(Source: Fundamentals of Mathematical Statistics by V. K. Kapoor & S. C. Gupta UNIT-IV

4.1 Convergence of sequence of random variables & Mode of convergence

tonvergence in Probability!

A sequence's of $\tau \cdot v's \in x \cap y'$ is said to be converge to x in probability denoted, $x_n \xrightarrow{P} x_n$ if for every 2 > 0, as $n \rightarrow \infty$ $x_n \xrightarrow{P} x_n \rightarrow x \mid \geq 2 \quad \longrightarrow 0$

Equivalent. Xn P7 x; et you every 630 as n->a. P[1xn-x1] 26 ->0 ->0 This concept plays on impariant note in Statistics consistency of estimators wear law ob longe numbers are examples. Here it mean that the difference between Xn and x is likely to be small with large Parchability. Neccessary and Sufficient conditions for convergence to probability $x_n \xrightarrow{p} 0 \quad \text{iff} \quad \mathbb{E}\left(\frac{|x_n|}{1+|x_n|}\right) \longrightarrow 0 \quad \text{as } n \to 0$ For any kn, the revolution variable | xn | is bounded by unity. 1+ [Xn] .. Take g(xn) = 1xn) , then sup g(xn) = 1 .. From the basic inequality E (gen) - g(a) , p [1x12a] = Eg(x) as Sup g(m) $\frac{\mathbb{E}\left\{|x_{n}\right\}}{1+\left\{|x_{n}\right\}} - \frac{\mathbb{E}}{1+\left\{|x_{n}\right\}} \leq \mathbb{P}\left[\left\{|x_{n}\right\}| \geq \mathbb{E}\left[\frac{\left\|x_{n}\right\|}{1+\left\|x_{n}\right\|}\right]$ From the R.H.S of an one see that $E\left(\frac{|x_n|}{1+|x_n|}\right) \rightarrow 0 \Rightarrow P\left[|x_n| \geq E\right] \rightarrow 0$

```
I MSc Statistics
  This is sufficient condition for convergence in
 probability necessary condition
    tenseder 1. H 3 of 1)
    P[1\times n] \ge s_1 \longrightarrow 0 \implies E\left(\frac{1\times n}{1+1\times n}\right) \cdot \frac{E}{1+s_1} \longrightarrow 0
 Since & is arbitary and [Xn] in a non-negative reaction. Vicouable its expectation is greater than or
    equal to.
    Hence \pm \left(\frac{1\times n}{1+1\times n}\right) \longrightarrow 0 as n-\infty
    This is the neccessary tendition.
  Convergence up Probability Int . Hutual convergence:
      i.e., Xn Py X Xn xm Pso
 Since Xn PSX, X20
     tensiden . [xn - xm] = [xn-x+ x-xm]
                       = 1 xn-x1 4 [x-xm]
  => P[1xn - xm]> E] C P[1xn -x1 > 5/0] 1 P
                        P[1x-xml > 3/5] - >0
     as An Par as n.m - see duch been of the
   P. H. S Joes to Took.
       => P [1xn - xm] = E] ->0
```

```
\Rightarrow \chi_n - \chi_m \xrightarrow{p} 0
                Thus convergence probability intimuteral convergence
                  Hence the proof.
        Almost Swaly convergence:
                                  The sequence of {xn} so said to contage to x
