-KP1.
n by Eq. (4-13) is known as the Rayleigh densi.ty

The function fa(2) give

function. The four functions Z(?), R(t), F(1)s and fa(t) are shown 1D
Fig. 4-3. It will be of interest to study the failure density curve. As shown
in Fig. 4-3d, the curve has a slope K at time [ = 0. The value of fa(t)

reaches a maximum of 4/(KJe) at time ¢t = V(1 /K), and tends to zero as f
becomes larger.

We can also calculate the MTTF when the hazard increases linearly,
but the result is not as simple as that for the constant- i

In this case,

MTTF = r R(t) dt = I o~K112 dit.
0 0

This integral can be obtained from a table of integrals in terms of a func-
tion called the gamma function. Thus,
2 (/2
MTT = —Kl'[2 — =
o [[ emor = gy~ VOO
me due to wear and deterio-
failure rate decreases with
put to usec. Due to

I.nstead of the failure rate increasing with ti
ration, we may have a situation in which the

?:1:. This can occur when untested components are
ulty assembly, weak parts, or such other factors, it is possible for the

i?)l]g:e {ate to be high initially and then to decrease with time. A model

o fit this could be a linearly-decreasing hazard. We shall not discuss this

In detail here.

w;i!::hs;:ction 4-4, we shall consider a model, called th

i as a more general application. than the models
ction and in Section 4-2.

e Weibull model,
discussed in this

4-4 THE WEIBULL MODEL

There . .
are many situations in which the failure rate cannot be approxi-



6 System Reliability

6-1 INTRODUCTION
So far, we have discussed reliability and probability of failure in respect of
components or elements of a system. If the reliability factor or the pro-
bability of failure of the system is to be determined, we will find that jt js
very difficult to analyze the system in its entirety. In practice, the system
is broken down to sub-systems and elements whose individual reliability
factors can be estimated or determined. Depending on the manner in which
these sub-systems and elements are connected to constitute the given
system, the combinatorial rules of probability are applied to obtain the
system reliability. In this chapter, we shall discuss methods to determine
the system reliability from the reliability factors of the sub-systems and
elements. The basic steps are as follows:
(a) First, the elements and sub-systems, which constitute the given
system and whose individual reliability factors can be estimated, are
identified. These will be called the units comprising the system.

(b) Next, the logical manner or configuration in which these units
are connected to form the system is represented by a block diagram or a
circuit diagram.

(c) The condition for the successful operation of the system is then
determined, that is, it may be decided as to how the units should function.
For example, should all the units be operative, or will it be sufficient for
any one unit to function?

(d) Finally, the combinatorial rules of probability theory (i.e., addition
rule, multiplication rule, and their combinations) are applied to arrive at

the system reliability factor.

6-2 SERIES CONFIGURATION

The simplest combination of units that form a system is a series combina-
tion. This is also one of the most commonly used structures, and is shown
in Fig. 6-1. In this case, the system consists of n units which are connected
in series as shown. Let the successful operation of these individual units
be represented by X;, X,,..., X,, and their respective probabilities by

F————— e
| .
Cause' . | Effect
| m E L] I
______________ - ‘
FIGURE 6-1
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P(X)), P(X3), ..., P(X,). For the successful operation of the systcn.1,' it 18
necessary that all # units function satisfactorily. Hence, thc:‘ probability of
the simultaneous successful operation of all the units is P.(X. and X,
and . .. and X;). We shall assume that these units arc not independent
of one another, that is, the successful opcration of unit 1 might affect the
successful operation of all other units, and so on. This situation might
occur, for example, when the heat dissipated by unit 1, which may be a
resistor, affects the performance characteristics of units 2, 3, ... . Accord-
ing to the multiplication rule stated in Section 5-7, the system reliability
is given by

P(S) = P(X,and X; and ... and X,)
= P(X)) X P(X2|X)) X P(X3|X; and X3) X . . .
X P(X,|X, and X; and ... and X,_,). (6-1)

In this expression, P(X|X)) represents the probability of the successful
operation of unit 2 under the condition that unit 1 operates successfully.
Similarly, P(X,|X; and X; and ... and X,_,) represents the probability of
the successful operation of unit » under the condition that all the remain-
ing units 1, 2, ..., n — 1 are working successfully.

If the successful operation of each unit is independent of the successful
operation of the remaining units, then events X;, X5, . .., X, are indepen-
dent, and Eq. (6-1) becomes

P(S) = P(X1) X P(X2) X . . . X P(X,). (6-2)

Example 6-1 An electronic equipment is operated by four dry cells, each
giving 1.5 volts. The cells are connected in series. The probability of the
successful operation of each cell under the given operating conditions is
0.90. Calculate the reliability of the power system.

