
.NET PROGRAMMING (C#)

(18 MCA 4 2 C)

UNIT –V

ADO.NET & ASP.NET

FACULTY:

Dr. K. Arthi

Assistant Professor,

Post Graduate And Research Department Of Computer Applications,

Government Arts College (Autonomous), Coimbatore 641 018.

CONTENT

 ADO.NET

 ASP.NET

ADO.NET
INTRODUCTION

.NET DATA ACCESS AND MANİPULATİON

OVERVİEW

 What is ADO.NET?

 Disconnected vs. connected data access models

 ADO.NET Architecture

 ADO.NET Core Objects

 Steps of Data Access

 Advanced Techniques and UI Tools

WHAT İS ADO.NET?

 A data-access technology that enables applications to
connect to data stores and manipulate data contained
in them in various ways

 Former version was ADO (ActiveX Data Object)

WHAT İS ADO.NET?

 An object oriented
framework that allows
you to interact with
database systems

OBJECTİVE OF ADO.NET

 Support disconnected data architecture,

 Tight integration with XML,

 Common data representation

 Ability to combine data from multiple and varied data
sources

 Optimized facilities for interacting with a database

ADO.NET ARCHITECTURE

ADO.NET CORE OBJECTS

 Core namespace:
System.Data

 .NET Framework data
providers:

Data Provider Namespace

SQL Server System.Data.SqlClient

OLE DB System.Data.OleDb

ODBC System.Data.Odbc

Oracle System.Data.OracleClient

ADO.NET CORE OBJECTS

Object Description

Connection Establishes a connection to a specific data source. (Base class: DbCon

nection)

Command Executes a command against a data source. Exposes Parameters and

can execute within the scope of a Transaction from a Connectio

n. (The base class: DbCommand)

DataReader Reads a forward-only, read-only stream of data from a data source. (

Base class: DbDataReader)

DataAdapter Populates a DataSet and resolves updates with the data source. (Base

class: DbDataAdapter)

DataTable Has a collection of DataRows and DataColumns representing table d

ata, used in disconnected model

DataSet Represents a cache of data. Consists of a set of DataTables and relati

ons among them

CONNECTED DATA ACCESS MODEL

DİSCONNECTED DATA ACCESS MODEL

PROS AND CONS

Connected Disconnected

Database Resources - +

Network Traffic - +

Memory Usage + -

Data Access - +

STEPS OF DATA ACCESS: DİSCONNECTED
ENVİRONMENT

 Defining the connection string
 Defining the connection
 Defining the command
 Defining the data adapter
 Creating a new DataSet object
 SELECT -> fill the dataset object with the result of the query

through the data adapter
 Reading the records from the DataTables in the datasets using the

DataRow and DataColumn objects
 UPDATE, INSERT or DELETE -> update the database through the

data adapter

EXAMPLE
using System;

using System.Data;

using System.Data.SqlClient;

namespace SampleClass

{

class Program

{

static void Main(string[] args)

{

string connStr =

Properties.Settings.Default.connStr;

SqlConnection conn = new SqlConnection(connStr);

string queryString = "SELECT * from titles;";

SqlDataAdapter da = new

SqlDataAdapter(queryString,conn);

DataSet ds = new DataSet();

da.fill(ds);

// Work on the data in memory using

// the DataSet (ds) object

}

}

}

DİSCONNECTED:

UPDATE, DELETE, INSERT

SqlDataAdapter da = new SqlDataAdapter();

DataSet ds = new DataSet();

SqlCommandBuilder cmdBuilder = new SqlCommandBuilder(da);

da.Fill(ds);

INITIAL CODE

DataRow dr = ds.Tables[0].Rows[0];

dr.Delete();

da.UpdateCommand = builder.GetUpdateCommand();

da.Update(ds);

DELETE

DataRow dr = ds.Tables[0].Rows[0];

dr["CustomerName"] = "John";

da.UpdateCommand = builder.GetUpdateCommand();

da.Update(ds);

UPDATE

DataRow dr = ds.Tables[0].NewRow();

dr["CustomerName"] = "John";

dr["CustomerSurName"] = "Smith";

ds.Tables[0].Rows.Add(dr);

da.UpdateCommand = builder.GetUpdateCommand();

da.Update(ds);

INSERT

STEPS OF DATA ACCES : CONNECTED
ENVİRONMENT

 Create connection

 Create command (select-insert-update-delete)

 Open connection

 If SELECT -> use a DataReader to fetch data

 If UPDATE,DELETE, INSERT -> use command object’s
methods

 Close connection

EXAMPLE

static void Main()

{

string connectionString = Properties.Settings.Default.connStr;

string queryString = "SELECT CategoryID, CategoryName FROM dbo.Categories;";

SqlConnection connection = new SqlConnection(connectionString);

