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UNIT-I

Discrete and General probability space- Conditional probability space-
Functions and Inverse Functions - Random Variables - Induced probability
space by the Random variables.

Basic Definitions:

. Deterministic experiment: An experiment whose outcome can be predicted (or
known) with certainty is called Deterministic experiment.

. Random Experiment: An experiment whose outcome cannot be predicted (or
unknown) with certainty, although all the outcomes are known, is called Random
experiment. Example: When a fair die is thrown, it is known that any of the 6
possible outcomes will occur, but it cannot be predicted.

. Inarandom experiment, we associate a a set ) which is a set of all possible
outcomes of the experiment is known as Sample Space.

. An outcome of an experiment is called Sample point or Event and is denoted by
w.An event is a subset of the Sample Space, ().

. Impossible event: an event E is said to be impossible event if E=@, the null set.
Ex.: getting no. 7 while throwing a die.

. If the event set contains all the points of the sample space (2 it is called sure
or certain event. Ex.: Getting any number form 1 to 6 while throwing a die.

. Two events A & B are said to be mutually exclusive if their joint occurrence is
not possible. .ie., AN B = @.

. Field: A class A of subsets of () is called a field if it contains (2 itself and
finite union ie., (YoeAh (i)AeA ACea, (i) If

Aand B € A, AUB € A implies

. o-Field: A class A of subsets of (2 is called a g-field if it is under the
formation of countable unions.

Let £) be the sample space and A be the set of all subset of €2 . Then A is
called o-Field if (i) For every A €A, A® €A, (ii) 4; €A,
wherei:12,3,.. ; YA, €A (i) If e A, (iv)Q€eEA

In Tossing a coin experiment, the o-Field A = {Q,0,H,T} where Q = {H, T}.

10. Upper Bound: Let S be a subset of R. An element ‘b’ is said to be an upper

bound of S if x<b; Vx€S.

11. Lower Bound: Let S be a subset of R. An element 'd’ is said to be a lower bound

of S ifa<x; Vx€S.
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12.Bounded Above: A set having an upper bound is said to be bounded above.
13.Bounded Below: A set having a lower bound is said to be bounded below.
14.Bounded Set: A set having an upper bound and a lower bound is said to be
bounded set.
15.Let S be a subset of R. A real number 'b’is said to be the least upper bound
or Supremum of S if (i)'b'is the upper bound of Sand (ii)b <
c; V upper bound c € S.
16.Let S be a subset of R. A real number 'd’is said to be the greatest lower
bound or Infimum of S if (i) 'd is the lower bound of S and (ii)a <
c; V lower boundc € S.
A set cannot have more than one least upper bound or greatest lower bound.
Example: Let S ={1,2,3,4}. The element 1 and all the numbers less than 1 are
lower bound of S.

Probability Space

In probability theory, a probability space or a probability triple ({2, F,
P) is a triplet that provides a formal model of a random experiment.

A probability space consists of three elements:

a) A sample space, (), which is the set of all possible outcomes.
b) Anevent space, which is a set of events, F, an event being a set
of outcomes in the sample space.
c) A probability function, which assigns each event in the event space
a probability, which is a number between O and 1.
A probability space is a mathematical triplet (€2, F, P) that presents a model for
a particular class of real-world situations.

o The sample space, (), is the set of all possible outcomes. An outcome is the
result of a single trail of the random experiment. Outcomes may be states of
nature, possibilities, experimental results, and the like. Every instance of the
real-world situation (or run of the experiment) must produce exactly one
outcome. If outcomes of different runs of an experiment differ in any way that
matters, they are distinct outcomes.

o The o-algebra , F, is a collection of all the events we would like to consider. This
collection may or may not include each of the elementary events. Here, an "event"
is a set of zero or more outcomes, i.e., a subset of the sample space. An event is
considered to have "happened" during an experiment when the outcome of the
latter is an element of the event. Since the same outcome may be a member of
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many events, it is possible for many events to have happened given a single
outcome.

The probability measure , P,is a function returning an event's probability. A
probability is a real number between zero and one (the event happens almost
surely, with almost total certainty). Thus, Pis a function P: F -> [0.,1]. The
probability measure function must satisfy two simple requirements: First, the
probability of a countable union of mutually exclusive events must be equal fo the
countable sum of the probabilities of each of these events. Second, the
probability of the sample space must be equal to 1.

