TCP/IP-(18MCAA45E)
UNIT-1I
‘Group Management — IGMP Message °

FACULTY:
Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,
Post Graduate and Research Department of Computer
Applications,
Government Arts College (Autonomous), Coimbatore — 641
018.

Position of IGMP in the network layer

IGMP || ICMP

Network
layer IP

ARP || RARP

Unicast — one-to-one relationship

Multicast — one-to-many relationship — IGMP helps facilitate
that one-to-many relationship

Like ICMP, IGMP is a companion to IP

IGMP is NOT a multicast routing protocol — but rather a
protocol that manages the

IGMP gives the multicast routers info about the membership stazlus
of hosts (routers) connected to the network. .

@ Note:

IGMP Is a group management protocol. It
helps a multicast router create and update a
list of loyal members related to each router
Interface.

(Visualize a set of “multicast” routers amongst a set of “unicast”
routers — and IGMP’s job is to facilitate this communication and info
amongst the “multicast” routers”)

IGMP MESSAGES

IGMP has three types of messages: the query, the membership
report, and the leave report. There are two types of query messages,

general and special.
IGMP
IMEeSsages

‘ | ‘ Membership |
Query report
‘ General | ‘ Special I

|GMP message format

8 bits 8 bits 8 bits 8 bits

I:: :{:: ‘;Ii >-|-<

Tvpe Maximum response
4 YP . time

Checksum
Pk

Groyp address in membership and leave reports and special query; allds in general query

Checksum over the

Shows the type of entire 8-byte
message message
v Type Value
General or Special Query | Ox11 or 00010001
Membership Report . Ox16 or 00010110
Leave Report 0x17 or 00010111

IGMP OPERATION

A multicast router connected to a network has a list of multicast
addresses of the groups with at least one loyal member in that
network. For each group, there is one router that has the duty of
distributing the multicast packets destined for that group.

The topics discussed in this section include:

Joining a Group
Leaving a Group
Monitoring Membership

IGMP operation

A multicast router connected to a network has a list of multica
addresses of the groups with at least one loyal member in th
network. For each group, there is one router that has the duty o
distributing the multicast packets destined for that group.

A host can have a membership in a group

List of groups
— this means one of that host’s processes having loyal members
receives a multicast packet
225.70.8.20
A B Z 231.24.60.9
i .
jr—tac] 229.60.12.8

To other networks To another network
Routers R1, R2a
A muticast router can have a membership in list of groupids ar
a group — this means one of that router’s

mutually exclusive
interfaces receives a multicast packet

Membership report — Joining A Group

A host or router can join a group
A host maintains a list of processes that have group membership

If a process wants to join a group, the host adds process and the
desired group to its list

If it is the first time entry, the host sends a "membership report”
message to the distributing router (in order to receive multicast
packets fro that desired group)

Host or Router Membership Report

Router

0Ox16 0 e
Group address

A router can join a group

A router maintains a list of interfaces that have group membership

If an interface wants to join a group, the router adds the interface and the
desired group to its list

If it is the , the router sends a ™ " message.

The message is sent out of all interfaces other than one from which the new
interest comes

In IGMP, a membership report is sent
twice, one after the other.

(1f the first is lost or damaged, the
second one should make it.)

L_eave report

When a host (or router) sees that no process is interested in a spec

group, it sends a leave report

After receiving a
leave report, the
router doesn’t
automatic remove
the groupid — there
could be other
interested hosts or
interfaces —
therefore the router
sends a special
query message — if
no feedback is
received in a
specified amount of
time — it then
purges the groupid
from the list

Host or Router

Leave Report

0x17

0

Group address

Special Query

Ox11

100

Group address

Membership Report

0x16

0

Group address

Host or Router

[

Or

No Response

Router

Router

Router

General query message

What about the case when there is only 1 host interested in a parti
groupid and that host goes down ? Does the router maintain that

groupid or what ?

The router periodically
sends “general query”
messages — the general
query message queries
for membership
continuation for all
groups (not just one) —
if no response is
received for a particular
groupid (it is removed)
— if more than one
host/router are
interested in the same
group — only one
host/router responds —
cuts down on traffic

Host or Router General Query

0x11 100

D 0.0.0.0

Router

l
¢

Membership Report

. Router
S T 5 outer

Group address

Or

9 Router

[’;_' No Response

Delayed Response

If more than one host/router are interested in the same gro
only one host/router responds — cuts down on traffic — how
this implemented ? Delayed Response

Each router needing to Host or Router General Query
send a response has &S e e Router
randomly generated - —
i - = 0.0.0.0
wait times before "

sending a report FOR
EACH group — because
the reports are

|

I Host or Router Membershio Report
broadcasted — the : 8 embership Repor Pt
router will know if ! 3 0 e
some other router has | = Group address
already sent a report !
regarding the groupid | e e Or

- - = | OSsl or nouter

_(therefore !'elmqulshlng i PN R
it from having to send a |

| g No Response 6
report |

|

EXAMPLE 1

Imagine there are three hosts in a network as shown below.

Group Timer Group Timer Group Timer
225.14.0.0 30| |228.42.0.0 48| |225.14.0.0 62
228.42.0.0 12| |238.71.0.0 50| |230.43.0.0 70
230.43.0.0 80

To other networks

A query message was received at time 0; the random dela
time (in tenths of seconds) for each group Is shown next
the group address. Show the sequence of report messa

EXAMPLE 1 (conrmvuep)

Group Timer Group Timer Group Timer
225.14.0.0 30| [228.42.0.0 48| |225.14.0.0 62
228.42.0.0 12| |238.71.0.0 50| |230.43.0.0 70
230.43.0.0 80

To other networks

The events occur in this sequence:

: The timer for 228.42.0.0 in host A expires and a membership report is s
which is received by the router and every host including host B which cancels its timer
228.42.0.0.

The timer for 225.14.0.0 in host A expires and a membership report'is se
which is received by the router and every host including host C which cancels its timer
225.14.0.0.

The timer for 238.71.0.0 in host B expires and a membership report is
which is received by the router and every host.

The timer for 230.43.0.0 in host C expires and a membership repo
which is received by the router and every host including host A which cancels its time
230.43.0.0.

Encapsulation of IGMP packet

The IGMP message is encapsulated in an IP datagram, which is
encapsulated in a frame.

8 bytes
IGMP
message
IP 1P
header data
Frame Frame Trailer
header data (if any)

Because the IGMP occurs within the physical LAN, the TTL of the IP
set to 1 — guarantees the message doesn’t leave the LAN

Regarding the data link layer:
Because the IP packet has a MULTICAST address, ARP can’t be s
finding the physical address and forwarding — therefore, the.data
layer (or underlying technology) must support multicast addressin

Mapping class D to Ethernet physical address

Ethernet supports physical multicast addressing

If the first 25 bits indicate this pattern, then the
remaining 28 bits can take on a group

32-bit class D address

TN 23 bits of multicast address
5 bits unuse l
0000000100000000010111100 23 bits of physical address

| |
- m— >
I 48-bit Ethernet address

The router extracts the least significant 23 bits of the class D
— however, the class D is 28 bits — therefore, 25 (32) multicast
addresses are mapped to a single multicast address at the IP
level

Therefore, the host must check the IP and discard any packe
that do not belong to it.

An Ethernet multicast physical
address Is In the range
01:00:5E:00:00:00
to
01:00:5E:7F:FF:FF

EXAMPLE 2

Change the multicast IP address 230.43.14.7 to a
Ethernet multicast physical

Solution
We can do this in two steps:

a. We write the rightmost 23 bits of the IP address in
hexadecimal. This can be done by changing the rightmost 3
bytes to hexadecimal and then subtracting 8 from the leftmost

IS 2B:0E:07.

b. We add the result of part a to the starting Ethernet multicast
address, which is (01:00:5E:00:00:00). The result is
\

01:00:5E:2B:0E:07

EXAMPLE 3

Change the multicast IP address 238.212.24.9 to a
Ethernet multicast address.

Solution

a. The right-most three bytes in hexadecimal are D4:18:09. We need
to subtract 8 from the leftmost digit, resulting in 54:18:09..

b. We add the result of part a to the Ethernet multicast starting
address. The result is

01:00:5E:54:18:09

Tunneling \

Most WANs do not support physical multicast addressing —
therefore tunneling is used — the multicast packet is
encapsulated in the unicast packet and sent through the
network

Multicast [P datagram

Unicast [P datagram

EXAMPLE 4

We use netstat with three options, -n, -r, and -a. The -n option gi
the numeric versions of IP addresses, the -r option gives the routi
table, and the -a option gives all addresses (unicast and multicas
Note that we show only the fields relative to our discussion.

$ netstat -nra
Kernel IP routing table
Destination Gateway Mask Flags Iface

153.18.16.0 0.0.0.0 255.255.2400 U ethO
169.254.0.0 0.0.0.0 255.255.0.0 U ethO
127.0.0.0 0.0.0.0 255.0.0.0 U lo

224.0.0.0 0.0.0.0 224.0.0.0 U ethO
0.0.0.0 153.18.31.254 0.0.0.0 UG ethO

Any packet with a multicast address from 224.0.0.0 to 239.255.255.255
masked and delivered to the Ethernet interface.

Introduction

> Responsibilities of Transport Layer

> to create a process-to-process communication

> using port numbers in case of UDP

> to provide a flow-and-error control mechanism at the transpor
level

> But, no flow control mechanism and no acknowledgment for
received packets in UDP

> If UDP detects an error in the received packets, it silently
drops it.