      a.s. [almost Reselyter) serroughly corn in probability
        Yntw) -> x (w) www expect, these belonger to the
      will set in in Xn as X => Xn(w -> xw) www en
                => P[w: xn(w) -> xuo))=1
              here almost sure tomorgence : to unique.
              i.e. 200 5x, x as x' => x = x' a.s
                       tonsides 1x-x1 = [x-xx+xx-x]
                                                              ≥ (4×=×=) + 1×=-×1
     \Rightarrow \left[ |x-x| \ge G \right] \subset \left[ \left[ |x_k-x| \right] \ge \frac{6}{3} \cup \left[ |x_k-x| \right] \ge \frac{6}{3} \right] \cup \left[ |x_k-x| \right] \ge \frac{6}{3} \cup \left[ |x_k-x| \right] \ge 
                                                       U [ω: 1x, (ω) - ×(ω) 1 > 4/2
=> p[1x-x1= s] = P[ U (w; 1xxxw) = =13] +
                                                                                                                                     0 w; | x (w) - x (w) > c
```

```
Since, X_n \rightarrow x and X_n \rightarrow x^{-1} each term in R. H.S.
goes to o
=> P[1x-x1128,] = 0.
 Host Sue (a.S.) implies convergence in Probability
       Xn 3 x 3 Xo P x maple no
Proof:
consider. S_1 > Y_2, then
  [1xn-x1>/4] > [1xn-x1>]
=> [ 1 = [ |xn-x | > 1 > 1 ] [ ] [ 1 xn-x | > 5] .
 => P [ 0 | xn -x | > P [ 1 xn - x | 25]
 the are goven on as & this implies
    p \begin{bmatrix} \mathbf{n} & 1 \times \mathbf{n} - \times 1 < \frac{1}{T} \end{bmatrix} \longrightarrow 1
    => ×n 19 5 x | x - 0 x | 4
  Hence the proof
Covergence to distribution
     Lee { Fr (x) g be a sequence of distorbution
functions, not necessary of random variables.
Let Fn(x) -> F(x) as n -> + (i.e.) Fn(x)
tenuergeness to time as n-sec.
 Then the sequence of Frickly is sold to be
  converge anethy to F.
 Convergence to 1th mean :
      A Square of n.v. & xn3 is said to converge to x
  with mean denoted by x_0 \xrightarrow{\tau} x, if E/x_0 - x/1 \longrightarrow 0
  as n -> as for n=2 |xn-x12 is called convergence
  in mean square or quadratic mean.
 Theorem :
     x_n \xrightarrow{\tau} x \implies E |x_n|^{\tau} \longrightarrow E |x|^{\tau}
                 [3 - (x - nxi] = [ 2/ - (x - 1x)
 Proced :
 Consider C. Enequatity
    E | X+Y17 = CY = | X17 + CY | X = (Y) | 7
  der 7 ≤1 

≤ E [×1" + E | y|" ... CT=1
   Put xn-x in the place of x and x in the
                     t Ix ax or q
 place of Y.
  = E |xn - Y + X | = E | xn - X | + E | xn | 1
  => E |xn| = E (xn-x) + E1x17.
  =) = | xn-x| = = | xn| - E|x|.
 But Xn -> X => E / Xn-x/ ->0
   E 1 xn 1 - E 1 x1 = 0
    => E | Xn | = E | X | 7 L
```