SqlCommand command = new SqlCommand(queryString,connection);

try

{

connection.Open();

SqlDataReader reader = command.ExecuteReader();

while (reader.Read())

{

Console.WriteLine("\t{0}\t{1}“,reader[0],reader[1]);

}

reader.Close();

connection.close();

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}

}

CONNECTED – UPDATE, DELETE, INSERT

 Command class core methods:

 ExecuteNonQuery : Executes a SQL statement against a
connection object

 ExecuteReader: Executes the CommandText against the
Connection and returns a DbDataReader

 ExecuteScalar: Executes the query and returns the first
column of the first row in the result set returned by the
query

ms-help://MS.VSCC.v80/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref4/html/T_System_Data_Common_DbDataReader.htm

CONNECTED – UPDATE, DELETE, INSERT

string connString = Properties.Settings.Defau

lt.connStr;

SqlConnection conn = new SqlConnection(conn

String);

SqlCommand cmd = new SqlCommand("delete from

Customers" + "where custID=12344", conn);

conn.Open();

cmd.ExecuteNonQuery();

conn.Close();

Can be an update or insert command

CHOOSİNG A DATAREADER OR A DATASET

 The type of functionality application requires should be
considered

 Use a dataset to:
 Cache data locally in your application so that you can manipulate it

 Remote data between tiers or from an XML Web service

 Interact with data dynamically such as binding to a Windows Forms
control or combining and relating data from multiple sources

 Perform extensive processing on data without requiring an open
connection to the data source, which frees the connection to be used
by other clients

 If readonly data is needed use DataReader to boost performance

BEST PRACTİCES
 Don’t create a new connection string for every code connecting to DB

 Use app.config file to keep your connection strings through the
application scope
 Right click on project and select properties
 Select settings from the left tabbed menu
 add the connection string to the table and save project, Name field is the

name of the string to access at runtime

 Accessing settings at runtime:

 You can keep any other variable to reach at runtime using this technique

string connStr = Properties.Settings.Default.connStr;

AFTER .NET FRAMEWORK 2.0

 To minimize the code written by developers new UI
tools and objects have been intoduced with .NET
Framework 2.0

AFTER .NET FRAMEWORK 2.0

 Strongly Typed vs Untyped Datasets

 Untyped: DataSet and DataTables included are created at
runtime completely using code

 Strongly Typed: Dataset is created at design time, it is
defined by an xsd schema

AFTER .NET FRAMEWORK 2.0

 TableAdapter

 provides communication between your application and a
database

 Provides update/delete/insert functions

 Encapsulates a SQLDataAdapter object

 MSDN link:

 http://msdn.microsoft.com/en-
us/library/bz9tthwx(VS.80).aspx

http://msdn.microsoft.com/en-us/library/bz9tthwx(VS.80).aspx

AFTER .NET FRAMEWORK 2.0

 BindingSource

 Binds UI components to a strongly typed Dataset

 Ex: Binds a DataGridView to a DataTable

 Sets a DataSet as a datasource and datamember as a dataset
table

 EndEdit() method: Applies changes made to data through a GUI
control to the data source bound to that control

 MSDN link:

 http://msdn.microsoft.com/en-us/library/xxxf124e(VS.80).aspx

http://msdn.microsoft.com/en-us/library/xxxf124e(VS.80).aspx

AFTER .NET FRAMEWORK 2.0

An example of databinding model

AFTER .NET FRAMEWORK 2.0

 Binding Navigator

 Used for creating a standardized means for users to search
and change data on a Windows Form

 Used with BindingNavigator with the BindingSource
component to enable users to move through data records
on a form and interact with the records

 MSDN link:

 http://msdn.microsoft.com/en-
us/library/8zhc8d2f(VS.80).aspx

http://msdn.microsoft.com/en-us/library/8zhc8d2f(VS.80).aspx

AFTER .NET FRAMEWORK 2.0

 TableAdapterManager
 New component in Visual Studio 2008
 Builds upon existing data features (typed datasets and

TableAdapters) and provides the functionality to save data
in related data tables.

 Manages inserts/updates/deletes without violating the
foreign-key constraints

 MSDN link:
 http://msdn.microsoft.com/en-us/library/bb384426.aspx

http://msdn.microsoft.com/en-us/library/bb384426.aspx

HANDS ON: CREATE A DB NAVİGATOR

 Create a DB navigator with UI components and wizards

HANDS ON: CUSTOM QUERİES

 Create a filter mechanism on an DataGridView with
using custom queries

 Manage datatables and TableAdapters

HANDS ON: MANAGİNG MULTİPLE TABLES

 Create a navigation system with using the relations
between two tables

DATABASE CONNECTIVITY

CORE OBJECTS OF .NET FRAMEWORK

PROVIDERS

OBJECTS BASE CLASS DESCRIPTION

Connection DbConnection
Establishes a connection to a specific data
source.