The batteries are connected in series and it is assumed that the successful

operation of one battery does not affect the operation of other batteries.
Hence, the events are independent and

P(S) = 0.9 x0.9x 0.9 % 0.9 = 0.656.

Example 6-2 In an hydraulic control’system, the connecting linkage has.a
reliability factor of 0.98 and the valve which has to operate within a certain
time limit has a reliability factor of 0.92. The pressure sensor which actuates
the linkage has a reliability factor of 0.90. Assume that all the three
elementS, namely, the actuator, the linkage, and the hydraulic val\te, are
corf“e(:t&d in series with independent reliability factors. What is the
reliability of the control system?

Since the units are connected in series and have independent performance

C e e = eywq T3
haraCterlstlcs, the system reliability 18

P(S) = 0.98 x 0.92 x 0.9 = 0.811.
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These two cxamples bring out a very important point, namely, the
reliability of a series system is always worse than the poorest component
in the system. The fact that this is true for any series system can be shown
easily. ‘We have observed that the system reliability is given by

P(S) = P(Xl) X P(z"zlz\’|) X P(X3]X2 and Xl) X
X P(X,|X, and X, and ... and X,_).

Since probability, and therefore the reliability factor, is always less than
or equal to one, every factor on the right-hand side will be less than or
at the most equal to one. The reliability factor of the K-th unit is
P(Xk|X1 and X; and ... and Xx_;), which is also the probability that the
K-th unit will function satisfactorily under the condition that the other units
1, 2,..., K— 1 operate successfully. Let the reliability factor of the K-th
unit be the lowest. This lowest factor is to be multiplied by (n — 1) other
factors which are all less than or equal to one. Hence, the product of all
these factors can never exceed the value of the lowest factor.

Example 6-3 If the system consists of » identical units in series, and if
each unit has a reliability factor p, determine the system reliability factor,
assuming that all units function independently. Approximate this when the
reliability factor is fairly high.

If g is the probability of failure of each unit, then p =1 — ¢, and the
system reliability is

P(S)=pxpX...Xp=p"=(1=qg)

If g is very small, this expression can be approximatedto 1 — ng. Therefore,
P(S)~1—ng. |

Example 6-4 A system has ten identical components connected in series.
It is desired that the system reliability be 0.95. Determine how good each
component should be.

Since the components are in series, the system reliability P(S) is p'°,
where p is the component reliability. Then,

P(S) = 0.95 = p1o,

Takingthe logarithm on bothsides, we get 10g0.95 =10 log p or p = 0.9949.
Hence, each unit must have a reliability factor of 0.9949 to give a system
reliability factor of 0.95. As noted earlier, a series configuration for a
system gives a reliability factor which is lower than that for any of the
system components,

6-3 PARALLEL CONFIGURATION

Several systems exist in which successful operation depends on the satis-
factory functioning of any one of their n sub-systems or elements. These

i f T
Pt / L RN

e
It
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L4

are said to be connected in parallel. We can also have a system in which
several signal paths perform the same operation, and the satisfactory
performance of any one of these paths is sufficient to ensure the successful

operation of the system. The elements for such a system are also said to be
connected in parallel. A block dia-

gram representing a parallel con- —————— 1
figuration is shown in Fig. 6-2. The |
|
|
|
|

|
reliability of the system can be = —{
calculated very easily by considering | _——
the conditions for system failure. Cause! L2 | | Effect
Let X1, X2, ..., X, represent the Ill PP I
successful operation of units 1,2, ..., T8 g St B
n, respectively. Similarly, let X,, ' :
X,, ..., X, respectively, represent ‘ —{ o |
their unsuccessful operation, i.e., |L. _}

the failure of the n units. If (X)) is

the probability of successful operation FIGURE 6-2

of unit 1, then P(X,) is the proba-

bility of its failure. Further, we have already seen that PX,) =1 — P(Xy).
For the complete failure of the system, all # units have to fail simul-

taneously. If P(S) is the probability of failure of the system, then

P(S) = P(X, and X, and ... and X.)
= P(X’l)x P(YQ‘Xl)X P(73|71 and X’z) Xaeoo
x P(X,\X; and X and ... and X,-1). (6-3)

In this expression, P(X4/X, and X,) represents the probal?ility of failure
of unit 3 under the condition that units 1 and 2 have falle.d. T.he other
terms can also be interpreted in the same manner. If the unit failures are

independent of one another, then

P(S) = P(Xy) x P(X2) X . .. X P(Xy) = 1 — P(S).
Hence,

P(S)=1—[1 — P(X)Ix [l —P(X2)]X...X [1 — P(X,)). (6-4a)