Case (ii)
$$\Upsilon > 1$$
.

Consider min knowski unequality $T > 1$

$$E^{1/2} | x + y|^{7} \le E^{1/2} | x|^{7} + E^{1/2} | y|^{7}$$

Put $X = Xn - X \le Y = X$

$$E^{1/2} | x |^{7} \le E^{1/2} | x |^{7} + E^{1/2} | x|^{7} = 0$$

$$E^{1/2} | x |^{7} \le E^{1/2} | x |^{7} = E^{1/2} | x |^{7} = 0$$

$$E^{1/2} | x |^{7} = E^{1/2} | x |^{7} = 0$$

$$E^{1/2} | x |^{7} = E^{1/2} | x |^{7} = 0$$

$$E^{1/2} | x |^{7} = E^{1/2} | x |^{7} = 0$$

$$E^{1/2} | x |^{7} = E^{1/2} | x |^{7} = 0$$

Moment Generating Function

Moment Generating Function. The moment generating function (m.g.f.) of a random variable X (about origin) having the probability function f(x) is given by

(6.54)...
$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} f(x) dx,$$
(for continuous probability distribution)
$$\sum_{\mathbf{x}} e^{t\mathbf{x}} f(\mathbf{x}),$$
(for discrete probability distribution)

the integration or summation being extended to the entire range of x, t being the real parameter and it is being assumed that the right-hand side of (6.54) is absoluted convergent for some positive number h such that -h < t < h. Thus

$$M_X(t) = E(e^{tX}) = E\left[1 + tX + \frac{t^2X^2}{2!} + \dots + \frac{t'X'}{r!} + \dots\right]$$

= 1 + t E(X) + \frac{t^2}{2!} \delta(X^2) + \dots + \frac{t'}{r!} E(X') + \dots

$$= 1 + t \,\mu_1' + \frac{t^2}{2!} \,\mu_2' + \dots + \frac{t'}{r!} \,\mu_r' + \dots \qquad \dots (6.55)$$

where

 $\mu_r' = E(X') = \int x' f(x) dx$, for continuous distribution = $\sum x' p(x)$, for discrete distribution,

is the *n*th moment of X about origin. Thus we see that the coefficient of $\frac{t'}{r!}$ in $M_X(t)$ gives μ_r' (above origin). Since $M_X(t)$ generates moments, it is known as moment generating function.

Differentiating (6.55) w.r.t. t and then putting t = 0, we get

$$\left[\frac{d'}{dt'} \{M_X(t)\}\right]_{t=0} = \left[\frac{\mu_{r'}}{r!} \cdot r! + \mu'_{r+1} t + \mu'_{r+2} \cdot \frac{t^2}{2!} + \dots\right]_{t=0}$$

$$\Rightarrow \qquad \mu_{r'} = \left[\frac{d'}{dt'} \{M_X(t)\}\right]_{t=0} \qquad \dots (6.56)$$

In general, the moment generating function of X about the point X = a is defined as

$$M_X(t) \text{ (about } X = a) = E\left[e^{t(X-a)}\right]$$

$$= E\left[1 + t(X-a) + \frac{t^2}{2!}(X-a)^2 + \dots + \frac{t'}{r!}(X-a)^r + \dots\right]$$

$$= 1 + t\mu_1' + \frac{t^2}{2!}\mu_2' + \dots + \frac{t'}{r!}\mu_r' + \dots \qquad \dots (6.57)$$

where $\mu_{r'} = E\{(X-a)^r\}$, is the rth moment about the point X=a.

4.2 Characteristic Function: Definition and Properties

Characteristic Function. In some cases m.g.f. does not exist, since the integral $\int_{-\infty}^{\infty} e^{tx} f(x) dx$ or the series $\sum_{x} e^{tx} p(x)$ does not converge absolutely for real values of t for some distributions. For example, for the continuous probability distribution

$$dF(x) := C \frac{1}{(1+x^2)^m} dx \; ; m > 1, -\infty < x < \infty, \; .$$

the m.g.f. does not exist, since the integral

$$M_X(t) = C \int_{-\infty}^{\infty} e^{tx} \frac{1}{(1+x^2)^m} dx,$$

does not converge absolutely for finite positive values of m because the function e^{tx} dominates the function x^{2m} so that $e^{tx}/x^{2m} \to \infty$ as $x \to \infty$.

Again, for the discrete probability distribution

$$f(x) = \frac{6}{\pi^2 x^2}; x = 1, 2, 3, ...$$

= 0, elsewhere

$$M_X(t) = \sum_{x} e^{tx} f(x) = \frac{6}{\pi^2} \sum_{x=1}^{\infty} \left(\frac{e^{tx}}{x^2} \right)$$

The series is not convergent (by D'Alembert's Ratio Test) for t > 0. Thus there does not exist a positive number h such that $M_X(t)$ exists for -h < t < h. Hence $M_X(t)$ does not exist in this case also.