Command DbCommand Executed a command against a data source.

DataReader DbDataReader
Reads a forward-only, read-only stream of
data from a data source.

DataAdapter DbDataAdapter
Populates a DataSet and resolves updates
with the data source

ADO.NET DATA PROVIDERS

DATA PROVIDER NAMESPACE

SQL Server System.Data.SqlClient;

OLEDB System.Data.OleDb;

ODBC System.Data.Odbc;

ORACLE System.Data.OracleClient;

DATABASE CONNECTIVITY

SQL CLIENT

SQL SERVER

 It provides access for Microsoft SQL Server

 Uses the “System.Data.SqlClient;” namespace.

 G.F.:

using System.Data.SqlClient;

class Program

{

string connectionString = "Data Source=(local);Initial Catalog=Northwind;“ + "Integrated
Security=true";

}

Connecting to a database

using(SqlConnection Conn = new SqlConnection())

Conn.ConnectionString = “Server = [ServerName]; Database = [DatabaseName]; Trusted_Connection = true";

Adding data into a database

SqlCommand insertCommand = new SqlCommand (INSERT INTO Tablename ([Column1], [Column2],… VALUES (Value1,
Value2,…));

Updating a record in Database

SqlCommand updateCommand = new SqlCommand (UPDATE TABLE Tablename SET ([FieldName] = Value,…) WHERE CONDITION;

Deleting a record from database

SqlCommand deleteCommand = new SqlCommand (DELETE FROM Tablename WHERE CONDITION;

DATABASE CONNECTIVITY

OLEDB

OLEDB

 It provides access for Microsoft Access Database.

 Uses the “System.Data.OleDb;” namespace.

 G.F.:

using System.Data.OleDb;

class Program

{

OleDbConnection Connection_Variable = new
OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0; Data Source =
“Your_Database_Directory;";

}

EXAMPLE FOR

CONNECTING TO A DATABASE

using System.Data.OleDb;

class Program

{

OleDbConnection Con = new OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0; Data Source = MyDb.accdb;";

private void BtnSubmit_Click(object sender, EventArgs e)

{

OleDbCommand Ins = con.CreateCommand();

Ins.Open();

Ins.CommandText = "INSERT INTO Student(FirstName, LastName) VALUES (‘” + textBox1.Text + "','" + textBox2.Text + “’)”;

Ins.Connection = Con;

Ins.ExecuteNonQuery();

MessageBox.Show("Record Submitted","Congrats");

Con.Close();

}

}

DATABASE CONNECTIVITY

ODBC

ODBC

 It provides access for Microsoft Access Database

 Uses the “System.Data.Odbc;” namespace.

 G.F.:

using System.Data.Odbc;

class Program

{

string connectionString = "Driver={Microsoft Access Driver (*.mdb)};“ + "DBQ =
Databasedirectory.mdb;”;

}

EXAMPLE FOR

CONNECTING TO A DATABASE

INSERTING DATA INTO A DATABASE

static private void InsertRow(string connectionString)

{

//Connecting to database

string connectionString = "Driver={Microsoft Access Driver (*.mdb)};“ + "Dbq = Database directory;”;

//Adding a record

string queryString = "INSERT INTO Customers (CustomerID, CompanyName) Values('NWIND', 'Northwind Traders')";

OdbcCommand command = new OdbcCommand(queryString);

using (OdbcConnection connection = new OdbcConnection(connectionString))

{

command.Connection = connection;

connection.Open();

command.ExecuteNonQuery();

// The connection is automatically closed at the end of the Using block.

}

}

DATABASE CONNECTIVITY

ORACLE CLIENT

ORACLE CLIENT

 It provides access for Oracle data sources.

 It requires ODAC, and Oracle Database X or Oracle Database XE.

 Uses the “System.Data.OracleClient;” namespace.

 G.F.:

using System.Data.OracleClient;

class Program

{

string oradb = "Data Source = (DESCRIPTION =" +
"(ADDRESS = (PROTOCOL = TCP)(HOST = Your host name)(PORT = 1521))" +
"(CONNECT_DATA = " +
"(SERVER = DEDICATED)" +
"(SERVICE_NAME = XE))); +

“User Id=your_user_id; assword=******;";

}

EXAMPLE FOR

CONNECTING TO A DATABASE

string connectionString = "Data Source = ThisOracleServer; Integrated Security = yes;";

string queryString = "SELECT CUSTOMER_ID, NAME FROM DEMO.CUSTOMER";

using (OracleConnection connection = new OracleConnection(connectionString))

{

OracleCommand command = connection.CreateCommand();

command.CommandText = queryString;

try

{

connection.Open();

OracleDataReader reader = command.ExecuteReader();

while (reader.Read())

{

Console.WriteLine("\t{0}\t{1}", reader[0], reader[1]);

}

reader.Close();

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}

}

CONNECTING TO A DATABASE

VISUAL STUDIO C#

STEP 1: OPEN VISUAL

STUDIO

 Go to Start Menu.