If the n elements are identical and if the unit failures are independent of
one another, then

o= 6-4b)
=1—[1— PX)I" (

i i jew, we can
Instead of looking at the system from the failure point of view,

: : i say that, for &
observe it from the successful operation point of wc:‘v::;delérﬁcnts  ogl t0
successful operation of the system, - .1east ! (l)) bility of satisfactory
function successfully. Hence, if P(X1) 18 the probabl
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\functioning of element X, then the reliability of the system is
P(S) = P(X,or X,or...or X,)
= P(X)) 4 P(X,or Xsor...or X})
— P[Xi(X, or X3or...or X,)]
= P(X)) + P(X2) + P(X3 or Xy ... Xn)
— P[X3(X4 or Xsor...or X))
— P[X1 X, or X;X;or...o0r XiX.]
= P(X;) + P(X3) + P(X5) + . .- — P(X1X2) — P(X1X3)
— P Xy) — ... — P(X2X3) — P(X2X4) — ... + P(X1X,X3)

+ P(XiXoXe) + ... + (=) 'P(X1 X2 .. X,). (6-5)

Example 6-5 Consider a system consisting of three identical units con-
jability factor is 0.90. If the unit failures are

nected in parallel. The unit reli
f the successful operation of the system

independent of one another and i
depends on the satisfactory performance of any one unit, determine the

system reliability.
From Eq. (6-4b), we have

P(S) =1 — (1 — 0.90® = 1 — 0.1 = 0.999.

important fact that a parallel configuration can greatly
With just three elements connected in parallel,
stem almost failure-proof. This aspect will
1 in Chapter 7 which deals with reliability

This reveals the
increase system reliability.
it is possible to make the sy
be discussed in greater detai
improvement.

6 A parallel system is composed of ten identical independent

Example 6-
liability P(S) is to be 0.95, how poor can the

components. If the system re

components be?

Since the components are independent of one another, from Eq. (6-4),

we have
PS)=1—[1-— P(X)]" or 0.95= 1 —[1-— P(X)]‘°.

Therefore,
[1 — P(X)]"*=1—0.95 = 0.05,
1 — P(X)=0.7419 or P(X)=0.2581.

The components can have a very low reliabilit .
: y factor of 0.258
give the system a reliability factor as high as 0.95. L.andiety
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6-4 MIXED CONFIGURATIONS

After having discussed the two basic configurations, series and parallel,
we can now study a few mixed configurations, that is, systems consisting of
elements connected in series and parallel. For the sake of simplicity, we
shall consider configurations consisting of one, two, three, and four ele-
ments. The elements could be dependent dissimilar units or independent
identical units.

Let X}, X3, and X; represent the successful operation of units 1, 2, and
3, respectively, and let P(X;), P(X2), and P(X3;) be the corresponding
probability factors for successful operation. Similarly, X;, X,, and X;,
respectively, represent failures of units 1, 2, and 3, the corresponding pro-
bability factors being P(X1), P(X3), and P(Y;,) For identical independent
units, P(X) will be denoted by p. Several configurations of elements are

considered as follows:

One-Element Model [Fig. 6-3]
P(S)=P(X)=p

Two-Element Model [case 1 (Fig. 6-4)]

X e s
FIGURE 6-3 FIGURE 6-4 FIGURE 6-5
With dependent dissimilar units
P(S) = P(X; and Xz) = P(X1) X P(X|X)).
With independent identical units
P(S) = P(X;) X P(X2)
— pz,
" Two-Element Model [case 2 (Fig. 6-5)]
With dependent dissimilar units
P(S)=P(X10orXz2)=1~— P(X; and X).
With independent identical units
[1 — P(X2)]

P(S) =1— P(Xy) X P(X)=1-—1[1-— P(Xn)]
—1—(1—pP=2p—r"
Three-Element Model [case 1 (Fig. 6-6)]

With dependent dissimilar units For the su

i em,
ccessful operation of the syst

L ecpeer SRR
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The failure of branch i is therefore given by

n;

Fi=1-— 17| P(Xy)).
Jj=

The system fails when all branches fail, and hence the probability of
failure is

k n
F(S)= 1 1 “,.f, P(Xi))]-

The reliability of the system is therefore the complement of the foregoing
expression, i.e.,

k n;
RS)=1— I [l - I P(X;)].

6-5 APPLICATION TO SPECIFIC HAZARD MODELS

It will be of interest to apply the formulas we have obtained for the series
and parallel configurations to specific hazard models. We shall study two
types of models: with a constant hazard, and with a linearly-increasing
hazard. These were discussed earlier in Chapter 4. We shall study these
for both series and parallel configurations.

Series Configuration

If the system consists of n items, all connected in series, the reliability of
the system is given by Eq. (6-1) to be

R(?) = P(S)

=PX)) X P(X3)X) % ... % P(X,|X, and X, and . . . and Xn-1)-
If the n items are independent, then

R(1) = P(S) = exp (=At) X exp (=Myt) x . . | X exp (—A,t)

=P [—(M 42 .. 4 A)t]
= exp (— ,If'l nt).