A more serviceable function than the m.g.f. is what is known as characteristic function and is defined as

$$\phi_{\mathbf{x}}(t) = E(e^{it\mathbf{x}}) = \int e^{it\mathbf{x}} f(\mathbf{x}) d\mathbf{x}$$
(for continuous probability distributions)
$$= \sum e^{it\mathbf{x}} f(\mathbf{x})$$
(for discrete probability distributions)
...(6-64)

If $F_X(x)$ is the distribution function of a continuous random variable X, then

$$\phi_X(t) = \int_{-\infty}^{\infty} e^{itx} dF(x) \qquad ...(6-64a)$$

Obviously $\phi(t)$ is a complex valued function of real variable t. It may be noted that

$$|\phi(t)| = \left| \int e^{itx} f(x) dx \right| \leq \int |e^{itx}| f(x) dx = \int f(x) dx = 1,$$

Since $|\phi(t)| \le 1$, characteristic function $\phi(t) = 1$ always exists. Yet another advantage of characteristic function lies in the fact that it unique deter-

Yet another advantage of characteristic function thes in the fact that it uniqued determines the distribution function, i.e., if the characteristic function of a distribution is given, the distribution can be uniquely determined by the theorem, known as the Uniqueness Theorem of Characteristic Functions

Properties of Characteristic Functions. For all real 't', we have

(i)
$$\phi(0) = \int_{-\infty}^{\infty} dF(x) = 1$$
 ...(6.64b)
(ii) $|\phi(t)| \le 1 = \phi(0)$...(6.64c)

(iii) $\phi(t)$ is continuous everywhere, i.e., $\phi(t)$ is a continuous function of t in $(-\infty, \infty)$. Rather $\phi(t)$ is uniformly continuous in 't'

Proof. For
$$h \neq 0$$
, $|\phi_X(t+h) - \phi_X(t)| = \left| \int_{-\infty}^{\infty} \left[e^{i(t+h)x} - e^{i\alpha x} \right] dF(x) \right|$

$$\leq \int_{-\infty}^{\infty} \left| e^{itx} \left(e^{ihx} - 1 \right) \right| dF(x)$$

$$= \int_{-\infty}^{\infty} \left| e^{ihx} - 1 \right| dF(x) \qquad \dots (*)$$

The last integral does not depend on t. If it tends to zero as $h \to 0$ then $\phi_X(t)$ is uniformly continuous in 't'.

Now
$$\left| e^{ihx} - 1 \right| \le \left| e^{ihx} \right| + 1 = 2$$

$$\therefore \int_{-\infty}^{\infty} \left| e^{ihx} - 1 \right| dF(x) \le 2 \int_{-\infty}^{\infty} dF(x) = 2.$$

Hence by Dominated Convergence Theorem (D.C.T.), taking the limit inside the integral sign in.(*), we get

$$\lim_{h \to 0} \left| \phi_X \left(t + h \right) - \phi_X \left(t \right) \right| \le \int_{-\infty}^{\infty} \lim_{h \to 0} \left| e^{ihx} - 1 \right| dF(x) = 0$$

$$\Rightarrow \lim_{h \to 0} \phi_X \left(t + h \right) = \phi_X \left(t \right) \ \forall \ t.$$

Hence $\phi_X(t)$ is uniformly continuous in 't'.

(iv) ϕ_X (-t) and ϕ_X (t) are conjugate functions, i.e., ϕ_X (-t) = $\overline{\phi_X}$ (t) where \overline{a} is the complex conjugate of a.

Proof.
$$\phi_X(t) = E(e^{itX}) = E[\cos tX + i \sin tX]$$

$$\Rightarrow \overline{\phi_X(t)} = E[\cos tX - i \sin tX]$$

$$= E[\cos (-t) \cdot X + i \sin (-t) \cdot X]$$

$$= E(e^{-itX}) = \phi_X(-t).$$

Theorems on Characteristic Function.

Theorem If the distribution function of a r.v. X is symmetrical about zero, i.e.,

$$1 - F(x) = F(-x) \implies f(-x) = f(x),$$

then $\phi_X(t)$ is real valued and even function of t.

