18MCA44E SOFTWARE TESTING
UNIT I - INTRODUCTION

FACULTY
Dr. K. ARTHI MCA, M.Phil., Ph.D,,
Assistant Professor,
Postgraduate Department of Computer Applications,
Government Arts College (Autonomous),

Coimbatore-641018.

Year Subject Title Semester | Sub. Code

2018 - 2019 Elective 1.2: SOFTWARE TESTING IV | I8MCA44E
Onwards

Objective: To motivate the students as well as enrich their knowledge about the concepts of testing and its
documentation.

UNIT I: Developing a test approach - Addressing software system business risk - Defining a software
system strategy - Developing software system testing tactics - Testing a sofiware using a life cycle
methodology - Requirements phase testing.

UNIT II: Design phase testing - Program phase testing - Desk debugging and program peer view test tools -
Evaluating test results - Installation phase testing - Acceptance testing.

UNIT III: Testing methodology for software maintenance - Testing the correctness of the installing a
software change - Testing the validity of a software cost estimate - Testing the progress of the software

system - Inspecting test plan and test cases.

UNIT 1V: Accessing Client-Server and LAN risks - A testing strategy for a rapid prototyping - Testing
techniques - Testing tools.

UNIT V: Test documentation - Reporting test results - Final test reporting - Evaluating test effectiveness -
Use of testing metrices - Improving test process.

TEXT BOOKS:
1. William Perry, “Effective Methods for Software Testing”™, John Wiley & Sons, Inc., 1995.
REFERENCE BOOKS:

1. Renu & Pradeep “Software Testing: Methodologies, Tools and Processes™, Tata McGraw Hill Publishing
Co. Lid.

Software Testing

J What is it?

“Software Testing the process to validate the outcome of software product by identifying defects tc

meet with expected results and specified requirements of the customer”

O What are the techniques involved in software testing?

“= Verification (QA) is set of activities for ensuring quality in process by which products are
developed. Aim to prevent defects with focus on process used to make the products.

Method of Verifications: Walkthrough, Inspection, Review (Static Testing)

= Validation (QC) is set of activities for ensuring quality in products itself. Finding defects in
developed product. Aim to identify defects/errors in the finished products.
Method of Validation: Testing, End Users (Dynamic Testing)

Software Testing

Why we need it?

Software testing is really required to point out the defects and errors that were made
during the development phases.

It's essential since it makes sure of the Customer’s reliability and their satisfaction in
the application.

It is very important to ensure the Quality of the product. Quality product delivered to the
customers helps in gaining their confidence.

v' Testing is required for an effective performance of software application or product.

It's important to ensure that the application should not result into any failures because
it can be very expensive in the future or in the later stages of the development.

It's required to stay in the business.

Skills Required for Software Testing

O Analytical and logical thinking

Q The ability to imagine business situations

QO Asense of logical curiosity and creativity

O A*Glocal® approach

Q Ability to apply basic and fundamental knowledge
Q Continue to learn

O Respect for truth and intellectual integrity

O Planning, time management skills

O Effective communication skills

Method of Software Testing

White Box Testing

Black Box Testing

Methods

i { e J

Levels of Software Testing

“A level of the software testing process where individual units/components of a
software/system are tested, The purpose of this test is to evaluate the system's
compliance with the specified requirements”

Unit Testing

7

SDLC vs STLC

O SDLC: Software Development Life Cycle

v It is a systematic approach to develop software.

v It is a conceptual model used in project management that
describes the stages involved in an information system Test
development project, from an initial feasibility study through™— e
maintenance of the completed application. Deployment
Maintenance

0 STLC: Software Test Life Cycle

o Do v A software testing life cycle (STLC) is a set of steps used
Test Environment Setup to test software products. Software testing is a critical part
of preparing software for use, and a STLC helps make this
Test Execution process more sophisticated, consistent and effective
Test Reporting

Test Management

O What is Configuration Management (CM)?

“Configuration Management (CM) is a systems engineering process for establishing and
maintaining consistency of a product’s performance, functional, and physical attributes with its
requirements, design, and operational information throughout its life.”

“QJ Why itis important in software testing?

= |t facilitates the ability to communicate status of documents and code as well as changes
that have been made to them. High-quality of the software that has been tested and used,
makes it a reusable asset and saves development costs.

= Increased efficiencies, stability and control by improving visibility and tracking.

= The ability to define and enforce formal policies and procedures that govern asset
dentification, status monitoring, and auditing.