It is very important to note that this formula g

) applicable only when the
n components are independent and connected i

n series,
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\

If the compone
ponents are governed by the rule for linearly-increasing

hazard, then, from Eq. (4-11) ¢
. ’ . (4-11), the reliabili :
is exp (—Ki?/2). Hence, for the syster?x Stiyviastomianthelth Somiponedt

P(S) = R(t) = exp (—Ki12/2) X exp (—Kat?/2) X . .. X exp (—K\t?/2)
= exp [—1%(Ky + K2 + ... + K,)/2] |

= exp (— :21 Kt2/2).

We can also consider a third combination where p out of the n compo-
nents_ qf the system are governed by the constant-hazard rule, and the
remaining (n — p) components follow the rule for linearly-increasing
hazard. For such a system, we have

n

| P(S) = R(t) = exp (— iz"l N xexp (— 2 Ki).
- +

i=p

Parallel Configuration
For a system with # components connected in parallel, the reliability is
given by Eq. (6-3) to be
P(S)=R(t) =1 —’[P()"(l) X P(Xo|X1) X ...
x P(X,|X1 and X and. .. and X,-1)]-

_ If the elements are independent, then
P(S) = R(t) = 1 — [P(X1) X P(X2) X ... X P(X,)]
—1—[l =PX)IX[l —PX)]X...X [1 — P(Xn))
hazard rule, P(X;) for

If the components are governed by the constant-
the i-th element is exp (—A;¢). Hence,

P(S)=R(t) =1 —[1 —exp (—Mit)] x [1 — exp (=A)] X
X [l — exp (—’\nt)]-
If the elements are independent and also identical, we have

P(S)=R()=1—1[1—exp (=)

6-6 AN r-OUT-OF-n STRUCTURE

There are many situations where a system consisting
works satisfactorily when at least r of the n components
simple examples of the r-out-of-n system are:

(a) An eight-cylinder automobile engine in which the successful opera-
tion of at least six cylinders is enough for satisfactory performance of the

automobile.

of n components
are good. Three
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(b) A picce of stranded wire with n strands in which at least r strands
arc necessary to pass the required current.

(c) A shaft lift operated by four cables out of which at least two are
necessary for safe operation.

We shall discuss the reliability of an r-out-of-n system w‘hcn the n compo-
nents are independent and identical. First, we shall .obtal.n an expression
for the probability of exactly r successes out of n identical lndegenflent
trials. This can be obtained by considering the several ways of achieving r
successes in n trials, One way is to have r consecutive successes followed
by n — r consecutive failures. Since cach success and failure is independent,
the probability of the assumed scquence is obviously p'(1 — p)"-r, where p
is the probability of onc success. But this is only one method of getting r
successes. There are many other ways of doing this; in fact, the number of
ways in which r successes can be obtained in n trials is equal to the number

of ways in which a group of r things can be selected out of a group of n
given things. Where the order of selection is not important, we have

nxm—1N)xm—2)X...x(n—r+1) n! n
rx(r—=1)x...x1 —v_(r;—r)!r!_()

)
Hence, the total probability of getting r successes out of n trials is
n! - n
@A P —prr = (r)p’(l — ).
This is known as the Bernoulli trial or the binomial experiment.
Next, we shall try to obtain an expression for the probability of at least

r successes out of n identical independent tria s : :
as follows: . Is. This is easily obtained

tk ili
e probability of exactly r successes — ('rl)p'(l = /) i

the probability of exactl = " —
yr- 1suc = i
: cesses (r l)p +(1 p)r-r+l

the probability of exactly n successes — p"
Hence, the probability of

e getting ¢ Y,
above probabilities, that jg B at least r successes is the sum of the

n
p'(1 — p)yn-r n
(r) p)y"r 4 (r n l)pr+l(1 —pyrl g 1

— yn [(n
= KE_’ (K)PK(I — p)-k,

Example ¢-
fair coin?

p'l

hat i p ili y y
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P(47 heads) = (14070)P(hcnds)"l’(mils)"’0-47

_ 4’17(')(213! B3)(})* = 0.0667 approximately.

Example 6-8 A manufacturing process produces parts which are one per
cent defective. Fifty of these parts arc sclected at random. What is the

probability that there arc two or less defective parts out of the fifty
selected parts?

P(exactly 2 defective) = (520)(0.01 )2(0.99),

P(exactly 1 defective) = (510 )(0.01)‘(0.99)49,

P(0 defective) = (0.99)%°,
Therefore,

P(2 or less defective)

— (520)(0.01)2(0.99)48 + (510)(0_01)(0'99)49 + (0.99)%
= 1.598 x (0.99)48,

6-7 METHODS OF SOLVING COMPLEX SYSTEMS

When a system is formed from elements and units connected in parallel,
series, or mixed configurations, a suitable method of calculating its
reliability becomes necessary. There are several methods available for this
purpose; in this section, we shall illustrate three such methods by their
application to the solution of various problems. We shall begin with
elementary cases and then move to complicated combinations. A revision
of the probability rules given in Section 5-7 will be helpful.