Definition
In short, a probability space is a measure space such that the measure of the whole space is equal to one.
The expanded definition is the following: a probability space is  triple (Q‘ F P] consisting of

+ the sample space {) — an arbirary non-empty set,

+the o-algebra F C gl (also called o-field) — a set o subsets of (), called events, such that;
o F contains the sample space: {) € F,
o J i cosed under complements: f A € F, thenalso ()| 4) € F,
o Fiscosed under countable urions: f 4; € Fori =1,2,..., enalso ([, 4;) € F
» The corollary from the previous two properties and De Morgan's aw s that JF is also closed under countable inersectons: if A; € F fori=1,2
dso (), 4i) € F
+the probabity measure P : F =+ [0, 1] —a funcionon F suchtht:
+ Pis countaly acditve (o called o-addve): {; }°, C JF is a countabe collection ofpairvise cisoin set, hen P((, 4i) = Y, P(i)

=]

» the measure of enire sample space i equalto ne: P({]) = 1

oo, then

1.2 Discrete and General probability space

Discrete probability space:

In a sample space €, if the class of events A is generated by a countable partition of
subsets of Q, then (Q, A, P) is called Discrete probability space.

If A=UP{A;} where A, is the partition of Q any event A is a countable union of
{A;}, the probability of A can be determined using the probabilities of A; ie.,p; = Pr(A4);.

If Q is countable, A; would be a singleton {w;} (i:1,2,....). The set {p;; i = 1,2,...}is
called the probability of Q and A coincides with the power set.
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General probability space

Let A be the system of events; The elements of A be measurable sets. (Q, A) be the
measurable space; P be the probability measure over the measurable space (2, A).

The triplet (€2, A, P) with Q as non-empty set, A as o-field over  and a mapping
P: A — R+ with i) P(Q) =1 (normalization),
i) P(A) > 0 (non-negativity),
iii) For any sequence {An}, mutually disjoint sets A we have
P[UTA,] =X1P[A,] (c-additivity)
is called general probability space; € is called basic space.

Finite Probability Spaces

A finite probability space is a finite set Q # @ together with a function P : Q — R+ such that
i) Ve Q,P(w)>0

i) VoeQ P(w)=1.

The set Q is the sample space and the function P is the probability function. The elements
o € Q are called atomic events or elementary events. An event is a subset of Q. For A € Q,

we define the probability of A to be P(A)= Y, ,ca P(w). For atomic events
we have P({0}) = P(®); and P(@) =0, P(Q) = 1.
The trivial events are those with probability O or 1, i. e. @ and Q.

The uniform distribution over the sample space € is defined by setting P(w) = 1/|Q2| for every
o € Q. With this distribution, in the uniform probability space over €, the calculation of
probabilities amounts to counting: P(A) = |A|/|Q].

Conditional Probability Space

The concept of a conditional probability space € to be defined below is identical with
the more standard concept of a o-finite measure space. The term was introduced by Renyi
(1970).

Definition:

A conditional probability space is a set Q equipped with a o-finite measure P defined
on a c-algebra E of sets in Q. The members of the c-algebra are called the events. An event A
is an elementary condition if 0 < P(A) < 1. The conditional probability, given an elementary
condition, is defined by

P(B | A)=P(A N B)/P(A)

A probability space is a conditional probability space such that P(Q) = 1. An improper
probability is a measure such that P(QQ) = 1.

Functions and Inverse Functions

Functions

A function is a relation between a set of inputs and a set of permissible outputs with
the property that each input is related to exactly one output.
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Let A & B be any two non-empty sets, mapping from A to B will be a function only
when every element in set A has one end only one image in set B.

v

Another definition of functions is that it is a relation “f” in which each element of set “A” is
mapped with only one element belonging to set “B”. Also in a function, there can’t be two
pairs with the same first element.

A Condition for a Function:

e Set A and Set B should be non-empty.

e In a function, a particular input is given to get a particular output.
So, A function f: A->B denotes that f is a function from A to B, where A is a domain
and B is a co-domain.

o For an element, a, which belongs to A, ae4, a unique element b, beB is there such that
(a,b) e f.

The unique element b to which f relates a, is denoted by f(a) and is called f of a, or the
value of f at a, or the image of a under f.

e The range of f (image of a under f)
e Itisthe set of all values of f(x) taken together.
e Rangeoff={yeY|y=7f(x), forsomexin X}

A real-valued function has either P or any one of its subsets as its range. Further, if its
domain is also either P or a subset of P, it is called a real function.