Proof. By definition we have

$$\phi_{X}(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx = \int_{-\infty}^{\infty} e^{-ity} f(-y) dy \qquad (x = -y)$$

$$= \int_{-\infty}^{\infty} e^{-ity} f(y) dy \qquad [\because f(-y) = f(y)]$$

$$= \phi_{X}(-t) \qquad \dots (*)$$

 $\Rightarrow \phi_X(t)$ is an even function of t.

Also
$$\overline{\phi_X(t)} = \phi_X(-t)$$
 [c.f. Property (iv) § 6·12·1,]
 $\overline{\phi_X(t)} = \phi_X(-t) = \phi_X(t)$ (From *)

Hence $\phi_{x'}(t)$ is a real valued function of t.

Theorem If X is some random variable with characteristic function $\phi_X(t)$, and if $\mu_r = E(X')$ exists, then

$$\mu_{r}' = (-i)^{r} \left[\frac{\partial'}{\partial t'} \phi(t) \right]_{t=0}$$

$$\phi(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx$$

Proof.

Differentiating (under the integral sign) 'r' times w.r.t. t, we get

$$\frac{\partial'}{\partial t'} \phi(t) = \int_{-\infty}^{\infty} (ix)' \cdot e^{itx} f(x) dx = (i)' \int_{-\infty}^{\infty} x' e^{itx} f(x) dx$$

$$\therefore \left[\frac{\partial'}{\partial t'} \phi(t) \right]_{t=0} = (i)' \left[\int_{-\infty}^{\infty} x' e^{itx} f(x) dx \right]_{t=0}$$

$$= (i)' \int_{-\infty}^{\infty} x' f(x) dx = i' E(X') = i' \mu_t'$$
Hence $\mu_t' \approx \left(\frac{1}{i} \right)' \left[\frac{\partial'}{\partial t'} \phi(t) \right]_{t=0} = (-i)' \left[\frac{\partial'}{\partial t'} \phi(t) \right]_{t=0}$

Theorem

 $\phi_{CX}(t) = \phi_X(ct), c, being a constant.$

Theorem

If X_1 and X_2 are independent random variables, then

$$\phi_{X_1+X_2}(t) = \phi_{X_1}(t) \ \phi_{X_2}(t)$$
 ...(*)

More, generally for independent random variables X_1 ; i = 1, 2, ..., n, we have

$$\phi_{X_1+X_2+...+X_n}(t) = \phi_{X_1}(t) \phi_{X_2}(t) ... \phi_{X_n}(t)$$

Important Remark. Converse of (*) is not true, i.e.,

 $\phi_{X_1+X_2}(t) = \phi_{X_1}(t) \phi_{X_2}(t)$ does not imply that X_1 and X_2 are independent.

For example, let X_1 be a standard Cauchy variate with p.d.f.

$$f(x) = \frac{1}{\pi (1 + x^2)}, -\infty < x < \infty$$
Then $\phi_{X_1}(t) = e^{-|t|}$ (c.f.

Let $X_2 \equiv X_1, \ \tilde{i}.e., \ P(X_1 = X_2) = 1.$
Then $\phi_{X_2}(t) = e^{-|t|}$
Now $\phi_{X_1 + X_2}(t) = \phi_{2X_1}(t) = \phi_{X_1}(2t) = e^{-2|t|}$
 $= \phi_{X_1}(t) \ \phi_{X_2}(t)$

i.e. (*) is satisfied but obviously X_1 and X_2 are not independent, because of (**).