> to provide a connection mechanism for the processes
> sending streams of data to the transport layer by process

> making the connection, chopping the stream into
transportable units, nhumbering them and sending them on
by one

Introduction (cont’d)

Normally, at the receiving end, waiting until all the
different units belonging to the transport layer have
received, checking, passing those that are error free and
delivering them to the receiving process as a stream

But, UDP

does not do any of the above

can only receive a data unit from the process and deliver
it, unreliably, to the receiver

data unit must be small enough to fit in a UDP packet
UDP is called a connectionless, unreliable transport protocol

providing process-to-process communication instead of host-
to-host communication

performing very limited error checking

Introduction (cont’d)

» If UDP is so powerless, why would a process want
to useit?

» very simple protocol using a minimum of
overhead

» if a process wants to send a small message
and does not care much about reliability, it
can use UDP

» if it sends a small message, taking much
less interaction between the sender and
receiver than it does using TCP

Introduction (cont’d)

Position of UDP in the TCP/IP protocol suite

Application

layer SMTP FTP TFTP DNS SNMP ees | BOOTP
Transport

layer TCP UDP

Network
layer

Data link
layer]
 — Underlying LAN or WAN J
, technology
Physical I
layer

11.1 Process-to-process
communication

» |IP is responsible for communication at the computer level
(host-to-host communication)

» UDP is responsible for delivery of the message to the
appropriate process

Process-to-process
communication (cont’d)

Processes Processes

(Running application programs) (Running application programs)

= W= \ = W=\

Internet

1
I
I
I
4
I
1
!
1
: Domain of [P protocol
I I
I
1
1
I
I
1
!

Domain of UDP protocol

Process-to-process
communication (cont’d)

Port Numbers
used in client-server paradigm
used for defining processes

integers between 0 and 65,535

The client program defines itself with a port number, chosen
randomly by the UDP software running on the client host

the ephemeral port number

But, the server process must also define itself with a port
number that is not randomly chosen

using well-known port number

Process-to-process
communication (cont’d)

Example : Daytime process

for client, an ephemeral (temporary) port number 52,000
and for server, the well-known (permanent) port number

13.
Daytime Daytime
client server
—hA = —h —h —h

| NRyE— w r 4
UDP UDP

“Daw | 13 [s2000jmp

52.000] Data

Process-to-process
communication (cont’d

» IP addre

IP header

193.14.26.7

UDP header *

IP address
selects the host

Process-to-process

communication (cont’d)
IANA (Internet Assigned Numbers Authority)

port numbers divided into 3 ranges
well-known ports : ranging from 0 to 1,023

registered ports : ranging from 1,024 to 49,151

They are not controlled by IANA. But they can only be
registered with IANA to prevent duplication.

dynamic ports : ranging from 49,152 to 65,535
neither controlled nor registered
can be used any process.

are ephemeral ports
Ranges Used by Other Systems

Other operating system may use ranges other than IANA’s f
the well-known and ephemeral ports

BSD Unix has 3 ranges: reserved, ephemeral, and non-privileged

Process-to-process

communication (cont’d)
Registered

1,023 ‘ 49,152 63,535

e L rTe—— L

t 1

Well-known Dynamic

Process-to-process
communication (cont’d)

Well-known Ports for UDP
Some port humbers can be used by both UDP and TCP

Port Protocol | | Description
7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that 1s received
11 Users Active usets

Process-to-process
communication (cont’d)

Lort Protocof Description
13 Da}'timé Returns the date and the time
17 Quote Reiurns a quote of the day
19 Chargen Returns a smng of characters
33 Nameserver Domain Name Service
a7 Bootps Server port to dc:wnl.ﬁacl boetstrap nformation
h& Boatpe Client port to download bootsirap informatior:
6y TFTP Trivial File Transfer Protocaol
111 RPC Remote Procedure Call
123 | NTP Network Time Protocol
161 | SNMP Simple Network Management Protocal
162 | SNMP Simple Network Management Protocol (trap)

Process-to-process
communication (cont’d)

Socket Address

the combination of an IP address and a port nhumber

[P address Port number

200.2;56.8 | : |

200.23.56.8 69

Socket address

User Datagram

8 bytes
< >

Header

Source port number Destination port number
16 bits 16 bits

Total length Checksum
16 bits 16 bits

User Datagram

» Source port number

» In case of the client (a client sending a request), having ephemeral port
number requested by the process

» In case of the server (a sever sending response), having a well-known port
number

» Destination port number

» Used by the process running on the destination host

» Length

» Defining the total length of the user diagram, header + data
» Minimum 8 bytes. (header + no data)

» the length of data : 0 to 65,507 (65,535 - 20 - 8) bytes
» UDP length = IP Length - IP header’s length

» Checksum

» used to detect errors over the entire user datagram

Checksum

» UDP checksum calculation is different from the
checksum for IP and ICMP

» It includes as follows.
» pseudoheader : part of the header of the IP packet
» UDP header

» data from the application layer

Checksum (cont’d)

Pseudoheader added to the UDP datagram

3 32-bit source IP address
< 32-bit destination IP address
; 8-bi 1
= All 0s ol (Fl“%mc" 16-bit UDP total length
- Source port address Destination port address
g 16 bits 16 bits
T UDP total length Checksum
16 bits 16 bits

Data

(Padding must be added to make the data a multiple of 16 bits)

Checksum (cont’d)

Checksum Calculation at Sender
Add the pseudoheader to the UDP datagram
Fill the checksum field with zeros
Divide the total number of bytes into 16-bit words

If the total number of bytes is not even, add one byte of
padding (all Os)

Add all 16-bit sections using one’s complement arithmetic.
Complement the result, and insert it in the checksum field
Drop the pseudoheader and added padding

Deliver the UDP user datagram to the IP software for
encapsulation

Checksum (cont’d)

Checksum Calculation at Receiver
Add the pseudoheader to the UDP user datagram
Add padding if needed
Divide the total bits into 16-bit sections

Add all 16-bit sections using one’s complement arithmetic

Complement the result

If the result is all Os, drop the pseudoheader and any
added padding and accept the user datagram.

Checksum (cont’d)

153.18.8.105

171.2.14.10

All Os

1087

17

15

E
N

10011001 00010010 — 153.18
00001000 01101001 =—— B.105
10101011 00000010 — 171.2
00001110 00001010 — 14.10
00000000 00010001 —— 0O and 17
00000000 00001111 =—— 15
00000100 00111111 —— 1087
00000000 00001101 ——— 13
00000000 00001111 =—— 15
00000000 00000000 = 0 (checksum)
01010100 01000101 ——— Tand E
01010011 01010100 =—— SandT
01001001 01001110 ——— Tand N
01000111 00000000 ——— G and 0 (padding)

10010110 11101011 ——— Sum
01101001 00010100 — Checksum

UDP Operation

» Connectionless Services

» each user datagram sent by UDP is an
independent datagram

» each user datagram can travel a different
path

UDP Operation (cont’d)

» Flow and error control

» no flow control, hence no windowing mechanism
» The receiver may overflow with incoming messages
» no error control mechanism except for the checksum

» the sender does not know if a message has been lost
or duplicated

» So, the process using UDP provides these mechanism

UDP Operation (cont’d)

Pigiaa Process
-~ A
b
UDP UDP
head UDP data header
TP 1P
l |
Frame Frame
il Frame data bt Frame data

N o 7

a. Encapsulation

UDP Operation (cont’d)

» Queuing
» The queues function as long as the process is running.

» If an outgoing queue is happened overflow, the operating
system can ask the client process to wait before sending any
more messages.

» When a message arrives for a client, check an incoming que
If there is no such incoming queue, UDP discard the user
datagram and ask the ICMP protocols to send a port
unreachable message to the server.

» At the server, the queues remain open as long as the server is
running

» An outgoing queue can overflow. If this happens, the
operating system asks the server to wait before sendi
more messages

UDP Operation (cont’d)

Outgoing
queue

Daytime
client

—h

A

Incoming
queue

Outgoing
queue

Daytime

SErver

—h

i X

Incoming
queue

UDP Operation (cont’d)

» Multiplexing

» At the sender site, there may be several
processes that need to send user datagrams

» differentiating by their assigned port
numbers

» Demultiplexing
» At the receiver site, there is only one UDP
» UDP receives user datagrams from IP.

» After error checking and dropping of the
header, UDP delivers each message to the
appropriate port based on the port numbers

UDP Operation (cont’d)
Processes Processes
=—V=S=N=\ A =h =

b 1 11

A

>

11.5 Use of UDP

» The following lists some uses of the UDP protocols

» suitable for a process that requires simple request-response
communication and with little concern for flow and error
control

» not used for a process that needs to send bulk data, su
as FTP

» suitable for a process with internal flow and error control
mechanisms

» TFTP process including flow and error control
» suitable transport protocol for multicasting and broadcasti

» multicasting and broadcasting capabilities are embe
in the UDP software, but not in the TCP software

Use of UDP (cont’d)

» used for management protocol such as SNMP

» used for some route updating protocol such as RIP

UDP Design \

Involving 5 components

a control-block table, input queues, a control-block module, a
Input module, and an output module

Process Process Process

/ Processes \

(when started)
e o Y s
RPN, ppsigar s RO
U
|
: D . = Control-block
: Gueues module
P o
| Data
| _
|
| Input module Control-block Output module
| table
A ——— S R OSSP
IP
UDP UDP

User datagram User datagram

UDP Design (cont’d)

» Control-Block Table
» Keeping track of the open ports

» Each entry having 4 field: the state, which can be FREE or
IN-USE, the process ID, the port number and the
corresponding queue number

» Input Queues
» One for each process

» Control-block Module
» Responsible for management of the control-block table
» When a process starts, it asks for a port number from the

» OS assigns well-known port numbers to servers and
ephemeral port number to clients

UDP Design (cont’d)

Control-Block Module

Receive: a process ID and a port number
1. Search the control block table for a FREE entry.
1. If (not found)
1. Delete an entry using a predefined strategy.
2. Create a new entry with the state IN-USE.
3. Enter the process ID and the port number.