Deliverables of Software Testing

V Model

Requirements |
Analysis

'

| High Level
I s H

s

Oongoin
Suppo

.................. Re"iew/TGSt Operational
Testing
' Integration
- oeeemeeemmeeeeaas >
Testing
Detailed ISl Unit
pecifications Testing

N

Coding

Agile against waterfall

Coding, new functionality

————>

Bug fixing

I |

Testing

Release
Iteration '

I What are Software Testing Methodologies?

Software testing methodologies are the different
approaches and ways of ensuring that a software
application is fully tested.

Software testing methodologies encompass in two parts:

Functional Testing

Unit Intagration System Acceptance
Testing Testing Testing Testing

Non-Functional Testing

|

Securnity
Testing

Usability
Testing

I Functional Testing

The functional testing part of
a testing methodology is
typically broken down into
four components - unit
testing, integration testing,
system testing and
acceptance testing — usually

; executed in this order.

Integration Testing

System Testing

Acceptance Testing

| Unit Testing

= Purpose: To verify that the component/module
functions work properly.

= Check:
= internal data structures
* Logic
= boundary conditions for input/output data

= Method: White box testing
module '%_A
to be = A

= Done by: Developers o
N "

tested ————
= results

test cases

iy
1
%0

I IntegrationTesting

= Purpose: To verify that modules/components witch have
been successfully unit tested when integrated together
to perform specific tasks and activities work properly.

= This testing is usually done with a combination
of automated functional tests and manual testing

= Method: Black box testing

Component
Integration
Testing

= Done by: Independent Test Team

System Testing

Purpose: Verifies that all system elements work properly
and that overall system function and performance has
been achieved.

This test is carried out by interfacing the hardware and
software components of the entire system (that have
been previously unit tested and integration tested), and
then testing it as a whole.

Method: Black box testing p
;¥ < Requirements >
Done by: Independent Test Team ~ *.~ |
System Testing 8
_— - ? P —
Inputs —> -—..a.. “”/’ Outcome

T = |
t

« Events »

I AcceptanceTesting

= Purpose: To ensure that the software that has been developed
operates as expected and meets all user requirements.

= There are two types of acceptance testing:
= Alpha Testing: It is carried out by the members of the
development team, known as internal acceptance testing.
= Beta Testing: It is carried out by the customer, known as
external acceptance testing.

Acceptance

= Method: Black box testing
Testing

®

General Characteristics of Strategic
Testing

* To perform effective testing, a software team should conduct effective
formal technical reviews

* Testing begins at the component level and work outward toward the
integration of the entire computer-based system

* Different testing techniques are appropriate at different points in time

* Testing is conducted by the developer of the software and (for large
projects) by an independent test group

* Testing and debugging are different activities, but debugging must be
accommodated in any testing strategy

Verification and Validation

* Software testing is part of a broader group of activities called verification
and validation that are involved in software quality assurance
* Verification (Are the algorithms coded correctly?)
* The set of activities that ensure that software correctly implements a specific
function or algorithm
* Validation (Does it meet user requirements?)

* The set of activities that ensure that the software that has been built is
traceable to customer requirements

A Strategy for Testing Conventional
Software

System Testing

Validation Testing

Code
Design

Requirements

System Engineering

Levels of Testing for Conventional
Software

* Unit testing
* Concentrates on each component/function of the software as implemented
in the source code

* Integration testing
* Focuses on the design and construction of the software architecture

Validation testing
* Requirements are validated against the constructed software

* System testing
* The software and other system elements are tested as a whole

Testing Strategy applied to Object-
Oriented Software

* Must broaden testing to include detections of errors in analysis and design
models

* Unit testing loses some of its meaning and integration testing changes
significantly

* Use the same philosophy but different approach asin conventional
software testing

* Test "in the small” and then work out to testing "in the large”

* Testing in the small involves class attributes and operations; the main focus is on
communication and collaboration within the class

* Testing in the large involves a series of regression tests to uncover errors due to
communication and collaboration among classes

* Finally, the system as a whole is tested to detect errors in fulfilling
requirements

Unit Testing

Focuses testing on the function or software module

Concentrates on the internal processing logic and data structures

Is simplified when a module is designed with high cohesion
* Reduces the number of test cases
* Allows errors to be more easily predicted and uncovered

Concentrates on critical modules and those with high cyclomatic
complexity when testing resources are limited

Targets for Unit Test Cases

Module interface
* Ensure that information flows properly into and out of the module

Local data structures

* Ensure that data stored temporarily maintains its integrity during all steps in
an algorithm execution

Boundary conditions

* Ensure that the module operates properly at boundary values established to
limit or restrict processing

Independent paths (basis paths)

* Paths are exercised to ensure that all statements in a module have been
executed at least once