 Click All Programs.

 Microsoft Visual Studio [yyyy]

 Visual Studio

STEP 2: CREATE NEW C#

PROJECT

 Select “Windows Forms Application”

under Visual C# Group.

 Provide a Suitable name for Project.

 Click “OK”.

STEP 3: FORM DESIGN

 Add some Controls from the Tool

box. (i.e.)

 2 x Labels

 2 x Text boxes

 1 x Button

STEP 4: CONTROL

PROPERTIES

 Select the Controls and provide a

valid name.

 E.g.:

 “Username”, “Password” for Labels

and Textboxes

 “Submit” for Button.

 Change the appearances of controls

if preferred.

STEP 5: CONNECT TO A DATABASE

• Click “TOOLS” Menu.

• Click “Connect to Database”.

Click “Change” button to change

“DataSource” & “DataProvider”

Select preferred “DataSource” &

“DataProvider”.

Click “OK”.

Click “Browse” button to

Select Database.

Navigate to the preferred Directory. Select the database and Click “OK”.

Click “Advanced” to view

Advanced Properties.

Make modifications if Needed.

Copy the Highlighted Text to Paste it on

the Connection String. Click “OK”.

Click “Test Connection” to verify

that the database is connected

correctly.

Click “OK” to close the message

box and Click “OK” again to Finish

Connecting to Database.

ASP.NET

ABOUT ASP.NET

 ASP-active server pages.

 Introduced in 1998 as microsoft first server side scripting engine.

 Asp.net is an new asp generation.

 Asp.net ghave the extension .aspx,and normally written in vb or c#

SERVER CONTROLS

 Organized into logical families

 HTML controls

 Web control

SERVER CONTROLS
HTML CONTROLS

 Works well with existing HTML designers

 Properties map 1:1 with HTML
 table.bgcolor ="red“;

 Can specify client-side event handlers

 Good when quickly converting existing pages

 Derived from System.Web.UI.HtmlControls.HtmlControl

 Supported controls have custom class, others derive
from HtmlGenericControl

SERVER CONTROLS
HTML CONTROLS

 Supported controls
 <a>

 <form>
 <table>
 <tr>
 <td>
 <th>
 <select>

<textarea>

<button>

<input type=text>

<input type=file>

<input type=submit>

<input type=button>

<input type=reset>

<input type=hidden>

SERVER CONTROLS
HTML CONTROLS

 Can use controls two ways:

 Handle everything in action events (e.g. button click)
 Event code will read the values of other controls (e.g. text, check

boxes, radio buttons, select lists)

 Handle change events as well as action events

SERVER CONTROLS
WEB CONTROLS

 Consistent object model

Label1.BackColor = Color.Red;

Table.BackColor = Color.Blue;

Richer functionality

E.g. AutoPostBack, additional methods

Strongly-typed; no generic control

Enables better compiler type checking

SERVER CONTROLS
WEB CONTROLS

 Web controls appear in HTML markup as namespaced tags

 Web controls have an asp: prefix

 Defined in the System.Web.UI.WebControls namespace

 This namespace is automatically mapped to the asp: prefix

<asp:button onclick="button1_click“ runat=server>

<asp:textbox onchaged="text1_changed“ runat=server>

SERVER CONTROLS
WEB CONTROLS

 Web Controls provide extensive properties to control
display and format, e.g.

 Font

 BackColor, ForeColor

 BorderColor, BorderStyle, BorderWidth

 Style, CssClass

 Height, Width

 Visible, Enabled

SERVER CONTROLS
WEB CONTROLS

 Four types of Web Controls

 Intrinsic controls

 List controls

 Rich controls

 Validation controls

SERVER CONTROLS
INTRINISIC CONTROLS

 Correspond to HTML controls

 Supported controls

 <asp:button>

 <asp:imagebutton>

 <asp:linkbutton>

 <asp:hyperlink>

 <asp:textbox>

 <asp:checkbox>

<asp:radiobutton>

<asp:image>

<asp:label>

<asp:panel>

<asp:table>

SERVER CONTROLS
INTRINISIC CONTROLS

 TextBox, ListControl, CheckBox and their subclasses
don’t automatically do a postback when their controls
are changed