Example 6-9 A system consists of three elements a, b, and c. The configu-
ration of the system and the reliabi-
lities of the elements are shown in
Fig. 6-14. Determine the system
reliability.

Method 1 (reduction to series ele-
ments) In this method, we syste-
matically replace each parallel path
by an equivalent single path, and
ultimately reduce the given system

to one consisting of only series elements, Accordingly, elements a and b
in Fig. 6-14 are first replaced by an equivalent single element d. Using the

FIGURE 6-14
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Example 6-11 Five clements (a, b, ¢, d, and f) of a system are connected
as shown in Fig. 6-19, which also indicates the reliability of cach element.
Calculate the system rcliability.

a
e
e b —.j t
— —{07]} d
Ao l
~{08}
FIGURE 6-19

Method I (reduction to series clements) Elements a and b are replaced by
an cquivalent clement g, the reliability of which is

P(g) = P(a or b) = P(a) + P(b) — P(a and b)
= P(a) + P(b) — P(a) x P(b)
= 0.7 4 0.7 — 0.49 = 0.91.

Elements g and ¢, which are now in series, can be replaced by an equivalent
element j whose reliability is

P(j) = P(g and ¢) = P(g) X P(c)
= (0.91)(0.9) = 0.819, say, 0.82.

The system has now been modified to that shown in Fig. 6-20. Elements j

— G —
—

d

‘

FIGURE 6-20

and d which are in parallel can be replaced by k such that
P(k) = P(j or d) = P(j) + P(d) — P(j and d)
= P(j) + P(d) — P(j) X P(d)
= 0.82 + 0.80 — 0.656 = 0.964.

The system has now been reduced.to one having only series elements &
and f. Hence, the system reliability is

P(S) = P(k and f) = P(k) x P(f) = (0.964)(0.9) = 0.868.



Exponential Failure Model 0

Estimation of Mean Life with Complete Samples

Suppose 2 1lems ate subjected to test and the test is terminated after
all the items have f:a_‘k'd- LF" (N X2, o000 X)) be the random failure times
and suppose the failure times are exponenually distributed with p.d.f.

fix cr.) : (l,":),c.'{p (- x/e), x,o 0. Given the sample (Y. Xa, ..., X})
we wish to estimate the mean life o.

The likelihood function is given by

. I “
Lixj, %2, ....: X, )= L = o7 SXP (_ Ex,.-‘,)
1 L
"ﬂ
p Xy
13} n<
- lo = — L
do gL o

The maximum likelihood estimator (MLE) of o is the solution of the
equation,

0

Thus, & = + is the MLE of 0. Also E(6) = E(X) = o and Var (X) == o?/n.
Note that x is unbiased for o. Consider the distribution of X. Since
(X]a) ~ (1), by a property of gamma distribution mentioned earlicr, it
follows that

f_j X,Jo = "= ~ v(n)
1
and we write
N ("‘ "1 ex J_z)
gx i =rm\e) o) P\ %
()
: 1_'2") o cxp(- nq\) x -0 6)

We now consider the minimum variance unbiased estimator of & and
indicate the proof of the fact that < = x is also the uniformly minimum
variance unbiased estimator (UMVUE) of 4. In general, the search for
UMVUE is limited to the functions of the complete sufficient statistic
when it exists. The sufficiency of any statistic can be checked by the
factorizibility criterion, but the completeness is much more difficult to
establish. In the single paramecter exponential distribution, the sufliciency
of x is easy to check. Consider the ratio

.lj(A.\'l. x?.r« . -'xlr ! <)

g(x | o)
which 1n this case reduces to
l;(")»-w,, for x;,>0,i=12,....n
n(}_: x,)
1
®
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jent of ¢ and is a function of observations alone.

et or the proof of complcteness of x, we refer to
& ( ) - is UMVUE of ».
and Scheflé (1955). 1 hus X of o, |

Lthﬂ‘:]]:‘ig"‘:‘micnl-u. (Cusc. both methods of cstmmm_)n‘lcad to the same
s li:mh; IR‘ut we will see in the next scction that this is not s0 when we
S LS ‘. . - -~ . i X | : ‘
are estimating the reliability R(1) == €XP (- t/a), which is the probability

of survival for at least time /.

This ratio is inde '
Hence & is suflicient. I

Reliability Estimation . . |
We use the term ‘reliable’ in various contexts in everyday life, such as a

reliable friend, a reliable service station, reliable news, etc. As an abstract
concept it means something or someone we may.depend upon or count on.
In life testing research we are more concerned with a quantitative measure
of the reliability of an item or a device we are interested in.