Error handling paths
* Ensure that the algorithms respond correctly to specific error conditions

Drivers and Stubs for
Unit Testing

* Driver

* A simple main program that accepts test case data, passes such data to the
component being tested, and prints the returned results

* Stubs

* Serve to replace modules that are subordinate to (called by) the component
to be tested

* It uses the module’s exact interface, may do minimal data manipulation,
provides verification of entry, and returns control to the module
undergoing testing

* Drivers and stubs both represent overhead

* Both must be written but don’t constitute part of the installed software
product

Integration Testing

* Defined as a systematic technique for constructing the software

architecture
* At the same time integration is occurring, conduct tests to uncover errors
associated with interfaces

* Objective is to take unit tested modules and build a program structure
based on the prescribed design

* Two Approaches
* Non-incremental Integration Testing
* Incremental Integration Testing

Non-incremental
Integration Testing

* Commonly called the “Big Bang” approach

* All components are combined in advance

* The entire program is tested as a whole

* Chaos results

* Many seemingly-unrelated errors are encountered

* Correction is difficult because isolation of causes is complicated

* Once a set of errors are corrected, more errors occur, and testing appears
to enter an endless loop

Incremental Integration Testing

* Three kinds
* Top-down integration

* Bottom-up integration

* Sandwich integration
* The program is constructed and tested in small increments
* Errors are easier to isolate and correct
* Interfaces are more likely to be tested completely

* A systematic test approach is applied

Top-down Integration

* Modules are integrated by moving downward through the control
hierarchy, beginning with the main module

* Subordinate modules are incorporated in either a depth-first or breadth-
first fashion
* DF: All modules on a major control path are integrated
* BF: All modules directly subordinate at each level are integrated

* Advantages

* This approach verifies major control or decision points early in the test
process

* Disadvantages

* Stubs need to be created to substitute for modules that have not been built
or tested yet; this code is later discarded

* Because stubs are used to replace lower level modules, no significant data
flow can occur until much later in the integration/testing process

Bottom-up Integration

* Integration and testing starts with the most atomic modules in the
control hierarchy

* Advantages
* This approach verifies low-level data processing early in the testing process

* Need for stubs is eliminated

* Disadvantages
* Driver modules need to be built to test the lower-level modules; this code is
later discarded or expanded into a full-featured version
* Drivers inherently do not contain the complete algorithms that will
eventually use the services of the lower-level modules; consequently, testing
may be incomplete or more testing may be needed later when the upper
level modules are available

Sandwich Integration

* Consists of a combination of both top-down and bottom-up integration

* Occurs both at the highest level modules and also at the lowest level
modules

* Proceeds using functional groups of modules, with each group
completed before the next
* High and low-level modules are grouped based on the control and data
processing they provide for a specific program feature
* Integration within the group progresses in alternating steps between the
high and low level modules of the group

* When integration for a certain functional group is complete, integration and
testing moves onto the next group

* Reaps the advantages of both types of integration while minimizing the
need for drivers and stubs

* Requires a disciplined approach so that integration doesn’t tend
towards the “big bang” scenario

Regression Testing

* Each new addition or change to baselined software may cause problems
with functions that previously worked flawlessly

* Regression testing re-executes a small subset of tests that have already
been conducted
* Ensures that changes have not propagated unintended side effects
* Helps to ensure that changes do not introduce unintended behavior or
additional errors
o Ma\I/ be done manually or through the use of automated capture/playback
tools

* Regression test suite contains three different classes of test cases
* A representative sample of tests that will exercise all software functions
* Additional tests that focus on software functions that are likely to be

affected by the change
* Tests that focus on the actual software components that have been changed

Smoke Testing

* Taken from the world of hardware
* Power is applied and a technician checks for sparks, smoke, or other
dramatic signs of fundamental failure

* Designed as a pacing mechanism for time-critical projects
* Allows the software team to assess its project on a frequent basis

* Includes the following activities
* The software is compiled and linked into a build
* A series of breadth tests is designed to expose errors that will keep the
build from properly performing its function
* The goalis to uncover “show stopper” errors that have the highest likelihood of
throwing the software project behind schedule
* The build is integrated with other builds and the entire product is smoke
tested daily
* Daily testing gives managers and practitioners a realistic assessment of the
progress of the integration testing

* After a smoke testis completed, detailed test scripts are executed

Benefits of Smoke Testing

Integration risk is minimized

* Daily testing uncovers incompatibilities and show-stoppers early in the
testing process, thereby reducing schedule impact

The quality of the end-product is improved
* Smoke testing is likely to uncover both functional errors and architectural
and component-level design errors
Error diagnosis and correction are simplified