 Specify AutoPostBack=true to make change events
cause a postback

SERVER CONTROLS
LIST CONTROLS

 Controls that handle repetitionSupported controls

<asp:dropdownlist>

<asp:listbox>

<asp:radiobuttonlist>

<asp:checkboxlist>

<asp:repeater>

<asp:datalist>

<asp:datagrid>

 Repeater, DataList and DataGrid controls exp

ose templates for customization

◼ More about these controls and templates later

SERVER CONTROLS
CHECKBOXLIST & RADIOBUTTONLIST

 Provides a collection of check box or
radio button controls

 Can be populated via data binding

<asp:CheckBoxList id=Check1 runat="server">

<asp:ListItem>Item 1</asp:ListItem>

<asp:ListItem>Item 2</asp:ListItem>

<asp:ListItem>Item 3</asp:ListItem>

<asp:ListItem>Item 4</asp:ListItem>

<asp:ListItem>Item 5</asp:ListItem>

</asp:CheckBoxList>

Image control

TextBox control

DropDownList control

HyperLink control

RadioButtonList

Button control

WebControls3 Example

WEBCONTROLS3 EXAMPLE

 A DropDownList does not allow users to type text.

 Each item in the drop-down list is defined by a ListItem
element.

 You can add items to a DropDownList using the ListItem
Collection Editor. This process is similar to customizing a
ListBox in a Windows application.

 Visual Studio displays smart-tag menus for many
ASP.NET controls to facilitate common tasks.

91

WEBCONTROLS3 EXAMPLE

 Add a HyperLink control.

 The NavigateUrl property of this control specifies the resource that is
requested when a user clicks the hyperlink.

 Setting the Target property to _blank specifies that the requested web
page should open in a new window or tab.

 The RadioButtonList control provides a series of radio buttons from
which the user can select only one.

 Like options in a DropDownList, individual radio buttons are defined by
ListItem elements.

 A Button web control represents a button that triggers an action when
clicked, and typically maps to an XHTML input element of type "button".

 1 <%-- WebControls3.aspx --%>

 2 <%-- Registration form that demonstrates web controls. --%>

 3 <%@ Page Language="C#" AutoEventWireup="true"

 4 CodeFile="WebControls3.aspx.cs" Inherits="WebControls3" %>

 5

 6 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 7 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 8

 9 <html xmlns="http://www.w3.org/1999/xhtml">

10 <head runat="server">

11 <title>Web Controls Demonstration</title>

12 <style type="text/css">

13 .style1

14 {

15 color: #006699;

16 }

Outline

WebControls.aspx

(1 of 6)

Web Form that demonstrates web controls. (Part 1 of 6.)

In the head element

of your .aspx file, t

he style element defin

es embedded style sh

eets.

17 .style2

18 {

19 width: 100%;

20 }

21 </style>

22 </head>

23 <body>

24 <form id="form1" runat="server">

25 <div>

26 <h3>This is a sample registration form.</h3>

27 <p><i>Please fill in all fields and click Register.</i></p>

28 <p>

29 <asp:Image ID="userInformationImage" runat="server"

30 ImageUrl="~/Images/user.png" />

31 Please fill out the fields below.

32 </p>

33 <table class="style2">

34 <tr>

35 <td valign="top" style="width: 225px">

36 <asp:Image ID="firstNameImage" runat="server"

37 ImageUrl="~/Images/fname.png" />

38 <asp:TextBox ID="firstNameTextBox" runat="server">

39 </asp:TextBox>

40 </td>

Fig. | Web Form that demonstrates web controls. (Part 2 of 6.)

An Image control ins

erts an image into a w

eb page.

A TextBox control all

ows you to obtain text

from the user and disp

lay text to the user.

In the head element

of your .aspx file, t

he style element defin

es embedded style sh

eets.

65 <p>

66 <asp:Image ID="publicationsImage" runat="server"

67 ImageUrl="~/Images/publications.png" />

68

69 Which book would you like information about?

70 </p>

71 <p>

72 <asp:DropDownList ID="booksDropDownList" runat="server">

73 <asp:ListItem>Visual Basic 2008 How to Program</asp:ListItem>

74 <asp:ListItem>Visual C# 2008 How to Program</asp:ListItem>

75 <asp:ListItem>Java How to Program 6e</asp:ListItem>

76 <asp:ListItem>C++ How to Program 5e</asp:ListItem>

77 <asp:ListItem>C How to Program 5e</asp:ListItem>

78 <asp:ListItem>Internet and World Wide Web How to Program 4e

79 </asp:ListItem>

80 </asp:DropDownList>

81 </p>

82 <p>

83 <asp:HyperLink ID="booksHyperLink" runat="server"

84 NavigateUrl="http://www.deitel.com" Target="_blank">

85 Click here to view more information about our books

86 </asp:HyperLink>

87 </p>

Fig. | Web Form that demonstrates web controls. (Part 4 of 6.)

The DropDownList
control provides a list

of values from which t

he user can select only

one.

The HyperLink c

ontrol adds a hyperl

ink to a web page.