Functions

A function f: X — Y between sets X, Y assigns to each x € X a unique element f(x) € Y .
Functions are also called maps, mappings, or transformations. The set X on which f is defined
is called the domain of f and the set Y in which it takes its values is called the codomain. We
write f:x — f(X) to indicate that f is the function that maps x to f(x).

Example . Let A={2,3,5,7,11} ,B={1, 3,5, 7,9, 11}. We can define a function
f:A—->Bbyf(2)=7,1f3)=1,1(5)=11,1(7)=3,f(11) =9, and a function g : B — A by
9(1)=3,9(3)=7,9(5 =2,9(7) =2,9(9) =5, 9(11) = 11.
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Inverse Functions:

1. Onto function

If the range of a function is equal to the co-domain then the function is
called an onto function. Otherwise it is called an into function.

In fA—B, the range of f or the image set f{A) is equal to the co-domain B
i.e. fTA) = B then the function is onto.
Example 7.10
Let A={1,2,3,4},B = {5, 6}. The function f is defined as follows:f(1) = 5,
A2) =5, fA3) = 6, fi4) = 6. Show that fis an onto function.

Solution:
f=1{(1,5).(2.5), (3, 6), (4, 6)}
The range of f, RA) = {5, 6} A B
co-domain B = {5, 6}
ie. MAA) =B

R

—> the given function is onto

Fig7. 12
Example 7.11: Let X = {a, b}, Y = {c. d, e} and f= {(a, c), (b, d)}. Show that
fis not an onto function.

Solution:
Draw the diagram Dat Y
The range of fis {c, d} c
The co-domain is {c, d, ¢} d
The range and the co-domain are not equal, ¢

and hence the given function is not onto Fig 7. 13
Note :

(1) For an onto function for each element (image) in the co-domain, there
must be a corresponding element or elements (pre-image) in the
domain.

(2) Another name for onto function is surjective function.

Definition: A function f is onto if to each element b in the co-domain, there is
atleast one element @ in the domain such that b = fla)

2. One-to-one function:

A function is said to be one-to-one if each element of the range is
associated with exactly one element of the domain.

i.e. two different elements in the domain (A) have different images in the
co-domain (B).

iLe.ay#zay = flay)#faz) a),ax € A,

Equivalently fla)) = flas) = a)=a>

The function defined in 7.11 is one-to-one but the function defined in 7.10
is not one-to-one.
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Example 7.12: Let A = {1, 2,3}, B={a, b, c}. Prove that the function f defined
by f={(l1,a), (2, b), (3,c)} is a one-to-one function.
Solution:

Here 1, 2 and 3 are associated with a, b and A f B
c respectively. l
The different elements in A have different o)
images in B under the function f. Therefore f is -
one-to-one. 3
Fig 7. 14
Example 7.13: Show that the function y = % is not one-to-one.
Solution:

o

For the different values of x (say 1, = 1)
we have the same value of y. i.e. different
elements in the domain have the same element
in the co-domain. By definition of one-to-one,
it is not one-to-one (OR)

I
-

-
I
—

NG

5 x=-] x= ]
ﬂl":jl('z‘) : ; Fig 7. 15
D=1 = 1
= A =f=1)

But 1# - 1. Thus different objects in the domain have the same image.
.. The function is not one-to-one.
Note: (1) A function is said to be injective if it is one-to-one.
(2) It is said to be bijective if it is both one-to-one and onto.
(3) The function given in example 7.12 is bijective while the functions
given in 7.10, 7.11, 7.13 are not bijective.

3. Identity function:

A function f from a set A to the same set A is said to be an identity

function if fix) = x for all x € A i.e. f: A — A is defined by f(x) = x for all

x € A. Identity function is denoted by I5 or simply 1. Therefore I(x) = x always.

Graph of identity function: "

The graph of the identity function

fix) = x 1s the graph of the function

y = x. It is nothing but the straight line
v = x as shown in the fig. (7.16)




18MST12C: Probability Theory UNIT-I

Page:
| MSc Statistics

Dept. of Statistics

[=]

4. Inverse of a function:

To define the inverse of a function f i.e. _f' (read as °f inverse’), the
function f must be one-to-one and onto.