* Smoke testing will probably uncover errors in the newest components that
were integrated

Progress is easier to assess

* As integration testing progresses, more software has been integrated and
more has been demonstrated to work

* Managers get a good indication that progress is being made

Alpha and Beta Testing

* Alpha testing
* Conducted at the developer’s site by end users
* Software is used in a natural setting with developers watching intently
* Testing is conducted in a controlled environment

» Beta testing
* Conducted at end-user sites
* Developer is generally not present

* It serves as a live application of the software in an environment that cannot
be controlled by the developer

* The end-user records all problems that are encountered and reports these to
the developers at regular intervals

* After beta testing is complete, software engineers make software
modifications and prepare for release of the software product to the
entire customer base

1. What is Risk

= A risk is a potential problem — it might happen and it might not, this is
uncertainty.

We don’t know whether a particular event will occur or no but if it
does has a negative impact on a project.

= An example would be that team is working on a project and the
developer walks out of project and other person is recruited in his
place and he doesn’t work on the same platform and converts it into
the platform he is comfortable with. Now the project has to yield the
same result in the same time span. Whether they will be able to
complete the project on time. That is the risk of schedule .

2. Definitions of Risks

Risk is the probability of suffering loss.

Risk provides an opportunity to develop the project better.

Risk exposure= Size (loss)” probability of (loss)

There is a difference between a Problem and Risk

Problem is some event which has already occurred but risk is
something that is unpredictable.

3. Risk Categorization

= Projectrisks
= They threaten the project plan

= If they become real, itis likely that the project schedule will slip
and that costs will increase

m Technical risks

= They threaten the guality and timeliness of the software to be
produced

= |f they become real, implementation may become difficult or
impossible
= Businessrisks

= |If they become real, they Problem occuring in the project or the
product

4. Other Risk Categories

= Known risks
= Those risks that can be uncovered after careful evaluation of the
project plan, the business and technical environment in which
the project is being developed, and other reliable information
sources (e.g., unrealistic delivery date)
= Predictable risks
= Those risks that are extrapolated from past project experience
(e.g., past turnover)
= Unpredictable risks

= Those risks that can and do occur, but are extremely difficult to
identify in advance

5. Negative Impact of Risk

Diminished quality of product
Increased cost

Delayed completion

Project failure

6. Risk management

The project should be managed in such a way that the risks don’'t
affect the project in a big way.

Risk Management is a methodology that helps managers make best
use of their available resources

By using various paradigms, principles we can manage the risks.

7- The Principles of Risk NMianagement

Global Perspective: In this we look at the larger system definitions, design and
implementation. We look at the opportunity and the impact the risk is going to
have .

Forward Looking View: Looking at the possible uncertainties that might creep up.
VWe also think for the possible solutions for those risks that might occur in the
future.

Open Communication: This is to enable the free flow of communication between
in the customers and the team members so that they have clarity about the risks.

Infegrated management: In this phase risk management is made an integral part
of project management.

Continous process :In this phase the risks are tracked continuously throughout the
risk manage ment paradigm.

8. Risk management paradigm

1.ldentify: Search for the risks before they
create a major problem

2.Analyze: understand the nature , kind of
risk and gather information about the risk.

3.Plan: convert them into actions and
implementthem.

4. Track: we need to monitor the
necessary actions.

5.Control: Correct the deviation and make
any necessary amendments.

6.Communicate: Discuss about the
emerging risks and the current risks and
the plans to be undertaken.

ek Management Paradigm

/ control

track

' RIS

9. Risk Management in Project
management:

Basically project management deals with following :

= 1. Planning: Looking for the desired results, the strategies to be
applied.

2. Organizing: Getting all the things together so that the desired
results are obtained. By organizing the efficiency is increased and lot
of time is saved.

3. Directing: Communication takes place and exchange of ideas is
formatted in this phase.

= 4 Controlling: In the last phase feedback and evaluation is done.

10. How To Manage the Risks

1.Determine risk sources and
Categories.

2.Determine Risk Parameters

3.Establish a Risk Management
Strategy

4 ldentify Risks

5.Evaluate and prioritize the risks.

6.Develop and Implement Risk
mitigation plans

11. THE RMINMM PLAN

= A risk management strategy can be included in the software project

plan or the risk management steps can be organized into a separate
Risk Mitigation, Monitoring and Management Plan.

The RMMM plan documents all work performed as part of risk

analysis and iIs used by the project manager as part of the overall
project plan.

Some software teams do not develop a formal RMMM document.

Rather, each risk is documented individually using a risk information
sheet

THANK YOU
This content is taken from the text books and reference books
prescribed in the syllabus.