Theorem Effect of Change of Origin and Scale on Characteristic

Function. If $U = \frac{X-a}{h}$, a and h being constants, then

$$\phi_U(t) = e^{-iat/h} \phi_X(t/h)$$

In particular if we take $a = E(X) = \mu$ (say) and $h = \sigma_X = \sigma$ then the characteristic function of the standard variate

$$Z = \frac{X - E(X)}{\sigma_X} = \frac{X - \mu}{\sigma},$$

$$\phi_Z(t) = e^{-i\mu/\sigma} \phi_X(t/\sigma)$$

is given by

Disoupetion: Normal Characteristic Junction of Normal Destrubution U XNN (0,0°) Cx It) = E [eitx] = Jeitx feni dn. The normal p.d. + is guen by 1 Je 1/2 [22- 2i + 20 + (i+o; 2-(i+o)) dz et2 0% [e (2 - sto) dz

I MSc Statistics

$$= \frac{e^{\frac{1}{2}} \frac{7}{2}}{\sqrt{3\pi}} \int_{0}^{\infty} e^{-\frac{\pi^{2}}{2}} du$$

$$= \frac{e^{\frac{1}{2}} \frac{7}{2}}{\sqrt{2\pi}} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{\pi^{2}}{2}} du = \frac{\sqrt{7}}{2}$$

$$= e^{\frac{1}{2}} \frac{7}{2} \int_{0}^{\infty} e^{-\frac{\pi^{2}}{2}} du = \frac{\sqrt{7}}{2} \int_{0}^{\infty} e^{-\frac{\pi^{2}}{2}} du = \frac{\sqrt{7}}{2} \int_{0}^{\infty} e^{-\frac{\pi^{2}}{2}} du = \frac{e^{\frac{\pi^{2}}{2}} \frac{7}{2}}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{\pi^{2}}{2}} du = \frac{e^{\frac{\pi^{2}}{2}}}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{\pi^{2}}{2}} du =$$

$$= \frac{e^{itM}}{\sqrt{ai\pi}} \int_{-\infty}^{\infty} e^{-\frac{i}{4}} (z^2 - 3i + 2\sigma + (it\sigma)^2 - (it+\delta^2)) dz$$

$$= \frac{e^{itM}}{\sqrt{ai\pi}} \int_{-\infty}^{\infty} e^{\frac{i}{4}} (z - (it\sigma)^2) \frac{i}{4} (it\sigma)^2 dz$$

$$= \frac{e^{itM}}{\sqrt{ai\pi}} \int_{-\infty}^{\infty} e^{\frac{i}{4}} (z - (it\sigma)^2) \frac{i}{4} (z - it\sigma)^2 dz$$

$$= \frac{e^{itM}}{\sqrt{ai\pi}} \int_{-\infty}^{\infty} e^{\frac{i}{4}} (z - it\sigma)^2 dz$$

$$= \frac{e^{itM}}{2} \int_{-\infty}^{\infty} e^{\frac{i}{4}} (z - it\sigma)^2 dz$$

$$= \frac{e^{itM}}{2\pi} \int_{-\infty}^{\infty} e^{\frac{i}{4}} (z - it\sigma)^2 dz$$

$$= \frac{e^{itM}}{2\pi} \int_{-\infty}^{\infty} e^{\frac{i}{4}} (z - it\sigma)^2 dz$$

$$= \frac{e^{itM}}{2\pi} \int_{-\infty}^{\infty} e^{\frac{i}{4}} (z - it\sigma)^2 dz$$

4.3 Inversion Theorem

Inversion Theorem Lemma. If (a - h, a + h) is the continuity interval of the distribution function F(x), then

$$F(a+h)-F(a-h)=\lim_{T\to\infty}\frac{1}{\pi}\int_{-T}^{T}\frac{\sin ht}{t}e^{-i\omega}\phi(t)dt,$$

b (t) being the characteristic function of the distribution.

Corollary. If $\phi(t)$ is absolutely integrable over R^1 , i.e., if

$$\int_{-\infty}^{\infty} |\phi(t)| dt < \infty,$$

then the derivative of F(x) exists; which is bounded; continuous on R^1 and is given by

$$f(x) = F'(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ix} \phi(t) dt,$$

for every $x \in R^1$.