Let A = {1, 2, 3}, B = {a, b, ¢, d}. Consider a function f = {(1, a), (2, b),
(3, ¢)}. Here the image set or the range is {a, b, ¢} which is not equal to the co-
domain {a, b, c, d}. Therefore, it is not onto.

For the inverse funclionf'l the co-domain of fbecomes domain off".
ie. If f: A — B then f‘l : B — A . According to the definition of domain,
each element of the domain must have image in the co-domain. In Afl. the

element ‘d’ has no image in A. Therefore _f' is not a function. This is because
the function fis not onto.

A B B 1 A
(domain) (co-domain) &
a 1
1 e b > 2
2 > b c - 3
. > c d
d
Fig 7.17 b
Fig7. 17 a 1 =
A =a o = 1
fA2) =b w = 2
f3) =c e = 3
All the elements in A have images f' @ = 2

The element 4 has no image.
Again consider a function which is not one-to-one. i.e. consider
f={,a), (2,a), (3, b)} where A ={1,2,3},B = {a, b}

Here the two different elements ‘1’ and *2° have the same image “a’.
Therefore the function is not one-to-one.
The range = {a., b} = B. .. The function is onto.

A f B B gy A

—’ \

Fig 7. 18
A =a @ =1
f(2y=a =2
A3 =5 =3
Here all the elements in A has The element ‘a’ has two

unique 1mage mmages 1 and 2. It wviolates the

principle of the function that each
element has a unique image.
This is because the function is not one-to-one.

Thus, ‘f_l exists if and only if fis one-to-one and onto’.
Note:
(1) Since all the function are relations and inverse of a function is also a
relation. We conclude that for a function which is not one-to-one and
onto, the inverse f ! does not exist

(2) To get the graph of the inverse function, interchange the co-ordinates
and plot the points.
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To define the mathematical definition of inverse of a function, we need the
concept of composition of functions.

5. Composition of functions:

Let A, B and C be any three sets and let f: A — B and g : B — C be any
two functions. Note that the domain of g is the co-domain of f. Define a new
function (gof) : A — C such that (gof) (a) = g(fla)) for all a € A. Here fla) is an
element of B. .. g(fla)) is meaningful. The function gof is called the
composition of two functions f and g.

A f B g C

’

Fig 7. 19
Note:
The small circle o in gof denotes the composition of g and f
Example 7.15: let A={1,2},B={3,4}and C = {5,6}) andf: A — B and
g :B — Csuch that f{l1) =3, fi2)=4, g(3) =5, g(4) = 6. Find gof.
Solution:
gofis a function from A — C.

Identify the images of elements of
A under the function gof.

(gof) (1) =g(f(1)) =g@B3) =5
(gof) (2) =g(fi2)) = g(4) =6
L.e. image of 1 1s 5 and
image of 2 1s 6 under gof
~ gof=1{(1,5),(2,6)}
Note:

For the above definition of f and g, we can’t find fog. For some functions f
and g, we can find both fog and gof. In certain cases fog and gof are equal. In
general fog # gof 1i.e. the composition of functions need not be commutative
always.

Fig 7. 20
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Example 7.16: The two functions f: R = R, g : R — R are defined by
fix) = X+ 1, g(x) = x — 1. Find fog and gof and show that fog # gof.

Solution:

(fog) (¥) = Ag() = fix=1) = (x = 1)> + 1 =x" = 2x+2

(g0f) (0) = g(fl) =g? + =2+ 1) -1 =%

Thus (fog) (x) S ) )
(g0f) (¥) = +°
= fog # gof

— 1
Example 7.17: Letf, g : R = R be defined by fix) = 2x + 1, and g(x) = 2 3

Show that (fog) = (gof).

Solution:
x—1 -1
(fog) (x) zﬂg(x)):f[rz j :Z[xz ) +l=x—-1+1=x
(g0h () = g = g@u+ = FEED =L _
Thus (fog) (x) = (gof) (x)
= fog = gof

In this example f'and g satisty (fog) (x) = x and (gof) (x) = x

Consider the example 7.17. For these fand g, (fog) (x)= x and (gof) (x) = x.
Thus by the definition of identity function fog =1 and gof =1 i.e. fog = gof =1

Now we can define the inverse of a function f.

Definition:

Let f: A — B be a function. If there exists a function g : B — A such that
(fog) = Ig and (gof) = 1, then g is called the inverse of f. The inverse of fis
denoted by [~ !