95

88 <p>

89 <asp:Image ID="operatingSystemImage" runat="server"

90 ImageUrl="~/Images/os.png" />

91 Which operating system are you using?

92

93 </p>

94 <p>

95 <asp:RadioButtonList ID="operatingSystemRadioButtonList"

96 runat="server">

97 <asp:ListItem>Windows Vista</asp:ListItem>

98 <asp:ListItem>Windows XP</asp:ListItem>

99 <asp:ListItem>Mac OS X</asp:ListItem>

100 <asp:ListItem>Linux</asp:ListItem>

101 <asp:ListItem>Other</asp:ListItem>

102 </asp:RadioButtonList>

103 </p>

104 <p>

105 <asp:Button ID="registerButton" runat="server"

106 Text="Register" />

107 </p>

108 </div>

109 </form>

110 </body>

111 </html>

Fig. | Web Form that demonstrates web controls. (Part 5 of 6.)

The RadioButtonLi
st control provides a se

ries of radio buttons fro

m which the user can se

lect only one.

A Button web control

represents a button that

triggers an action when

clicked, and typically m

aps to an XHTML inp
ut element of type "b
utton".

SERVER CONTROLS
RICH CONTROLS

 ASP.NET provides large set of controls. These controls are divided into different

categories, depends upon their functionalities. The followings control comes

under the rich controls category.

 FileUpload control

 Calendar control

 AdRotator control

 MultiView control

 Wizard control

FILE UPLOAD CONTROL:

 FileUpload control is used to browse and upload files. After the file is uploaded,

you can store the file on any drive or database. FileUpload control is the

combination of a browse button and a text box for entering the filename.

FILE UPLOAD CONTROL:

 The FileUpload control supports the following important properties.

 FileBytes: It returns the contents of uploaded file as a byte array

 FileContent: You can get the uploaded file contents as a stream.

 FileName: Provides the name of uploaded file.

 HasFile: It is a Boolean property that checks whether particular file is available or

not.

 PostedFile: Gets the uploaded file wrapped in the HttpPostedFile object.

CALENDAR CONTROL:

 Calendar control provides you lots of property and events. By using these

properties and events you can perform the following task with calendar control.



 Select date.

 Selecting a day, a week or a month.

 Customize the calendar's appearance.

THE CALENDAR CONTROL SUPPORTS THREE

IMPORTANT EVENTS:

 SelectionChanged-This event is fired when you select a day, a week or an entire

month.

 DayRender-This event is fired when each data cell of the calendar control is

rendered.

 VisibleMonthChanged -It is raised when user changes a month.



 Calendar control supports SelectionMode property that allows you to select a

single day, week, or entire month.

ADROTATOR CONTROL:

 AdRotator control is used to display different advertisements randomly in a

page. The list of advertisements is stored in either an XML file or in a database

table. Lots of websites uses AdRotator control to display the advertisements on

the web page.

Important properties of AdRotator control:

ImageUrl: The URL of the image that will be displayed through

AdRotator control.

NavigateUrl: If the user clicks the banner or ad then the new p

age is opened according to given URL.

AlternateText: It is used for displaying text instead of the pictur

e if picture is not displayed. It is also used as a tooltip.

Impressions: It is a number that sets how frequently an adverti

sement will appear.

Keyword: It is used to filter ads or identifies a group of advertis

ement

MultiView control:

MultiView control can be used when you want to create a

tabbed page. In many situations, a web form may be very

long, and then you can divide a long form into multiple su

b forms. MultiView control is made up of multiple view con

trols. You can put multiple ASP.NET controls inside view c

ontrols. One View control is displayed at a time and it is c

alled as the active view. View control does not work separ

ately. It is always used with a Multiview control.

example, in Multiview control, we have taken three separ

ate View control.

1. In First step we will design to capture Product details

2. In Second step we will design to capture Order details

3. Next we will show summary for confirmation.

Wizard Control:

This control is same as MultiView control but the main d

ifference is that, it has inbuilt navigation buttons.

The wizard control enables you to design a long form in

such a way that you can work in multiple sub form. You

can perform the task in a step by step process. It reduc

es the work of developers to design multiple forms. It en

ables you to create multi step user interface. Wizard co

ntrol provides with built-in previous/next functionality.

The StepTypes are:

Start

Step

Finish

Complete

Auto

The Wizard control can contains one or more WizardStep

as child controls. Only one WizardStep is displayed at a ti

me. WizardStep control has an important property called

as StepType.

ASP.NET validation controls validate the user input data to en

sure that useless, unauthenticated, or contradictory data don'

t get stored.

ASP.NET provides the following validation controls:

RequiredFieldValidator

RangeValidator

CompareValidator

RegularExpressionValidator

CustomValidator

ValidationSummary

RequiredFieldValidator Control

The RequiredFieldValidator control ensures that the requ

ired field is not empty. It is generally tied to a text box to f

orce input into the text box.