2. Return.

UDP Design (cont’d)

Input Module

Receive: auser datagram from IP
1. Look for the corresponding entry in the control-block table.
 LIf(found)
1. Check the quene field to see if a queue is allocated.
1. If (no)
1. Allocate a queue.

2. Enquee the data in the corresponding queue.

2. If (not found)
1. Ask the ICMP module to send an “unreachable port” message.
2. Discard the user datagram.

2. Return,

UDP Design (cont’d)

Output Module

Output Module

Receive: data and information from a process
1. Create a UDP user datagram.

2. Send the user datagram.

3. Return.

UDP Design (cont’d)

Examples

Control block table at the beginning of examples

State Process ID Port Number Queue Number
IN-USE 2,345 52,010 34
IN-USE 3,422 52,011 J "
FREE | | -

| IN-USE | 4,652 52012 | 38
FREE

UDP Design (cont’d)

» Example 1

» Arrival of a user datagram with destination port number
52,012

» The input module searches for this port number and
finds it.

» The input module sends the data to queue 38

» The control block table does not change.

UDP Design (cont’d)

Example 2
A process starts

Asking the OS for a port number and is granted port
number 52,014

Sending process ID (4,978) and the port number to the
control-block module to create an entry in the table

Taking the first FREE entry

No queue number assigned

No user diagrams have arrived for this destination

UDP Design (cont’d)

 State Process ID Port Number Queue Number
IN-USE 2345 52,010 34
IN-USE | 3422 52,011

INUSE | 4978 | 52,014 |

IN-USE 4652 | 52,012 38

FREE

UDP Design (cont’d)

» Example 3,

» A user datagram now arrives 52,011

» Input module checks the table and finds that no queue
has been allocated for this destination

» since this is the first time a user datagram has arrived for
this destination

» the module create a queue and gives it a number (43)

UDP Design (cont’d)

State P ?'ﬂ-:'ﬂﬁ'_.i 1D Fort Number Queue N u_mber
| IN-USE 2,345 52010 Y
IN-USE 3422 52,001 43
IN-USE | 4978 | 52,014
IN-USE 4652 | s2012 Y
FREE T] B

UDP Design (cont’d)

Example 4

After a few seconds, a user datagram arrives for port
52,222.

Cannot find the entry for the this destination

Dropping datagram and sending to the source ICMP
message such as “unreachable port”

Example 5

After few seconds, process needs to send a user
datagram. It delivers the data to the output module
which adds the UDP header

TCP

1. Error Recovery

» In section 1, we first discuss where packet losses shoul
dealt with.

» In sections 2 and following we will discuss how this is
implemented in the Internet in detail

\
The Philosophy of Errors in a Layer

Model

The physical layer is not completely error-free - there is always some
error rate (BER).

Information theory tells us that for every channel there is a capacity C such that
» At any rate R < C, arbitrarily small BER can be achieved

» Atrates R, C, any BER such that H,(BER) > 1 - C/R is achievable, with H,(p) = e
log,(p) - (1-p) log,(1 - p)

The TCP/IP architecture decided

» Every layer , 2 offers an error free service to the upper layer:

SDUs are either delivered without error or discarded

Example: MAC layer

» Q1. How does an Ethernet adapter know whether a received Ethernet fra
some bit errors ? What does it do with the frame ?

» WiFi detects errors with CRC and does retransmissions if needed
Q2. Why does not Ethernet do the same ?

The Layered Model Transforms Errors into Packet

LOSSGS » Therefo Je packet losses must

repaire
» Packet losses occur due to P
> }l'l1 s can be done using'either o
owmg strategies:

» error detection by MAC
» buffer overflow in bridge;ﬁn/d/ g ﬁggtté) ?verl fos Aff' eﬂdsalﬁe" 3

celve and as orA 0 sen
routers Re missing ones.

» Other exceptional errors may B> % (ﬁ)by hop: every router
OCCUr too . 1S j |
Q. give somelexamples RIS BRe ReRELifdese ™
A R1 R2 B A R1 R2

I
Ja 1.3
B [k g

ﬁ#&éﬁﬁ

- P3is|missin

T,/
w
F

The Case for End-to-end Error Recovery

» There are arguments in favour of the end-to-end strategy. The ke
here is complexity:

» The TCP/IP architecture tries to keep intermediate systems as simple
possible. Hop by hop error recovery makes the job of routers too
complicated.

» Needs to remember some information about every packet flow -> too m
processing per packet

» Needs to store packets in case they have to be retransmitted -> too
memory required

» IP packets may follow parallel paths, this is incompatible with hop-
recovery. R2 sees only 3 out of 7 packets but should not ask R1 for retra

71654321

A
_

5

f—

\

* The Case for Hop-By-Hop Error Recover

» There are also arguments in favour of hop-by-hop strategy. To
understand them, we will use the following result.

» Capacity of erasure channel: consider a channel with bit rate R'that
delivers correct packets or loses them. Assume the loss process 1s st
such that the packet loss rate is p2[0,1]. The capacity is RE(1-p)
packets/sec.

This means in practice that, for example, over a link at 10Mb/s that has a packet loss
we can transmit 9 Mb/s of useful data.

The packet loss rate (PLR) can be derived from the bit error rate (BER) as follows, if bit
independent events, as a function of the packet length in bits L: '

PLR =1 - (1 - BER)-

\
* The Capacity of the End-to-End Pat

k links

"l ol R R RS ®

™ Loss probablllt/v VP

» We can now compute the capacity of an end-to-end path with both erro
recovery strategies.

» Assumptions: same packet loss rate p on k links; same nominal rate R. Los
independent.

» Q. compute the capacity with end-to-end and with hop by hop error recove

solution

* End-to-end Error Recovery is Inefficient when
Packet Error Rate is high

k Packet loss | C; (end-to- | C, (hop-
rate end) by-hop)

10 |0.05 0.6 £R 0.95£R

10 |0.0001 0.9990 £R [0.9999 £R

The table shows the capacity of an end-to-end path as a function of the pa
loss rate p

Conclusion: end-to-end error recovery is not acceptable when packet loss
high

Q. How can one reconcile the conflicting arguments for and against h
error recovery ?

-b

Conclusion: Where is Error Recovery located i
the TCP/IP architecture ?

The TCP/IP architecture assumes that
The MAC layer provides error—free packets to the network layer

The packet loss rate at the MAC layer (between two routers, or betwee
router and a host) must be made very small. It is the job of the MAC lay
achieve this.

Error recovery must also be implemented end-to-end.

Thus, packet losses are repaired
At the MAC layer on lossy channels (wireless)

In the end systems (transport layer or application layer).

\

2. Mechanisms for Error Recove

» In this section we discuss the methods for repairing packet
losses that are used in the Internet.

» We have seen one such method already:
Q. which one ?

solution

» Stop and Go is an example of packet retransmission
protocol. Packet retransmission is the general method used
in the Internet for repairing packet losses. It is also called
Automatic Repeat Request (ARQ).

» TCP is an ARQ protocol

ARQ Protocols

» Whyinvented ?
» Repair packet losses

» What does an ARQ protocol do ?
1. Recover lost packets

2. Deliver packets at destination in order, i.e. in the same ord
submitted by source

» How does an ARQ protocol work ?
Similar to Stop and Go but:
» It may differ in many details such as
» How packet loss is detected
» The format and semantics of acknowledgements
» Which action is taken when one loss is detected

» Practically all protocols use the concept of sliding wind
review now.

Why Sliding Window ?

» Why invented?

» Overcome limitations of Stop and

Go

Q. what is the limitation of Stop
and Go ?

solution

» What does it do ?

1.

2.

Allow mutiple transmissions

But this has a problem: the
required buffer at destination may
be very large

This problem is solved by the
sliding window. The sliding window
protocol puts a limit on the
number of packets that may have
to be stored at receive buffer.

Receive
Buffer

Legend

How Sliding Window Works\

Maximum
Send Windo

Offered Wi

0
neaqw,

|012
|0g2

011 2

01?

N

12

[S S N —

) o 12

1 2

1 2

o o o o

1 2

Usable Win

16w °

01 2

0fL 213

]_ZP 4%

34506 78910 11 12

34506789 10 11 12...

3
3

1NN

56 78 9 10 11 12..
56 78 9 10 11 12...
56 78 9 10 11 12...]

NN

3145678910 11 12

34156 7 8 9 10 11 12..
34567891011 12..

(&)

10 11 12 |
q45 10 11 12..
34“ 678 10 11 12...
345|678§91011L2
345 q78|%101112

345 67@ 9 10 11 12...