Note:

(1) The domain and the co-domain of both f and g are same then the

above condition can be written as fog = gof=1.

(2) H"f_1 exists then fis said to be invertible.

3) fof '=for=1

Example 7.18: Let f: R — R be a function defined by flx) = 2x + 1. Findf '
Solution:

Letg = !
(gof) (x) = x v gof=1
gflx) =x = gx+1)=x

Let 2x+1 =y =>x:‘v£—l

y—1 -1 y—1
g =5 o e =45
Replace y by x

x—1

1 A -
Jx= )
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Random Variable

A random variable, usually written X, is a variable whose possible values are
numerical outcomes of a random phenomenon.

Arandom variable is a measurable function X' {) —» B from a setof possible outcomes (o @ measurable spac F. The technical axomatic defniton requies { to

be & sample space of a probabilty rple (Q, F P) (see the measure-teorefic dfinion). A random variable s ofen denoted by capitl roman leters suchas XY, Z
THM

The probailty thet X takes on a value in a measurable set § C B s writien as

PXe§)=Plfuel| Xjwe )P

There are two types of random variables, discrete and continuous.

Discrete Random Variables

A discrete random variable is one which may take on only a countable number of
distinct values such as 0,1,2,3,4,........ . Discrete random variables are usually (but
not necessarily) counts. If a random variable takes only a finite number of distinct
values, then it is called discrete random variable.

Example:- Consider an experiment where a coin is tossed three times. If X represents
the number of times that the coin comes up heads, then X is a discrete random variable
that can only have the values 0, 1, 2, 3 (from no heads in three successive coin tosses to
all heads). No other value is possible for X.

Toss 3 Coin Example

Sample Space Random Variable X Probability

X Numier of head

The probability distribution of a discrete random variable is a list of probabilities
associated with each of its possible values. It is also called the probability function or the
probability mass function.
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Suppose a random variable X may take k different values, with the probability that X
= x; defined to be P(X = xi) = pi. The probabilities pi must satisfy the following:

i)0<pi<lforeachi

pr+p2+...+pc=1.

Probability distribution for the random experiment of toss a coin 3 times:

No. of Heads, X 0 1 2 3
Probability, Pr(X=0)=p(0) 3/8 3/8 1/8
Pr(X=x)=p(x) =1/8
Cum. Probability F(X<=0) Pr(X<=1) Pr(X<=2) Pr(X<=3)
Fx(X)=F(x) =Pr(X<=0) =3/8 =7/8 =1
=F(X<=x) =1/8

where X is the random variable; p(x)-probability mass function

Examples of discrete random variables:
the number of children in a family, the Friday night attendance at a cinema, the number
of patients in a doctor's surgery, the number of defective light bulbs in a box of ten.

Example
Suppose a variable X can take the values 1, 2, 3, or 4. The
probabilities associated with each outcome are: 5
Outcome 1 2 3 4
Probability 0.1 0.3 0.4 0.2 21
The probability that X is equal to 2 or 3
=P(X=20rX=23)
=PX=2)+P(X=23) :
=03+04=0.7.

@.1

Similarly, P(X>1) =1-P(X=1)=1-0.1=0.9, by
the complement rule.

This distribution may also be described by
the probability histogram shown in the diagram.

Cumulative Distribution Function

All random variables (discrete and continuous) have acumulative distribution
function. It is a function giving the probability that the random variable X is less than or equal
to x, for every value x. For a discrete random variable, the cumulative distribution function is
found by summing up the probabilities.

Example
The cumulative distribution function for the above probability distribution is:

P(X<1)=0.1,

P(X<2)=0.1+0.3=04,

P(X<3)=0.1+0.3+0.4=0.8,

P(X<4)=0.1 +0.3 +0.4 +0.2 =1.0.


http://www.stat.yale.edu/Courses/1997-98/101/probint.htm#rule4
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Continuous Random Variables
Continuous random variables can represent any value within a specified range or interval
and can take on an infinite number of possible values.

Example:- Consider an experiment that involves measuring the amount of rainfall in a city
over a year or the average height of a random group of 25 people.

A continuous random variable is a variable which takes an infinite number of possible
values. Continuous random variables are usually measurements. Example: height, weight, the
amount of sugar in an orange, the time required to run a mile.