The syntax of the control is as given:

<asp:RequiredFieldValidator ID="rfvcandidate"

runat="server" ControlToValidate ="ddlcandidate"

ErrorMessage="Please choose a candidate"

InitialValue="Please choose a candidate">

</asp:RequiredFieldValidator>

RangeValidator Control

The RangeValidator control verifies that the input value falls within a predetermined rang

e.

It has three specific properties:

Type-It defines the type of the data. The available values are: Currency, Date, Double, In

teger, and String.

MinimumValue-It specifies the minimum value of the range.

MaximumValue- It specifies the maximum value of the range.

The syntax of the control is as given:

<asp:RangeValidator ID="rvclass" runat="server" ControlToValidate="txtclass"

ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"

MinimumValue="6" Type="Integer">

</asp:RangeValidator>Example

The following example describes a form to be filled up by all the students of a school, div

ided into four houses, for electing the school president. Here, we use the validation contr

ols to validate the user input.

This is the form in design view:

form in Design view

CompareValidator Control:

The CompareValidator control compares a value in one control with a fixed value or

a value in another control.

It has the following specific properties:

Properties Description

Type It specifies the data type.

ControlToCompare It specifies the value of the input control to compare with.

ValueToCompare It specifies the constant value to compare with.

OperatorIt specifies the comparison operator, the available values are: Equal, NotEq

ual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, and DataTypeChe

ck.

The basic syntax of the control is as follows:

<asp:CompareValidator ID="CompareValidator1" runat="server"

ErrorMessage="CompareValidator">

</asp:CompareValidator>

RegularExpressionValidator

The RegularExpressionValidator allows validating the input text by matching ag

ainst a pattern of a regular expression. The regular expression is set in the Vali

dationExpression property.

The following table summarizes the commonly used syntax constructs for regul

ar expressions:

Character Escapes Description

\b Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.

\v Matches a vertical tab.

\f Matches a form feed.

\n Matches a new line.

\ Escape character.

The syntax of the control is as given:

<asp:RegularExpressionValidator ID="string" runat="server" ErrorMess

age="string"

ValidationExpression="string" ValidationGroup="string">

</asp:RegularExpressionValidator>

ValidationSummary:

The ValidationSummary control does not perform any validation but show

s a summary of all errors in the page. The summary displays the values of

the ErrorMessage property of all validation controls that failed validation.

The following two mutually inclusive properties list out the error message:

ShowSummary : shows the error messages in specified format.

ShowMessageBox : shows the error messages in a separate window.

The syntax for the control is as given:

<asp:ValidationSummary ID="ValidationSummary1" runat="server"

DisplayMode = "BulletList" ShowSummary

Validation Groups:

Complex pages have different groups of information provided in different

panels. In such situation, a need might arise for performing validation sep

arately for separate group. This kind of situation is handled using validati

on groups.

To create a validation group, you should put the input controls and the val

idation controls into the same logical group by setting their ValidationGro

up property.

Example

The following example describes a form to be filled up by all th

e students of a school, divided into four houses, for electing th

e school president. Here, we use the validation controls to vali

date the user input.

ASP STANDS FOR ACTIVE SERVER PAGES.

 ASP.NET is an open source server-side web-application.

 It’s a framework designed for web development.

 It’s used to produce dynamic web pages.

 It was developed by Microsoft.

 It allows programmers to build dynamic web sites, applications and services.

PROCESS OF ASP.NET

ASP.NET

Developer(s) Microsoft

Initial Release January 5,2002,18 years ago

Stable Release 4.8 / April 18,2019, 9 months ago

Written In .NET Languages

Operating System Microsoft Windows, Linux, MacOS

Platform Cross-Platform

Type Web Framework

License Apache License2.0

Website Dotnet.microsoft/.com/apps/asp.net

Filename Extension .aspx, .cshtml, .vbhtml

Internet Media Type Text/HTML

 ASP.NET is build on the Common Language Runtime(CLR).

 It’s allowing programmers to write ASP.NET code using any supported .NET

languages.

 ASP.NET Simple Object Access Protocol extension (SOAP) framework allows

ASP.NET components to process SOAP messages.

 ASP.NET’s successor is ASP.NET Core.

 It’s a re-implementation of ASP.NET as a modular framework, together with

other framework like Entity Framework.

 The new framework uses the new open source .NET Compiler Platform.

 ASP.NET MVC, ASP.NET WEB API, and ASP.NET Web Pages have merged into a

unified MVC 6.

PROGRAMMING MODELS

 ASP.NET supports a number of programming models for building web applications:

 ASP.NET Web Forms - a framework for building modular pages out of components,
with UI events being processed server-side.

 ASP.NET MVC - allows for building web pages using the model–view–controller
design pattern.