7 8
.

o)

oo
O O O

0
A =10
P =1

o '
Il Il

o o
Il I

o
Il
O

|

i

v,
Il
@

l

On the example, packets are numbered O, 1, 2, .. \

The sliding window principle works as follows:

- a window size W is defined. In this example it is fixed. In general, it ma
based on messages sent by the receiver. The sliding window principle
requires that, at any time: number of unacknowledged packets at the
receiver <= W

- the maximum send window, also called offered window is the set 'of pack
numbers for packets that either have been sent but are not (yet)
acknowledged or have not been sent but may be sent.

- the usable window is the set of packet numbers for packets that may be s
for the first time. The usable window is always contained in the maximu
send window.

- the lower bound of the maximum send window is the smallest packet' num
that has been sent and not acknowledged

- the maximum window slides (moves to the right) if the acknowledgement
the packet with the lowest number in the window is received

A sliding window protocol is a protocol that uses the sliding window princi
With a sliding window protocol, W is the maximum number of packets
the receiver needs to buffer in the re-sequencing (= receive) buffer,

If there are no losses, a sliding window protocol can have a throughp
of link rate (overhead is not accounted for) if the window size s
b /L, where b is the bandwidth delay product, and L the pac
Counted in bytes, this means that the minimum window siz
utilization is the bandwidth-delay product.

An Example of ARQ Protocol with Selective Repe

Upper Bound
Maximum Send

Retransmission

Wi ndow Buffer
3] [P0; P=0
3][P0; P1 —r=1 7
3 PO P2 P=2 A=1
3 |[P0; P2; P3 L A=2
Timeout *‘—__,___—53———*‘
3 ||PO; P2
Y P=0
T1'meoutv A=0 -
P2
5 |[P2; P4 P=d A=Z
5 || P2; P4; P5 A=
7 |[P4; P5; P6 =

Resequencing Lowest
Buffer Expected
Packet Numbe
0
P1 0
Pl; P2 0
P1l; P2; P3 0
deliver
PO ...
PO;P1;P2;P3||0
4
4
52 2 deliver
5 .
o% E deliver
6

The previous slide shows an example of ARQ protocol, which uses
following details:

packets are numbered by source, staring from 0.
window size = 4 packets;

Acknowledgements are positive and indicate exactly which packe
being acknowledged

Loss dgtection is by timeout at sender when no acknowledgeme
arrive

When a loss is detected, only the packet that is detected as los
transmitted (this is called Selective Repeat).

Q. Is it possible with this protocol that a packet is retransmitte
whereas it was correctly received?

solution

80

*An Example of ARQ Protocol with Go Back N

Next Sequence

Number for
sending Retransmission
V(s) Buffer
0 1 PO;
0 2 PO; P1
0 3 PO; Pl; P2
0 4 PO; P1; P2; P3
0 0 PO; Pl; P2; P3
0 1 PO; P1; P2; P3
0 2 PO; P1l; P2; P3
0 3 PO; P1l; P2; P3
0 4 PO; P1l; P2; P3
2 4 P2; P3
Lowest
unacknowledged

packet number
V(A)

Next Expected
Packet Number

V(R))

deliver

deliver

SIS D

discard
discard

\

The previous slide shows an example of ARQ protocol, which uses the following detai

1. window size = 4 packets;

2. Acknowledgements are positive and are cumulative, i.e. indicate the highest pack
number upt to which all packets were correctly received

3. Loss detection is by timeout at sender

4. When a loss is detected, the source starts retransmitting packets from the'last
acknowldeged packet (this is called Go Back n).

Q. Is it possible with this protocol that a packet is retransmitted whereas it was
received?

Solution

Go Back n is less efficient than selective repeat, since we may unneccesarily retra
packet that was correctly transmitted. Its advantage is its extreme simplicity:

» (less memory at destination) It is possible for the destination to reject all pa
other than the expected one. If so, the required buffer at destination is just
packet

» (less processing) The actions taken by source and destination are simpler

Go Back n is thus suited for very simple implementations, for example on sen

*An Example of ARQ Protocol with Go Ba
Negative Acks

Retransmission
V(A) V() puffer

The previous slide shows an example of ARQ protocol, whigh uses th
following details:

1. window size = 4 packets;

2. Acknowledgements are positive or negative and are cumulative. A
positive ack indicates that packet n was received as well as all pa
before it. A negative ack indicates that all packets up to n were
received but a packet after it was lost

3. Loss detection is either by timeout at sender or by reception of
ack.

4. When a loss is detected, the source starts retransmitting packe
the last acknowldeged packet (Go Back n).

Q. What is the benefit of this protocol compared to the previous ?
solution

Where are ARQ Protocols Use

» Hop-by-hop
» MAC layer
» Modems: Selective Repeat
» WiFi: Stop and Go
» End-to-end
» Transport Layer:

» TCP: variant of selective repeat with some features of
n

» Application layer
» DNS: Stop and Go

\
Are There Alternatives to ARQ ?

Coding is an alternative to ARQ.

» Forward Error Correction (FEC):
» Principle:
» Make a data block out of n packets

» Add redundancy (ex Reed Solomon codes) to block an
generate k+n packets

» If n out of k+n packets are received, the block can b
reconstructed

» Q. What are the pros and cons ?
solution

» Is used for data distribution over satellite links

» Other FEC methods are used for voice or video (exploi
that some distortion may be allowed - for example: i
lost packet by two adjacent packets)

\
FEC may be combined with ARQ

» Example with multicast, using digital fountain codes

» Source has a file to transmit; it sends n packets

» A destination that misses one packet sends a request for
retransmission; source uses a fountain code and sends
packet n+1

» If this or another destination still does not has enough,
sources codes and sends packets n+2, n+3, ... as neces

» All packets are different

» Any n packets received by any destination allows to
reconstruct the entire file

» Used for data distribution over the Internet.

3. Flow Control

Why invented ?

Differences in machine performance: A may send data to B mu
faster than B can use. Or B may be shared by many processes a
cannot consume data received at the rate that A sends.

Data may be lost at B due to lack of buffer space - waste of
resources !

What does it do ?
Flow control prevents prevent buffer overflow at receiver

How does it work ?
Backpressure, or
edits

Flow Control = Congestion control
- congestion control is about preventing too many losses insi

Backpressure Flow Control

Destination sends STOP (= PAUSE)
or GO messages

Source stops sending for x msec
after receiving a STOP message

» Simple to implement

» Q. When does it work well ?

solution
Where implemented ?

» X-ON / X-OFF protocols inside
a computer

» Between Bridges in a LAN
Issues

» Loops in feedback must be
avoided (otherwise deadlock)

PO
P1
P2
P3

\

\

Can we use Sliding Window for Flow Contr

» One could use a sliding window for flow control, as
follows

» Assume a source sends packets to a destination using an ARQ
protocol with sliding window. The window size is 4 packets and the
destination has buffer space for 4 packets.

» Assume the destination delays sending acks until it has enough free
buffer space. For example, destination has just received (but not
acked) 4 packets. Destination will send an ack for the 4 packets only
when destination application has consumed them.

Q. Does this solve the flow control problem ?
solution

Credit Flow Control

78 9 10 11 -12--

01234568
0123456782910
0123456780910
0123456789 10
0123456789 10
0123456789 10
0123456789 10
0123456789 10
0123456789 10
012345678910
0123456789 10
0123456780910
0123455780910
0123456789 10

11

11
11
11
11
11

11
11

11

11

1.2

12
3.2
3.2
i K.

>

= 2, credit

credit

The credit scheme solves the issue with using the sliding window alone for flow
Credits are used by TCP, under the name of “window advertisement”.

With a credit scheme, the receiver informs the sender about how much data it is
to receive (and have buffer for). Credits may be the basis for a stand-alone proto
shown here, be a part of an ARQ protocol. Credit schemes allow a receiver to shar
between several connections, and also to send acknowledgements before packets
consumed by the receiving upper layer (packets received in sequence may be read
delivered, but the application program may take some time to actually read them)

The picture shows the maximum send window (called “offered window” inTCP) (r
border) and the usable window (pink box). On the picture, like with TCP, credits

(= window advertisements) are sent together with acknowledgements. The
acknowledegements on the picture are cumulative.

Credits are used to move the right edge of the maximum send window. (Remember t
acknowledgements are used to move the left edge of the maximum send window).

By acknowledging all packets up to number n and sending a credit of k, the receiver
commits to have enough buffer to receive all packets from n+1 to n+k. In principle, t
receiver(who sends acks and credits) should make sure that n+k is non-decreasing, na
that the right edge of the maximum send window does not move to the left (because
packets may have been sent already by the time the sdr receives the credit).

A receiver is blocked from sending if it receives credit = 0, or more generally, if t
received credit is equal to the number of unacknowledged packets. By the rule a
received credits should never be less than the number of unacknowledged pack

With TCP, a sender may always send one byte of data even if there is no cre
probe, tr1g%ered by persistTimer) and test the receiver’s advertized windo
avoid deadlocks (lost credits).

A= -1, credit &2 _3|_2|_1|:| Il

b1 :‘p/=0// 3-2E 0 00
Ph_ MZ _____ ------------- 3-21-10 1 L
12 W4 -3-2-10 OO0
1234 ... P =1
12'34 _ ““““““““““““ 3.2 10 EID::
1234 Toor— 1 3, 08p 00
1234 W4 3-2-10 1 2 0000
3;456 P=4 | 3-2-10 123” :_
3456 ps ——— | 3510 L 2B AL
345!6 = 4 Cr-ed' 2 3
3456 ... P=6 s - 3-2-10 1 2 B @ B [

[P 3-2-10 1 2 5
56 A6, creditad 3 4[5

C 1234 546

~N
(0o}
(o)
|—l
S
|
(o))
“ H
N
|
(98
|
N
|
|—\
o

~N
(@)
(\e)
S

P=17 free buffer, or unac
 » data acked but not y

\

The figure shows the relation between buffer occupancy and the
sent to the source. This is an ideal representation. TCP implemen
may differ a little.