The reliability of a unit (or a system) is defined as the probability that
it will perform satisfactorily at least for a specified period of time without
a major breakdown. If X is the lifetime of the unit, the reliability of the
unit at time ¢ is given by

R(f)=PX>1)=1— F)

where F is the d.f. of the failure time X.

Suppose a manufacturer wants to promote a new brand of light bulb in
the market. A random sample of 10 bulbs is put to test and their failure
times recorded. Suppose the bulbs failed after 125, 189, 210, 351, 465,
580, 630, 760, 810 and 870 hours. Looking at the data, a prospective
buyer asks, <“If I buy a new bulb of this brand, what is the probability
that it will survive at least 600 hours?”’

If we do not assume any particular distribution of the failure times,
this probability may be estimated by the ratio

number of bulbs surviving > 600 hours 4

number of bulbs initially exposed to test 10 fs

[R(?)]i=600 =

If we assume that the failure time distribution is exponential with mean
life o, by definition

R(t) = j:o % exp (—x/o) dx = exp (—t/o)

Since ¢ is unknown, we have to estimate R(¢). First consider the MLE. We
have already seen that the MLE of ¢ is given by & = X¥. Now MLE has
an important property that if & is the MLE of 6, then r(0) is the MLE
of 7(6) provided =(0) is a fairly well behaved function of 6. In particular
say, 7(0) is a monotone differentiable function of # (see Zchna, 1966).
Thus we have R(f) = exp (—t/x). From the failure times of 10 bulbs, we

obtain x = 499, and hence the MLE of reliability at time ¢ = 600 hours
is given by

~ 600
R(600) = exp (— 393) = exp (—1.2024) = 0.3006
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called ‘failure-censored’ samples. Failure-censored sampling it almost
mandatory in dealing with high cost sophisticated items such as colour
television tubes.

Another factor that affects the life-testing experiment is the amount of
time required to obtain the complete sample. To limit this factor, we may
put 7 items to test and terminate the experiment at a pre-assigned time
to. The samples obtained from such an experiment are called ‘time-
censored’ samples. Time-censored sampling is almost essential in dealing
with life-testing experiments in which the cost of experiments increases
heavily with time.

In the failure-censored case data consist of the life times of the r items

that failed (say x() < x@) < ... << X¢») and the fact that (# — r) items
have survived beyond x(,). In the time-censored case data consist of the
life times of items that failed before the time 7y, say X X2 < . . . < X(n)s

assuming that m items failed before 7o and the fact that (n — m) items have
survived beyond f,. In the time-censored case fo, the time of termination,
is fixed while m, the number of items that failed before fy, is a random
variable. In the failure-censored case the situation is reverse in that r,
the number of items that failed, is fixed, while x(), the time at which
the experiment is terminated, is a random variable. One may, of course,
consider a combination of both time and failure censoring where one
terminates the experiment when cither a pre-assigned number r of items
have failed or the experiment has run up to time #,, whichever comes
first. This approach is useful when the items involved are high cost ones
and the time element in obtaining the observations is also important. For
example, consider a new type of rotary engine. This is a high cost item
and would consume fuel and require trained technicians as observers. On
the other hand, consider polyethylene bags which arg being tested for their

breaking strength. In this case one would hardly recommend cither time

or failure-censored sampling. . o
We will now consider the estimation of parameters and reliability

functions for one and two-parameter exponential distributions under
different types of censoring commonly used in life-testing experiments.

Failure-censored Samples — JYpPE I 42100”"7 ' ’
A.et us first consider the case where the items that failed are not replaced.

We consider the single parameter exponential distribution first. As
stated earlier, the data consist of failure times X)) < X <. < x¢) of
r ifems that failed and the fact that (n — r) items survived until x¢). The

likelihood of the sample is given by

[ J
L{x(l): X(2)y -+« 2 X() l O’} [ r
Yoxip (o r)NG)
== 2). (o r b D ey 1__ o
N o'

(1

a

This can be obtained from the following considerations.

PR A

easalnEdee S0l
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For the complete sample case, the joint p.df.oof Xy, Xeg, .