Proof. In the above lemma replacing a by x and on dividing by 2h, we have

$$\frac{F(x+h)-F(x-h)}{2h} = \frac{1}{2\pi} \cdot \lim_{T \to \infty} \int_{-T}^{T} \frac{\sin ht}{ht} e^{ix} \phi(t) dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\sin ht}{ht} e^{-ix} \phi(t) dt$$

$$\therefore \lim_{h \to 0} \frac{F(x+h)-F(x-h)}{2h} = \frac{1}{2\pi} \lim_{h \to 0} \int_{-\infty}^{\infty} \frac{\sin ht}{ht} dt e^{-ix} \phi(t) dt$$
Since
$$\int_{-\infty}^{\infty} |\phi(t)| dt < \infty,$$

the integrand on the right hand side is bounded by an integrable function and hence by Dominated Convergence Theorem, we get

$$\lim_{h\to 0} \frac{F(x+h) - F(x-h)}{2h} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{h\to 0} \left(\frac{\sin ht}{ht} \right) \cdot e^{-itx} \phi(t) dt$$

By mean value theorem of differential calculus, we have

$$\lim_{h \to 0} \frac{F(x+h) - F(x-h)}{2h} = F'(x) = f(x),$$

where f(.) is the p.d.f. corresponding to $\phi(t)$. Thus

$$f(x) = F'(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ix} \phi(t) dt,$$

4.4 Uniqueness Theorem

Uniqueness Theorem of Characteristic Functions.

Characteristic function uniquely determines the distribution, i.e., a necessary and sufficient condition for two distributions with p.df.'s $f_1(\cdot)$ and $f_2(\cdot)$ to be identical is that their characteristic functions $\phi_1(t)$ and $\phi_2(t)$ are identical.

Proof. If $f_1(\cdot) = f_2(\cdot)$, then from the definition of characteristic function, we get

$$\phi_1(t) = \int_0^{\infty} e^{i\alpha} f_1(x) dx = \int_0^{\infty} e^{itx} f_2(x) dx = \phi_2(t)$$

Conversely if $\phi_1(t) = \phi_2(t)$, then from corollary to Theorem 6.26, we get

$$f_1(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi_1(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi_2(t) dt = f_2(x)$$

Theorem Necessary and sufficient condition for the random variables X_1 and X_2 to be independent is that their joint characteristic function is equal to the product of their individual characteristic functions, i.e.,

$$\phi_{X_1, X_2}(t_1, t_2) = \phi_{X_1}(t_1) \phi_{X_2}(t_2) \qquad \dots (*)$$

Proof. (i) Condition is Necessary. If X_1 and X_2 are independent then we have to show that (*) holds. By def.,

$$\begin{aligned} \phi_{X_1,X_2}(t_2, t_2) &= E(e^{it_1X_1 + it_2X_2}) = E(e^{it_1X_1} \cdot e^{it_2X_2}) \\ &= E(e^{it_1X_1}) E(e^{it_2X_2}) (\cdot \cdot X_1, X_2 \text{ are independent}) \\ &= \phi_{X_1}(t_1) \phi_{X_2}(t_2), \end{aligned}$$

as required.

(ii) Condition is sufficient. We have to show that if (*) holds, then X_1 and X_2 are independent.

Let $f_{X_1,X_2}(x_1,X_2)$ be the joint p.d.f. of X_1 and X_2 and $f_1(x_1)$ and $f_2(x_2)$ be the marginal p.d.f.'s of X_1 and X_2 respectively. Then by definition (for continuous r.v.'s), we get

$$\phi_{X_{1}}(t_{1}) = \int_{-\infty}^{\infty} e^{it_{1} x_{1}} f_{1}(x_{1}) dx_{1}$$

$$\phi_{X_{2}}(t_{2}) = \int_{-\infty}^{\infty} e^{it_{2} x_{2}} f_{2}(x_{2}) dx_{2}$$