The picture shows how credits are triggered by the status of the r
buffer. The flows are the same as on the previous picture.

The receiver has a buffer space of 4 data packets (assumed here to
of constant size for simplicity). Data packets may be stored in the
either because they are received out of sequence (not shown here),
because the receiving application, or upper layer, has not yet read
them.

The receiver sends window updates (=credits) in every
acknowledgement. The credit is equal to the available buffer space.

Loss conditions are not shown on the picture. If losses occur, there
be packets stored in the receive buffer that cannot be read by th
application (received out of sequence). In all cases, the credit
the source is equal to the buffer size, minus the number of p
have been received in sequence. This is because the sende
to move its window based only on the smallest ack num

4. The Transport Layer

Reminder:

» network + link + phy carry packets end-to-end
» transport layer makes network services available to
» is in end systems only, not in routers

» In TCP/IP there are two transport layers

» UDP (User Datagram Protocol): offers only a programmi
no real function

» TCP (Transmission Control Protocol): implements error re
flow control

Why both TCP and UDP ?

» Most applications use TCP rather than UDP, as this avoids re-inv
error recovery in every application

» But some applications do not need error recovery in the way TC
it (i.e. by packet retransmission)

» For example: Voice applications

Q. why ?
solution

» For example: an application that sends just one message,
name resolution (DNS). TCP sends several packets of overh
before one single useful data message. Such an application
better served by a Stop and Go protocol at the application |

» For example: multicast (TCP does not support multicast IP
addresses)

UDP Uses Port Numbers

Host Host
IP addr=A — IP network —| IP addr=B

b IP SA=A DA=B prot=UDP
TCP source port=1267
destination port=53
...data...

IP header

UDP Source Port UDP Dest Port
IP datagram UDP Message Length [UDP Checksum UDP datagra
data

The picture shows two processes (= application programs) pa,\and pb, a
1Sommum’cating. Each of them is associated locally with a port, as shown
igure.

In addition, every machine (in reality: every communication adapter) has
address.

The example shows a packet sent by the name resolver process at host A,
name server process at host B. The UDP header contains the source and
destination ports. The destination port number is used to contact the name
server process at B; the source port is not used directly; it will be used in t
response from B to A.

The UDP header also contains a checksum the protect the UDP data plus the
addresses and packet length. Checksum computation is not performed by al
systems. Ports are 16 bits unsigned integers. They are defined statically or
dynamically. Typically, a server uses a port number defined statically.

Standard services use well-known ports; for example, all DNS servers
(look at /etc/services). Ports that are allocated dynamically are cal
ephemeral. They are usually above 1024. If you write your own cli
application on a multiprogramming machine, you need to define
port number and code it into your application.

The UDP service

» UDP service interface

» one message, up to 8K

» destination address, destination port, source address, source

» UDP service is message oriented
» delivers exactly the message or nothing
» several messages may be delivered in disorder

» Message may be lost, application must implement loss recov

» |f a UDP message is larger than MTU, then fragmentation occurs a
IP layer

UDP is used via a Socket Library

The socket library provides a

programming interface to TCP client server
and UDP socket(); socket();
The figure shows toy client and ! !
server UDP programs. The client . an.
sends one string of chars to the bmfj()’ bmol()’
server, which simply receives f v

(and displays) it. sendto() rcvfrom();
socket() creates a socket and |
returns a number (=file

descriptor) if successful v

bind() associates the local port GIOSE)

number with the socket

;%%?ggg) %glﬁsntbggeers, talﬂgtéﬁg P % .ludpClient <destAddr> bonjour le
message to send %

recvFrom() blocks until one % .ludpServ &

message is received for this port %

number. It returns the source IP
address and port number and the
message.

\
How the Operating System views UDP

1

id=3 id=4

socket socket

' i
bufo buffer

port=32466 port=32654
ddress=128.178.151.

» Why invented ?

>
>

» What does TCP do ?

>

>

>
>
>

» How does TCP work ?

>

» then TCP implements ARQ (for error recovery) and credits (for flo

5. TCP basics

Repair packet losses

Save application from doing it.

TCP guarantees that all data is delivered in sequence and without loss,
connection is broken;

TCP should work for all applications that transfer data, either in smal
quantities

TCP does not work with multicast IP addresses, UDP does.
TCP also does flow control

TCP also does congestion control (not seen in this module)

first, a connection (=synchronization of sequence numbers) is opened be
two processes

in the end, the connection is closed

The TCP Service

» TCP offers a stream service

» A stream of bytes is accepted for transmission and delivered at
» TCP uses port numbers like UDP eg. TCP port 80 is used for web

» TCP requires that a connection is opened before data can be tran
A TCP connection is identified by: srce IP addr, srce port, dest IP
port

\

TCP views data as a stream of b

» TCP-PDUs are called TCP segments
» bytes accumulated in buffer until sending TCP decides to create a s

» MSS = maximum “segment® size (maximum data part size)

» “B sends MSS = 236” means that segments, without header, sent toB s
exceed 236 bytes

» 536 bytes by default (576 bytes IP packet)
» Sequence numbers based on byte counts, not packet counts
» TCP builds segments independent of how application data is brok
» unlike UDP
» TCP segments never fragmented at source
» possibly at intermediate points with IPv4
» where are fragments re-assembled ?

>

>

>

TCP is an ARQ protocol

Basic operation:
» sliding window

» loss detection by timeout at sender

» retransmission is a hybrid of go back and selective repeat

» Cumulative acks
Supplementary elements

» fast retransmit

» selective acknowledgements
Flow control is by credit
Congestion control

» adapt to network conditions

TCP Basic Operation

Al 1 8001:8501(500) ack 101 win 6000
25 101:201(100) ack 8501 win 14000
. | 8501:9001(500) ack 201 win 14247
J
4 | 9001:9501(500) ack 201 win 14247 ~X
5 |9501:10001(500) ack 201 win 14247 ‘
6 L (0) ack 8501 win 13000
Timeout! |7 ¢ 201:251(50) ack 8501 win 12000
3\" 8501:9001(500) ack 251 win 14247

Reset timers
for packets
4,5,6

251:401(150) ack 10001

10 10001:10501(500) ack 401 win 14247

The picture shows a sample exchange of messages. Every éacket ca
sequence number for the bytes in the packet; in the reverse directi
packets contain the acknowledgements for the bytes already receive
sequence. The connection is bidirectional, with acknowledgements a
sequence numbers for each direction. Acknowledgements are not sen
separate packets (“piggybacking’), but are in the TCP header. Every
segment thus contains a sequence number (for itself), plus an‘ack nu
(for the reverse direction). The following notation is used:

firstByte”:”lastByte+1 “(“segmentDataLength”) ack” ackNumber+1 “win’
offeredWindowSise. Note the +1 with ack and lastByte numbers.

At line 8, a retransmission timer expires, causing the retransmission of
starting with byte number 8501 (Go Back n principle).Note however tha
after segment 9 is received, transmission continues with byte number

10001. This is because the receiver stores segments received out of ord

The window field (win) gives to the sender the size of the window. Only
byte numbers that are in the window may be sent. This makes sure the
destination is not flooded with data it cannot handle.

Note that numbers on the figure are rounded for simplicity. Real exa
use non-round numbers between 0 and 232 -1. The initial sequence n
is not 0, but is chosen at random using a 4 psec clock.

The figure shows the implementation of TCP known as “TCP SAC
the basis for current implementations. An earlier implementati
Tahoe”) did not reset the pending timers after a timeout; th
implementing a true Go Back n protocol; the drawback wa
were retransmitted unnecessarily, because packet losses

Losses are Also Detected by “Fast Retransmit”

>

Why invented: retransmission
timeout in practice often very
approximate thus timeout is

often too large. Go back n is less

efficient than SRP
What it does

» Detect losses earlier

» Retransmit only the missing
P1padet P3 P4

» How it works
» if 3 duplicate acks for the

solution

retransmit

\

bytes are received before
retransmission timeout, t
retransmit

Q. which ack is sent las
figure ?

NS TAY

\

Selective Acknowledgements

» Why invented ?

» Fast retransmit works well if there is one isolated loss, not if there are
few isolated losses

» What does it do ?

» Acknowledge exactly which bytes are received and allow their selecti
retransmission

» How does it do it ?

» up to 3 SACK blocks are in TCP option, on the return path; a SACK bl
is a positive ack for an interval of bytes; first block is most recently
received

» Sent by destination when : new data is received that does not increas
ack field

» source to detect a loss by gap in received acknowledgement

» If gap detected, missing bytes are retransmitted

TCP uses Connections

TCP requires that a connection (= synchronization) is opened b
transmitting data

Used to agree on sequence numbers

The next slide shows the states of a TCP connection:

Before data transfer takes place, the TCP connection is opene
using SYN packets. The effect is to synchronize the counters o
both sides.

The initial sequence number is a random number.

The connection can be closed in a number of ways. The pict
shows a graceful release where both sides of the connecti
closed in turn.

Remember that TCP connections involve only two ho
between are not involved.