‘ « Xeu ig
given by

(e

n
- 2 xa
Ny X - - N} o o AP Oy < xqpy. .. < Xm (12)

In the failurecensored case we terminate the experiment at X and gq
we integrate out (12) with respect to X(r41)s X(y2)s « - . 4 X(n) OVer the region
V) < Xra) < X(r42) < - - < x() Which immediately leads to (11).
- . r
The MLE of 6 is casily shown to be 5, = (}_'_‘, xp 4+ (n — r)x(,))/r.
1

Using the transformation Zy=m— i+ D{xp — X}y | =1, S

with x¢@) = 0, 6, = (? z,)/r. We have shown earlier that (£, 2y, ..., Z,)
e 1
are 1.i.d. as f(z/o) = S exp (—z/6), z, 6 > 0.
re, re, ro, i~
Hence - ~ ), E(?) = Var (—G—) =r. Thus E@G)=o¢ ang
2
Var (6,) = (—:_— and the p.d.f. of &, is given by

A 1 r\" A r— ré\r A
g, | o) = () (;) @) texp ("‘ —o—), 0<%, < (13)
Consider the ratio

L{xay, X, - . . » X()| o} _Inn —NH(n—-2)... n—r+1
8(3| o) (rys; !
which is independent of the unknown parameter ¢ and thus &, is suffi-

cient for . Also, it i§ known to be complete (Tukey, 1949; Smith, 1957).
Since E(5,) = o, it follows, therefore, that &, is also the UMVUE of o.
The MLE of the reliability function R(s | 6) is given by

R(t) = exp (—1/8)
Following the same line of derivation as in the com

plete sample case, we

obtain
" re x;\"2 R
Xl Cp)=——"—-[]l — = 0 < >
801 5) = o 2 x < 16,

where x; is the failure time of any of the r units that failed. The UMVUE
of reliability, R(r) is given by

R(t) = P(X; > 1] 5)

= —--—--I—Q’-(-r_..).—--X rar (l — ::cji")r—z d.\'(
I'(r— Dra, ), re

r
t r--1
=—.(1 _FZ’,\') R A
i

and ==0,t2r6\

r
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Next, consider the casc where the items that fail are immediately
replas:ed and the test terminates after the rth failure. Here the likelihood
function is given by

L{,\’(l), X2h « -+ 5 X(p) l ﬂ} — g; [cxp {_ -\‘(I)}] [cxp {_ «1(2) . X(I‘V}]
G G

_ X0 — Xl [ 1 EADN o
[0 {= 27 2[5 g ee (=5) ]

n\r nx
= (-G.) exp {— ~?(')}, O<xn<x@...<xpn<oo

The MLE o} = 2%, Also

ro¥
(e}

= g'[x(n + {x@ — xw)} + X&) — x@} + {X¢) — X0} ~ ()

Thus, in the experiment of either type (with or without replacement) the
MLE of ¢ is unbiased, has the same variance and has the same distri-

Lixw, Xa. . - - X0 [ o} n[‘(:') is independent of ¢ and thus o7
g(o7¥ | o) rxiy "
is sufficient. It is also known to be complete. Hence o is the MLE as
well as UMVUE of 6. The MLE of reliability function R(f | ¢) is given
by R*(t) = exp (—1/s¥). Since sF is complete and sufficient, if we can
find a function A{c} |7} such that E{h(c} | t)} = exp (—t/c), then the
UMVUE of reliability is given by /(cF | ).
Consider the function

t r—1
* — —
h(sF | t) = (1 rcf) , 1 < rof

bution.

and =0,t>rof

From (13),
*

(eF 1 o) = gy (2) P exp (= 7) 0 < oF <o

Bt 1 0) = 7oy (&) [ (1= ) oty exp (= 757 et

tr
r ® * r—1 ( ) d *
= = re, — t €X - Gr
F(f')Gr J-’/, ( ) P

1 J.w y~!exp {— ; (»r+ t)} dy

— T )o

re¥
a

— exp (—1/a)
This shows that k(s | 1) is the UMVUE of R(? | a).

ExampLE 1.2 Sixty items were placed on test and the test was terminated
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o, = ‘T" = 111%-2 = 933 hours
The UMVUE’s are
N s i y 14,000
o= Xy — —=r___ MR E L i
1) nr =) 650 305 14 617 hours
e >, 14,000
O, = r—1= 14 = 1000 hours

Based on the first r ordered failure times, the MLE of reliability is given

Ay 1 ~
by R(f | 1, 0) = exp {— ry (r — #)} and the UMVUE of R(t | p, ©) is given

by "
Rt n—1 t — x(Hl "2
( ]p, 6) = B 1 — = y— y X<t < xu+
= 1, Xy >t
and = 0, t> x) + y,

(Laurent, 1963)

ExAMPLE 1.4 Given the data in Example 1.3, obtain the MLE and
UMVUE of the reliability at f = 1000 hours. We have &, — 933, 1 = 650.
Hence

R(1000 | , ) = exp {_ w} — 0.6873

933
and
~ 29 1000 — 650) '3

*
Time-censored Samples TYPE T (onponrg
The time-censored samples arise when we terminate the life-testing ex-
periment at a pre-assigned time #o. As mentioned earlier, here the number
of items that failed before time ¢, is a random variable which we denote
by M. Let p(t,) be the probability of failure before time fo. Then M has a
binomial distribution

n m, n—m —_—
P(M_—_-m)=(m)p ¢ om=0,1,2,...,n

where p = p(t,) = 1 — exp (—1o/c) and g =1 — P S:uppose the items that
failed are not-replaced. The data consist of the life tques X < ¥@ < - d
< X(m Oof m items that failed before o a.nd _(n — m) items that survive
beyond ¢,. The likelihood of the sample s given by

nto f
— — ) form=0
L{x(l)7 X(2)s+ + o9 X(m)s M l 0‘} = €Xp ( G )