$$\therefore \quad \phi_{X_{1}}(t_{1}) \phi_{X_{2}}(t_{2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{it_{1} x_{1}} f_{1}(x_{1}) dx_{1} \left[\int_{-\infty}^{\infty} e^{it_{2} x_{2}} f_{2}(x_{2}) dx_{2} \right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(t_{1} x_{1} + t_{2} x_{2})} f_{1}(x_{1}) f_{2}(x_{2}) dx_{1} dx_{2}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(t_{1} x_{1} + t_{2} x_{2})} f_{1}(x_{1}) f_{2}(x_{2}) dx_{1} dx_{2}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(t_{1} x_{1} + t_{2} x_{2})} f_{1}(x_{1}) f_{2}(x_{2}) dx_{1} dx_{2}$$

by Fubini's theorem, since the integrand is bounded by an integrable function.

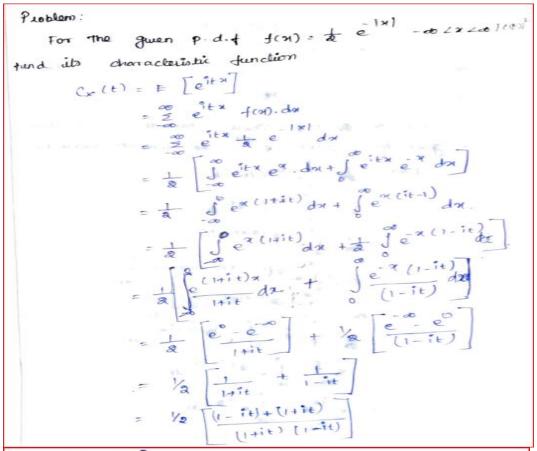
Also by
$$\det^i \bigoplus_{x_1, x_2}^{\infty} (t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(t_1x_1 + t_2x_2)} f(x_1, x_2) dx_1 dx_2$$

If (*) holds, we get from '(**)

$$\phi_{x_1,x_2}(t_1,t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(t_1x_1+t_2x_2)} f_1(x_1) f_2(x_2) dx_1 dx_2$$

Hence by uniqueness theorem of characteristic functions, we get $f(x_1, x_2) = f_1(x_1) f_2(x_2)$,

which, implies that X_1 and X_2 are independent.



Inversion Formula for finding pdf:

$$\frac{1}{1+t^2}$$
The formula to obtain p.d.f in the case of the continuous T.V. dat given characteristic function is $f(x) = \frac{1}{2\pi} \int_{0}^{\infty} e^{-ix} e^{-ix} e^{-ix} e^{-ix}$

Find the The d.f Whose characteristic function is fluor by $e^{-ix} = e^{-ix} e^{-ix}$. The unwestern formula $e^{-ix} = e^{-ix} e$

The formula toletain p. m. f. of decrete + . for given characteristic function is $P(x) = \frac{1}{8\pi} \cdot \int e^{-it x} c(t) dt$ Obtain the p.m. of this characteristic function is ((t) = (q + Peit) by inverse formula Pinte do Je + 19 + Pet) de = 1] e it [2 (3) 2 peit) dy P(N) = = (3) p9 2 -4 1 Jeit (9-2) dg = 25 = officialse of the which is the proof of Binomial distoubution Obtain p. m. of whose characteriotic function is in the tite of the total and the D(x) = I Je it z = (me t) de = 5 e m 1 1 de (1-1) de e e m Loten T = Z o thow ise whis is the p. 10.4 of possen distribution Oblain p.m.+ of whose characteristic function given (1+) = p(1-qit) $P(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itx} c(t) dt$ $= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itx} P(1-qe^{it})^{-1}$ $= \frac{P}{a\pi} \int_{0}^{\pi} e^{-it\pi} \frac{dt}{dt} \left(q e^{-it} \right)^{2} dt$ = = qp 1 = 1 e + (r-x) dt which is the p. m. f of Geometric distanbution