TCP Connection Phases

application
S Q active open

ode bit meaning

IP header (20 B + options)

TCP
header
(20 Byt
options

rg
k
h

t

urgent ptr is wvalid

ack field is wvalid

this seg requests a push
reset the connection
connection setup

sender has reached end of byte

*TCP Segment Format

The next slide shows the TCP segment format.

the push bit can be used by the upper layer using TCP; it forces TCP. on the se
side to create a segment immediately. If it is not set, TCP may pack together se
SDUs (=data passed to TCP by the upper layer) into one PDU (= segment). On
receiving side, the push bit forces TCP to deliver the data immediately. If it IS not
TCP may pack together several PDUs into one SDU. This is because of the stre
orientation of TCP. TCP accepts and delivers contiguous sets of bytes, without an
structure visible to TCP. The push bit used by Telnet after every end of line.

the urgent bit indicates that there is urgent data, pointed to by the urgent pointer (
urgent data need not be in the segment). The receiving TCP must inform the
application that there is urgent data. Otherwise, the segments do not receive any.
special treatment. This is used by Telnet to send interrupt type commands.

RST is used to indicate a RESET command. Its reception causes the connection t
aborted.

SYN and FIN are used to indicate connection setup and close. They each consu
one sequence number.

The sequence number is that of the first byte in the data. The ack number is
expected sequence number.

Options contain for example the Maximum Segment Size (MSS) norma
segments (negotiation of the maximum size for the connection results ji
value to be selected).

The checksum is mandatory.

TCP is used via a Socket Library

The figure shows toy client and servers.
The client sends a string of chars to the

socketf}¥

server which reads and displays it. ol
i socket(] ; .

socket() creates a socket and returns a bind
number (=file descriptor) if successful bind |
binﬂ()hassocil?tes the local port number isten)
with the socket connec () ; <
connect() associates the remote IP address \ﬁwe t)
anddport numbeL with the socket and i: '
sends a SYN packet il
send() sends a block of data to the remote send receive ()
destination | ClOJ'SG . et
listen() can be omitted at first reading; ! close ’
accept blocks until a SYN packet is

received for this local port number. It
creates a new socket (in pink) and returns

the file descriptor to be used to interact S . /tcpCl ient
with this new socket

receive() blocks until one block of data is <destAddr> bonj our
ready to be consumed on this port

number. You must tell in the argument of les amis \
receivde how many bﬁ/tes at l;nostfyl;)u want %

to read. It returns the number of bytes \
that is effectively retruned and and the ° /tcpServ &

(o]

block of data. o \

How the Operating System views TCP So\ckets

i

progr
socket socket socket
. o | |
incoming
connectio! buffer | buffer
queue BT ort=32456

address=128.178.151.84

)

Test Your Understanding

Consider the UDP and TCP services

Q1. what does service mean here ?

Q2. does UDP transfer the blocks of data delivered by the calling process as
were submitted ? Analyze: delineation, order, missing blocks.

Q3. does TCP transfer the messages delivered by the calling process as they
submitted ? Analyze: delineation, order, missing blocks.

One more question

Q4. Is Stop and Go a sliding window protocol ?

solution

6. TCP, advanced

TCP implements a large number of additional mechanisms. Why ?

The devils’ in the detail
Doing ARQ and flow control the right way poses a number of small proble
need to be solved. We give some examples in the next slides.

This will give you a feeling for the complexity of the real TCP code.
Note that there are many other details in TCP, not shown in this lecture.

Congestion control is done in TCP
Congestion control is a network layer function (avoid congestion in the netw
that the IETF decided to implement in TCP - we discuss why in the module o
congestion control cc.pdf. We do not consider congestion control in this mo

When to send an ACK

Why is there an issue ?

When receiving a data segment, a TCP receiver may send an
acknowledgement immediately, or may wait until there is data to send
(“piggybacking”), or until other segments are received (cumulative ack
Delaying ACKs reduces processing at both sender and receiver, and may
reduce the amount of IP packets in the network. However, if ACKs are d
too long, then receivers do not get early feedback and the performance
the ARQ scheme decreases. Also, delaying ACKs also delays new informat
about the window size.

What is this algorithm doing ?
Decide when to send an ACK and when not.
How does it do its job ?

Sending an ACK is delayed by at most 0.5 s. In addition, in a stream
size segments, there should be at least one ACK for every other se

Note that a receiving TCP should send ACKs (possibly delayed A
the received segment is out of order. In that case, the ACK n
the last byte received in sequence + 1.

Nagle’s Algorithm

Why is there an issue ?

A TCP source can group several blocks of data -- passed to it by sendto()
into one single segment. This occurs when the application receives very smal
blocks to transmit (ex: Telnet: 1 char at a time). Grouping saves processing a
capacity when there are many small blocks to transmit, but adds a delay.

What is this algorithm doing ?
Decide when to create a segment and pass it the IP layer for transmission.

How does it do its job ?
accept only one unacknowledged tinygram (= segment smaller than MSS):

Nagle’s algorithm can be disabled by application
example: X window system (TCP_NODELAY socket option)
if Nagle enabled, then applies also to pushed data

(data written by upper layer) or (new ack received) ->

if full segment ready

then send segment

else if there is no unacknowledged data

then send segment

else start override timer; leave
override timer expires -> create segment and send

Example: Nagle’algorithm

7

8005:8006(1) ack 102 win 6000

8000:8001(1) ack 101 win 6000

1

5 101:102(1) ack 8001 win 14(
8001:8003(2) ack 102 win 6000

3

4 102:102(0) ack 8003 win 13
8003:8005(2) ack 102 win 6000

5 S

‘6 102:102(0) ack 8003 win 14(

) 102:102(0) ack 8005 win 13

8

Silly Window Syndrome Avoidance: \Why :

» Silly Window Syndrome occurs when
» Receiver is slow or busy
» sender has large amount of data to send
» but small window forces sender to send many small packets -> waste of r

ack 0 win 2000 <-----
0:1000 ----- > buffersize= 2000B, freebuf= 1000B
1000:2000 ----- > freebuf= 0B
ack 2000, win 0 <-----
application reads 1 Byte: freeBuf =1
ack 2000, win 1 <-----
2000:2001 ----- > freeBuf = 0
application reads 1 Byte: freeBuf =1
ack 2001, win 1 <-----
2001:2002 ----- > freeBuf =0
application reads 1 Byte: freeBuf =1
ack 2002, win 1 <-----
2002:2003 ----- > freeBuf =0

Silly Window Syndrome Avoidance

What does SWS avoidance do ?

Prevent receiver from sending small incremental window updates

How does SWS avoidance work ?

receiver moves the window by increments that are as large as one MSS or 1/2
receiveBuffer:

keep nextByteExpected + offeredWindow fixed until:
reserve - min (MSS, 1/2 receiveBuffer)

highestByteRead nextByteExpected
e e e | -mmmmmmm e |----

<-- offeredwindow --> <- reserve ->
Cmmmmmmmm—————— receiveBuffer ------—---—---—-- >

SWS Avoidance Example

ack 0 win 2000 <-----
0:1000 ----- > bufferSize= 2000B, freebuf = 1000B, rese
1000:2000 ----- > freebuf= 0B, reserve = 0B

ack 2000, win 0 <-----

application reads 1 Byte: freeBuf=reserve=1l

application has read 500 B: reserve =
persistTimer expires

window probe packet sent

2000:2001 ----- >
data is not accepted (out of window)

ack 2000, win 0 <-—----

application has read 1000 B: reserve
ack 2000, win 1000 <-----
2000:3000 ----- >

» There is also a SWS avoidance function at sender

» Why ? Cope with destinations that do not implemen
at receiver - see the RFCs for what and how

» Q. What is the difference in objective between Na
and SWS avoidance ?

solution

Round Trip Estimation

Why ? The retransmission timer must be set at a value slightly
larger than the round trip time, but too much larger

What ? RTT estimation computes an upper bound RTO on the
round trip time

How ? | sampleRTT = last measured round trip time
estimatedRTT = last estimated average round trip time
deviation = last estimated round trip deviation

initialization (first sample):
estimatedRTT =sampleRTT + 0.5s; deviation = estimatedRTT/2
new value of sampleRTT available ->
Err =sampleRTT - estimatedRTT
estimatedRTT = estimatedRTT + 0.125* Err
deviation = deviation + 0.250 * (|Err|- deviation)
RTO = estimatedRTT + 4*deviation

14
12
10

o NN B~ O 00

Sample RTO

seconds
4 RTO
1 »
SampledRTT

I
4 o d 34 d o4 o d o4 4 4 o4 o o Seconds
4 N M < 1D O N~ 0O O O 4 N M <

A o o d o

Conclusions

TCP provides a reliable service to the application programmer.

TCP is complex and is complex to use, but is powerful. It works well
with various applications such as short interactive messages or large
bulk transfer.

TCP is even more complex than we have seen as it also implements
congestion control, a topic that we will study in a follow-up lecture.

Solutions

The Philosophy of Errors in a Layered Mod

The physical layer is not completely error-free - there is always some bi
rate (BER).