{ i xgp + (n — m)to}
n! 1 __i=1

- ——€X
and — m! (n — m)!la” P

form=1,2,...,n.

ag

i s b
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Thic follpwe from the following considerationt, Th Frketthnod for m {)
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is vbviops Lar m D consider the conditional p d.f. of the faluee time,

. - : - e iy f. THhiiw i¢ % 5L O "‘."."
piven that the item hae failed betore a5 Thit i€ given by

1 / \

ep{— 2
oi] & R . r} - X % f!
’!{A‘L U‘ , C".f" : ’;' ,,'}' )

- {0 otherwise

Thus, the joint p.d.f. of Xy, Xy - .- ¥e) 15 gIVED by

} I ‘: > ;A"'L
! C‘fp | %!"‘;’ i

elxi, X, - - - Xomy 5} = p G
| —exp | —

a

The likelihood of the sample is the joint p.d.f. of {xy), X2 . - ». x4} and
m. Hence

. fn g
L{xX(1)s X2)s + - - » X(m)» M| 0} = g{X(1) X215 - -+ + X(m) | GE(m)I""lI" "

n' 1 =1

BT b d A —

For m > 0, L{X(;), X2), « - - » X(m), M [ ) is maximized for

"
S X + (n — m)to_!

"
E X@) + (" — n))fo
§==1

m

However, for m = 0, the likelihood = exp (—nty/s) and is a strictly in-
creasing function of o, So the MLE should be taken to be 5 = oo if m = 0.
But then the random variable @ is improper in that it assumes the value
-+ with positive probability and, therefore, neither the mean nor the
variance would exist. We, however, note that P(M = 0) = exp (—nfy/a)
would be quite small for a fairly large value of nty/s. This can be achieved
by having n sufficiently large and ¢;/o not too small. Thus, in practice for
the time-censored life-testing experiment, we will start with fairly large
number of items n and would select termination time f, such that #y is not
too small as compared to . Since o is unknown, one cannot guarantec
that m > 0 for a given choice of n and ¢y, There is always a positive
probability however small, that we obtain m - 0. In such a case we
follow the recommendation of Bartholomew (1957) that we take a - af.
Thus the MLE o is given by

o 4 , 1

PR SR LTI LR T }
G == = ., m Q0 k (16)

= Nl for n = 0 ,

The dls.t.r,:_butm.n theory of & in the time-vensored case is quite compli-
cated. This is mainly due to the fact that m is a random variable and the

aaa P
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numerater of (16) is a sum of
Bartholomew (1957) has obtained

N\ - N ]
of G. The asymptotic (large s

random number of random variables,
approximations to the hias and variance
ample) bias and variance are given by

s A 4
Bias (3) = - qj and Var (6) ~ =
np

np
The MLE of the reliability

18, of course, given by (1) = exp (-- =

>

). Not
:‘Ill;({:l\l, 1s known about the bias and the variance of ﬁ(!). The case of the

f; '1 UE appears to be much more hopeless and to the best of knowledge
of the authors, the problem of obtaining the UMVUE of » for the time-
censored case remains unsolved. This situation illustrates the principle

that sometimes very (apparently) minor modifications in the experimental
Set up can lead to quite difficult problems in estimating the parameters.

QA

Estimator based on n and m (Bartholomew, 1963)

Consider only the number of failures during [0, 7o] and ignore the times
when failures occurred. We have the likelihood

L — (’1 )P"'Q""”, m=0,1,2,...,m

m

(Yoo (- F ewf-o-m )

] to m o?
30 log L = 2 [n ~ [ —exp (-—fo/G)] — E(ggz log L)

and
__ tdnexp (—to/0)
— o*{l — exp (—1o/0)}
Thus, the MLE of o and the asymptotic varidnce of the estimator are
given by

for large n

~r o —tO
¢ = log (1 — m/n) (an
and N
Var (6_\/) — GP (18)

ng (log 9)
The estimator (17) is recommended for 0.2 < m/n < 0.8. The bias in this
estimator is infinite since the probability that m = n is positive (Gnedenko,
Belyayev and Solovyev, 1969).
The limiting relative efficiency of 6’ against G in (16)
. Var (6)
= Var (7)

- gg {log (1 — p)}?

11p?
= (1 —-—p)(l +P+ "l‘g""{_"‘)
2
= _,'.’.l’.z- if p is small