A continuous random variable is not defined at specific values. Instead, it is defined
over an interval of values, and is represented by the area under a curve (this is known as
an integral). The probability of observing any single value is equal to 0, since the number of
values which may be assumed by the random variable is infinite.

Suppose a random variable X may take all values over an interval of real numbers. Then
the probability that X is in the set of outcomes A, P(A), is defined to be the area above A and
under a curve. The curve, which represents a function p(x), must satisfy the following:

i) The curve has no negative values (p(x) > 0 for all x)
i1) The total area under the curve is equal to 1.

A curve meeting these requirements is known as a probability density curve.
Probability Space induced by a random variable
Let (Q, F, P) be a probability space and X : Q — R, be a random variable.
Define Ux: B — [0, 1], B> B — P(X ! (B)) =: x (B). It is possible to verify that p1x defines

a probability measure on (Rn, B). We have thus an “induced” probability space (Rn, B, Px) (induced
probability space by the random variable X).

e &£ : given random experiment: /
-

e (€2,P(12), P): probability space associated with &:

e In many situations we may not be directly interested in sample space (2;
rather we may be interested in some numerical aspect of sample space
(i.e., we may be interested in a real-valued function defined on sample
space €2).



https://math.stackexchange.com/questions/1612267/probability-space-induced-by-a-random-variable
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Example 1:

e £ : Tossing a fair can three times independently:

e Sample space Q = {(wy.wo,w3) : w; € {H,T}, i = 1,2,3}; here, in
(wy,wo,w3), w; (i =1,2,3) indicates the outcome of ith toss. Clearly the
sample space has 2% = 8 elements:

e Suppose we are interested in number of heads obtained in three tosses,
i.e., we are interested the function X : Q — R, where

Definition 1: A real valued ﬁmctlon X : Q — R is called a random variable
(r.v.).

Notations:
e P(R): power set of the real line R:
e Forarv. X
{(XeA)=X"1A)={weN: X(w) e A}, AcP(R).

For example, for a real constant c,

{(X=c}=X""({P)={we: X(w)=ck

Pl o) ——@ 407/21:43

Result 1: Let X be a r.v. Then
(a)
X)) A=) = ) X (4a):
acs A acs A
(b)
x| 42) = U X 1(4)s
aceN aeN
() 1
X—1(A°) = (X" 1(A)°
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Induced probability space
e X: a given r.v. on probability space (2, P(Q2), P);
e Define the set function Py : P(2) — [0, 1] as

Px(4) = P(X7'(A4)
= P{we:X(w)e A}), AeP(Q).

Result 2: The set function Px(.) defined above is a probability function on
P(R), i.e., (R,P(R)), Px) is a probability space.

Proof: Since, P(-) is a probability function
Px(A) = P(X~'(4)) >0, V AeP(R).

Let {A; : i € S} be a countable collection of disjoint events in P(R). Then

~
Px(J 4 P(x—1(J 4

i€eS i€ES

= P(J X '(A)) (using Result 1 (b))
i€S
= > _ P(X'(A:)) (X !(A:)s are disjoint)
i€eS

= 3 Px(A)-

I€ES

| » 1 o)) ———a 1958/ 21-43

Remark 1:

(a) The probability space (R, P(R), Px) is called the probability space induced
by r.v. X and the probability function Px(-) is called the probability
function induced by r.v. X.

(b) Given a r.v. X, we are generally no longer interested in the original proba-
bility space (2. P(Q2). P): rather we are then, interested in induced prob-
ability space (R, P(R), Px). We have

X o (Q, P(Q)' P) ==, (R. p(n)' PX)v
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Example 2:
o £ : a fair coin is tossed three times independently;
o Sample space ) = {(wy, wp,ws) : w; € {H,T}, i=1,23};

o Suppose we are interested in number of heads in three tosses of coin, i.e.,
we are interested in r.v. X : () — R, defined by

0, if w=(T,T,T)
] 1} #UE”&:,T,T)r(vﬂ;u;‘n’(rsrtﬂ)}}/

We have

Px({o}) P(X'({o})) -

P(T. T, T)})

Ll

2 2 2 87

P(XT'({1})

;({(H. T.7).(T.H.T).(T. T, H)})

Px({1})

(]

8
P(X~'({2})

Px({2})

P({(H,H,T),(H,T,H),(T,H,H)})

For A C P(R)

Px(4) = P(X~(4))
- Px({w))

we&AN{0.1.2.3}

#HH# End of Unit-| ###