Information theory tells us that for every channel there is a capacity C such that
At any rate R < C, arbitrarily small BER can be achieved

At rates R, C, any BER such that H,(BER) > 1 - C/R is achievable

The TCP/IP architecture decided

Every layer | 2 offers an error free service to the upper layer:

SDUs are either delivered without error or discarded

Example: MAC layer

Q1. How does an Ethernet adapter know whether a received Ethernet frames h
some bit errors ? What does it do with the frame ?
A1. It checks the CRC. If there is an error, the frame is discarded

WiFi detects errors with CRC and does retransmissions if needed
Q2. Why does not Ethernet do the same ?
A2. BER is very small on cabled systems, not on wireless

The Layered Model Transforms Erro
into Packet Losses

» Packet losses occur due to
» error detection by MAC
» buffer overflow in bridges and routers

» Other exceptional errors may occur too
Q. give some examples
A. changes in routes may cause some packets
to be lost by TTL exhaustion during the
transients

\

The Capacity of the End-to-End Path
A k links

B
« & oo, o) 6 G
T T —_—

™ Loss probability | P

» Q. compute the capacity with end-to-end and with hop by hop erro
recovery
A.

» Case 1: end-to-end error recovery
End to end Packet Error Rate = 1- (1 - p)k
Capacity C, =R £ (1-p)¥

» Case 2: hop-by-hop error recovery
Capacity one hop =R £ (1-p)
End-to-end capacity C, =R £ (1-p)

back

End-to-end Error Recovery is Inefficient when

Packet Error Rate is high

k | Packetloss | C; (end-to- | C, (hop-
rate end) by-hop)

10 [0.05 0.6 £ER 0.95£R

10 {0.0001 0.9990 £R | 0.9999 £R

The table shows the capacity of an end-to-end path as a function of the
packet loss rate p

Conclusion: end-to-end error recovery is not acceptable when packet'loss
rate is high

Q. How can one reconcile the conflicting arguments for and against hop-b
hop error recovery ?
A.

Do hop-by-hop error recovery only on links that have high bit error rate:
WiFi, not on Ethernet.

Do hop-by-hop error recovery at the MAC layer (in the adapter), no
router

In addition, do end-to-end error recovery in hosts

2. Mechanisms for Error Recove

In this section we discuss the methods for repairing packet losses that ar
in the Internet.

We have seen one such method already:
Q. which one ?
A. the stop and go protocol.

Packets are numbered at source
Destination sends one acknowledgement for every packet received
Source waits for ack; if after T, seconds the ack did not arrive, packet is

retransmitted

S

»

P
<« »

»
»

L L, T1
> <+

Why Sliding Window ?

» Why invented ?

» Overcome limitations of Stop and

» What does it do ?
1.

Go

Q. what is the limitation of Stop
and Go ?

A. when the bandwidth-delay
product is not very small, the
throughput is small. The protocol
wastes time while waiting for

acks.
back

Allow mutiple transmissions

But this has a problem: the
required buffer at destination may
be very large

This problem is solved by the
sliding window. The sliding
window protocol puts a limit on
the number of packets that may
have to be stored at receive
buffer.

Receive
Buffer

The previous slide shows an example of ARQ protocol, which uses the follov&in

packets are numbered by source, staring from 0.

window size = 4 packets;

Acknowledgements are positive and indicate exactly which packet is being
acknowledged

Loss detection is by timeout at sender when no acknowledgement has arrived
When a loss is detected, only the packet that is detected as lost is re-transmitted (

called Selective Repeat).

Q. Is it possible with this protocol that a packet is retransmitted whereas it was alrea
received correctly ?

A. Yes, if an ack is lost.

The previous slide shows an example of ARQ protocol, which u&es the fo
details:

1. window size = 4 packets;

2. Acknowledgements are positive and are cumulative, i.e. indicate the
packet nhumber upt to which all packets were correctly received

3. Loss detection is by timeout at sender

4. When a loss is detected, the source starts retransmitting packets fro
last acknowldeged packet (this is called Go Back n).

Q. Is it possible with this protocol that a packet is retransmitted wh
was correctly received?

A. Yes, for several reasons
1. If an ack is lost

2. If packet n is lost and packet n+ 1 is not

back

The previous slide shows an example of ARQ protocol, whigh uses th
following details:

1. window size = 4 packets;

2. Acknowledgements are positive or negative and are cumulative. A
positive ack indicates that packet n was received as well as all pa
before it. A negative ack indicates that all packets up to n were
received but a packet after it was lost

3. Loss detection is either by timeout at sender or by reception of
ack.

4. When a loss is detected, the source starts retransmitting packe
the last acknowldeged packet (Go Back n).

Q. What is the benefit of this protocol compared to the previous ?
A. If the timer T, cannot be set very accurately, the previous prot
may wait for a long time before detecting a loss. This protocol
more rapidly.

back

Are There Alternatives to ARQ ?

Coding is an alternative to ARQ.
Forward Error Correction (FEC):
Principle:
Make a data block out of n packets

Add redundancy (ex Reed Solomon codes) to block and generate k+
packets

If n out of k+n packets are received, the block can be reconstructe

Q. What are the pros and cons ?

A. Pro: does not require retransmission. On network with very large
delay, this is a benefit.

Pro: works better for multicast, since different destinations may have
lost different packets.

Con: less throughput: redundancy is used even if not needed, ARQ
transmits fewer packets

Is used for data distribution over satellite links

Other FEC methods are used for voice or video (exploit the fact that
some distortion may be allowed - for example: interpolate‘a lost pac
by two adjacent packets)

» Simple to implement

» Q. When does it work well ?

\

Backpressure Flow Control

Destination sends STOP (= PAUSE) or GO
messages

PO
Pl
Destination stops sending for x msec P2

after receiving a STOP message P3

A. If bandwidth delay product is small
back

\

Can we use Sliding Window for Flow Control

» One could use a sliding window for flow control, as follows

» Assume a source sends packets to a destination using an ARQ protocal with
sliding window. The window size is 4 packets and the destination has buffer
space for 4 packets.

» Assume the destination delays sending acks until it has enough free buffe
space. For example, destination has just received (but not acked) 4
packets. Destination will send an ack for the 4 packets only when
destination application has consumed them.

Q. Does this solve the flow control problem ?
A. Yes, since with a sliding window of size W, the number of packets sent
but unacknowledged is - W. However, this poses a problem at the source:
non acknowledged packets may be retransmitted, whereas they were

correctly received.
back

Why both TCP and UDP ?

» Most applications use TCP rather than UDP, as this avoids re-
inventing error recovery in every application

» But some applications do not need error recovery in the way
TCP does it (i.e. by packet retransmission)

» For example: Voice applications
Q. why ?
A. delay is important for voice. Packet retransmission
introduces too much delay in most cases.
back

» For example: an application that sends just one message,
like name resolution (DNS). TCP sends several packets of
overhead before one single useful data message. Such an
application is better served by a Stop and Go protocol at
application layer.

Multicast Routing

» Multicast Routing is one of the routing protocols in
TCP/IP communication. In computer networking,
there are several multicast group communication
protocols where data transmission is addressed to
a group of destination computers simultaneously.
(Multicast Source Discovery Protocol, Multicast
BGP, Protocol Independent Multicast)

Multicast

» In computer networking, multicast is group
communication where data transmission is addressed to
a group of destination computers simultaneously.
Multicast can be one-to-many or many-to-many
distribution. Multicast should not be confused with
physical layer point-to-multipoint communication.

Multicast Routing Protocol

» A Multicast Routing Protocol is used to communicate
between multicast routers and enables them to calculate
the multicast distribution tree of receiving hosts.
Protocol Independent Multicast (PIM) is the most
important Multicast Routing Protocol.

» A multicast routing protocol is a mechanism for
constructing a loop-free shortest path from a source host
that sends data to the multiple destinations that receives
the data.

\

Dynamic Host Configuration Protocol (DHCP)

» BOOTP is not dynamic configuration protocol.

» When a client requests its IP address, the BOOTP sever looks up a table
that matches the physical address of the client with its IP address.

» This means that the binding between the physical address and the IP
address of the client should already exist.

» What if a host moves from one physical network to another ?

» DHCP is extension to BOOTP and has backward compatible
BOOTP

» meaning that a host running the BOOTP client can request a static
configuration to a DHCP server

DHCP (Cont’d)

» DHCP provides temporary IP addresses for a limited period of time
» DHCP has two DBs

» one for statically binding between physical address and IP
address

» the other one with a pool of available IP addresses

» When a DHCP client requests a temporary IP addresses, the
DHCP sever assigns an IP address from a pool for a negotiable
period of time

» When a DHCP client sends a request to a DHCP server
» At first, checking its static database

» If not , selecting an IP address from the availabl

DHCP (Cont’d)

Leasing

The DHCP server issues a lease for a specific period of time

When the lease expires, the client must either stop using the IP
address or renew the lease

DHCP Operation

A client broadcasts a DHCPDISCOVER message using destination
port 67

Servers respond with a DHCPOFFER message including an IP
address

+ Offering the duration of the lease - default : one hour

+ The server that sends a DHCPOFFER locks the offered IP
address so that it is not available to any other clients

DHCP (Cont’d)

>

>

» If the client receives no DHCPOFER message, it will
try four more times, each with a SPAN of two
seconds.

» If there is no reply to any of these DHCPDISCOVERS,
the client sleeps for five minutes before trying
again

The client chooses one of the offers and sends a
DHCPREQUEST message to the selected sever

The server responds with a DHCPACK message and
creates the binding between the client physical address
and its IP address

Before 50 percent of the lease period is reached, t
client sends another DHCPREQUEST and asks for
renewal

DHCP (Cont’d)

» If the server responds with a DHCPACK, the client
has a new lease agreement and can reset its timer.
If the server responds with a DHCPNACK, the client
must immediately stop using the IP address and
find another server (step 1)

» If the sever does not respond, the client sends
another DHCPREQUEST when the lease time
reaches 87.5 percent. If the client terminates the
lease prematurely, the client sends a DHCPRELEASE
message to the server.

DHCP (Cont’d)

! DHCP Transition Diagram

DHCPDISCOVER

DHCPREQUEST '
Lease Time 50% Expired / DHCPACK
DHCPREQUEST =

Lease Time Expired /
DHCPNACK

DHCPACK DHCPACK

Lease Time 87.5% Expired /
DHCPREQUEST

DHCP (Cont’d)

Passive
- open
Client < 67 Server
UDP
Client [68 DHCPDISCOVER _[—» 67 | Server
UDP UDP
Client 68 DHCPOFFER 67 Server
UDP UDP
Client | 68 DHCPREQUEST |—>» 67 | Server
UDP UDP
Client | 8 DHCPACK 67 | Server
ubP Before 50 percent of ubP
lease time expires
Client DHCPREQUEST |—>{ 67 Server
UDP UDP

DHCP (Cont’d)

If the server does not respond,

the request is repeated.

Client [68 DHCPREQUEST |—»| 67 | Server
UDP1f the server responds with a NACK, UbP
the client must start all over again.
Client | 68 [€«— DHCPNACK 67_| Server
UDP UDP
[f the server responds with an ACK,
the client has a new lease.
Client 68 |€— DHCPACK 67 Server
UDP . UDP
®
®
Client | 68 DHCPRELEASE | —»| 67 | Server
UDP UDP

DHCP (Cont’d)

» Packet Format

» To make DHCP backward compatible with BOOTP, it is only
added a one-bit flag to the packet.

» extra options have been added to the option field
» Flag:

» Let client specify a forced broadcast reply from the server
» Option :

» several options are added

» Ex) the value 53 for the tag subfield is used to define the type of
interaction between the client and server

» MAX: 312 bytes

DHCP (Cont’d)

_ Hardware type | Hardware length | Hop count I

Transaction 11D
Number of seconds

Client 1P address
Your IP address

Server 1P address

Gateway 1P address

Client hardware address

(16 bytes)

Server namme

(64 bytes)

Boot file name

(128 bytes)

Options
(Variable length)

DHCP (Cont’d)

» DHCP Options

Value Value
| DHCPDISCOVER 5 DHCPACK
2 DHCPOFFER 6 DHCPNACK

3 DHCPREQUEST 7 DHCPRELEASE
4 DHCPDECLINE

Domain Nam
System
(DNS)

Domain Name System (DNS)

Need System to map name to an IP address and vice versa

We have used a host file in our Linux laboratory.

Not feasible for the entire Internet.
Thus, divide huge amount of info and store in parts on many different compute
Host needing info contacts the closest server containing the needed info.
This is DNS.

Hierarchical Name Space is used. Names are made up of several parts:
acme.gatech.edu

Domain Name Space: names are defined in an inverted tree structure. Read
names from node
up to root of tree.

Source: TCP/IP Protocol Suite by Forouzan

CONTENTS

Domain name space

arpa O~ com O~ edu () coe org Q) a2d Q
O O O " O O O Y O 0OQ
vy O O @ @ @ O O
@ @

Root

Domain names
and labels

edu. | Domain name

. :fhda.edu.l Domain name

atc.fhda.edu. | Domain name

‘ challenger.atc.thda.edu. I Domain name

| challenger

FQDN and PQDN

FQDN

challenger.atc.thda.edu.
c¢s.hmme.com.

www.funny.int.

PQDN

challenger.atc.thda.edu
cs.hmme

WWW

Domains

Domai

Domain

DNS servers are used to distribute the info among many servers. \We use a
hierarchy of servers
just like the hierarchy of names.

root server

arpa server edu server com Server us Server

424 L

thda.edu bk.edu mcgraw.com irvin.com

What a server has authority for is called a zone. A root server’s
the whole tree.
We use primary and redundant servers.

gtion from
ary server loads
.Z_/ e primary server.
When the prlmaiy downloads information
from the secondary, it is called
zone transfer.

DNS in the Internet \

K

Inverse
domain

W

Generic
domains

/‘\\? ...?

Country
domains

Root level

\

Generic domains

chal.atc.fhda.edu.

Index to addresses

Generic domains

Country domains

Root level

anza.cup.ca.us.

Index to addresses

Country domains

Root level

Inverse domai

121.45.34.132.in-addr.arpa. |

Index to names

Resolution

DNS uses a client server architecture. A host needing info contacts a client na
a resolver.
The resolver client contacts a DNS server.

Recursive Resolution:

The resolver asks for a recursive answer from a DNS server.

The server must respond with the complete answer.

If it does not know the answer the server itself asks a parent server in the
hierarchy.

If the parent does not know, the parent asks a higher level server in the hierarchy.
Eventually the resolver will be told the answer by the first DNS server the
resolver contacted.

Iterative Resolution:
If client does not specify a recursive answer, client will get an iterative answer.
This means if the first server contacted does not know the answer, the server
returns

the IP address of what the server thinks is a smarter server.

This continues until the answer is found.

Protocol that transports DNS messages

DNS uses either TCP or UDP. Always port 53. UDP is used when messages
are less than 512 bytes because many UDP implementations have a 512 byte
maximum size limit.

If message larger than 512 bytes:

If client knows message is larger than 512 it will use a TCP
connection

If client does not know size of message opens a UDP port to server,

but if the response is larger than 512, server truncates response and
sets

the TC bit as a sign to the client to try again using a TCP
connection instead.

Recursive resolution

root server

fhda.edu

client 10

Here is a typical list of root servers held by a typical name server:
; This file holds the information on root name servers
; needed to initialize cache of Internet domain name
; servers (e.g. reference this file in the
; "cache . <file>" configuration file of BIND domain
: name Servers).
; This file is made available by InterNIC registration
; services under anonymous FTP as
; file /domain/named.root
; on server FTP.RS.INTERNIC.NET
; last update: Aug 22, 1997
; related version of root zone: 1997082200
; formerly NS.INTERNIC.NET
3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.04
; formerly NS1.1SI.EDU
3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
; formerly C.PSI.NET

3600000 NS C.ROOT-SERVERS.NET.

Source:http://computer.howstuffworks.com/dns5.htm

Iterative resolution

root server
%

DNS messages

Messages

Query

Response

DNS Message Formats

Two basic types: Query and Response

Header

Question section

a. Query

Number of question records

Header

Question section

Number of answer records
(All Os in query message)

Number of authoritative records
(All Os in query message)

Number of additional records
(All Os in query message)

QR

AA

QpCoyde

TC

RD

0 rhee s |

Header:

Identification: 2 byte field so client may match response to the question. Client creates numb
Server just repeats the number in the request

Flags: QR Query/Response: One bit O=query 1=response

Opcode: four bits define type of query or response O=normal 1=inverse, 2=server sta
IS requested

AA authoritative answer: One bit value of 1 means server responding is authoritative
TC truncated: One bit if it equals 1 means answer was larger than than 512 bytes and
truncated
RD recursion desired: one bit if set to 1 means we want a recursive answer
RA recursion available: One bit when set to 1 means a recursive response is available.
set only in the response message
Reserved: three bit field set to 000
rCode: Four bit field contains error status

Number of Question Records: two byte field with number of queries in the question section
of the message

Number of Answer Records: two byte field with number of answers contained in answer sectio
of the message
Number of Authoritative Records: Two byte field containing the number of authoritative record
authoritative records section of a response message
Number of Additional Records: Two byte field containing the number additional records in the
additional section of a response message.

Remainder of DNS Message Format

Question Section: Section consisting of one or more question records. Exists in both query and r
Answer Section: Section consisting of one or more answer records. Exists in response only.

Authoritative Section: Section consisting of one or more resource records. Exists in response onl
This contains the domain name about one or more of the authoritative servers for the query.

Additional Info Section: Contains one or more resource records. EXxists in response only.

Types of Records

Two Types of Records in DNS

«Question Records are found in Query section and response section of DNS message
We echo the question record in the response in case you forgot your question
before you get your answer :>)

*Resource Records are used the answer section, authoritative section, and additional

section of a response message

Question Record
Question Record used to get info from server.

Resource Record
Resource records are returned from server to client

Question Record Format

_ Query name —

Query type Query class

Count Count Count Count Count

S FPIRIMEEEY 3 PN ¢ REINEAE [rim o |

(Each count byte is a binary value between 0 and 63, count bytes are not ASCII)

Query Name: Variable length field containing a domain name

Query Type: 2 byte filed containing the type of query:
TypeMnemonic Details

1 A IP Address. Convert a domain name to IP address

2 NS Name Server. IDs authoritative server for a zone

5 CNAME Canonical Name. Defines an alias for official name of
12 PTR Convert an IP address to a domain name

etc

Query Class: 2 Byte field specifying the protocol using DNS. Internet hasa value of

Resource Record Format

Resource records are returned from server to client

= Domain name =

Domain type Domain class

Time to live

Resource data length

Z Resource data Z

Domain Name: Variable length field containing domain name

Domain Type: Same as query type field from before but a reduced “Query type” list

Domain Class: 2 Byte field specifying the protocol using DNS. Internet has a value of

Time to Live: 4 byte field with number of seconds answer is valid. Receiver can cache t
answer for this period of time

Resource Data Field Length: 2 bytes representing the length of the resource data fiel

Resource Data: Variable length field containing answer to query

Thank you

The Content in this Material are from the Textbooks and
Reference books given in the Syllabus