 ASP.NET Web Pages - a lightweight syntax for adding dynamic code and data access
directly inside HTML markup.

 ASP.NET Web API - a framework for building Web APIs on top of the .NET
Framework.

 ASP.NET WebHooks - implements the Webhook pattern for subscribing to and
publishing events via HTTP.

 SignalR - a real-time communications framework for bi-directional communication
between client and server.

OTHER ASP.NET EXTENSIONS INCLUDE:

 ASP.NET Handler: Are components that implement the

System.Web.IHttpHandler interface. Unlike ASP.NET Pages, they have no HTML-

markup file, no events and other supporting.

 All they have is a code-file (written in any .NET-compatible language) that writes

some data to the server HTTP response. HTTP handlers are similar to ISAPI

extensions.

 ASP.NET AJAX: An extension with both client-side as well as server-side

components for writing ASP.NET pages that incorporate Ajax functionality.

ASP.NET Dynamic Data: A scaffolding extension to build data driven web

applications

.NET PROGRAMMING(C#)

[ASP.NET]

 SQL SERVER Database Connection

SQL SERVER

 SQL(Structured Query Language). Is a database server by MicroSoft

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Data.SqlClient;

namespace seminar

{

public partial class _Default : Page

{

SqlConnection con = new SqlConnection(@"Data

Source=.\SQLEXPRESS;AttachDbFillname=c:\users\Dell\Documents\testing.mdf;Integrateds

Security=True;");

protected void Page_Load(object sender, EventArgs e)

{ dis_data(); }

protected void Button1_Click(object sender, EventArgs e)

{

con.Open();

SqlCommand cmd = con.CreateCommand();

cmd.CommandType = CommandType.text;

cmd.CommandText = "insert into vk values('" + TextBox1.Text + "','" +

TextBox2.Text + "','" + TextBox3.Text + "')";

cmd.ExecuteNonQuery();

dis_data();

TextBox1.Text = "";

TextBox2.Text = "";

TextBox3.Text = "";

dis_data();

}

public void dis_data()

{

SqlCommand cmd=con.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText="select * from vk";

cmd.ExecuteNonQuery();

DataTable dt = new DataTable();

SqlDataAdapter da = new SqlDataAdapter();

da.Fill(dt);

GridView1.DataSource = dt;

GridView1.DataBind();

}

protected void Button4_Click(object sender, EventArgs e)

{

dis_data();

}

protected void Button3_Click(object sender, EventArgs e)

{

SqlCommand cmd = con.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "delete from vk where name='"+TextBox1.Text+"'";

cmd.ExecuteNonQuery();

dis_data();

}

protected void Button2_Click(object sender, EventArgs e)

{

SqlCommand cmd = con.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "update vk set

name='"+TextBox1.Text+"',major='"+TextBox3.Text+"'where regno='"+TextBox2.Text+"'";

cmd.ExecuteNonQuery();

TextBox1.Text = "";

TextBox2.Text = "";

TextBox3.Text = "";

dis_data();

}

}

}

.NET PROGRAMMING(C#)

[WIN FORM APPLICATIONS]
CREATING A WINDOWS APPLICATIONS PROJECT IN VISUAL STUDIO

INTRODUCTION

 Windows Form is a GUI(Graphical User Interface) class library that is bundled in

.NET Framework.

 It provides an easier interface to develop applications for

 Desktop, etc.

INTRODUCTION(CONT’D)

 Also Known as ‘WinForms’.

 The applications developed by ‘WinForms’ or ‘Windows Form’ are known as the

‘Windows Forms Application’ that runs on specific platforms.

INTRODUCTION(CONT’D)

 WinForms can contain various controls like the following.,

 Labels

 TextBox

 Button

 ListBox

 Etc.

CREATING WINDOWS FORM

APPLICATIONS

VISUAL STUDIO

 Open Visual Studio(any version).

 Create a new project by,

 Click File Menu

 Click New

 Click Project.

 A Window with built-in templates will occur.

 In the templates window,

 Select ‘Windows Forms Application’ from Visual C# group.

 Provide a suitable name for the project.

 Click ‘Ok’.

THE VISUAL STUDIO PROJECT WINDOW

 After creating a project, The following 3 windows will occur.

 Editor (or) Main Window: A Place for design and code.

 Solution Explorer Window: Navigation between project elements such as Forms,

Code, etc.

 Properties Window: Contains a set of properties for each controls on the form.

TOOLBOX
One Another window is a ‘ToolBox’.

ToolBox contains several control needed for form.

Controls can be added to the form by,
Double clicking on the controls in the toolbox or
Dragging and Dropping them from Toolbox.

IF THE PROJECT IS COMPLETED, CLICK ‘F5’ TO RUN IT.

THANKYOU

THE CONTENTS IN THIS E-MATERIAL IS TAKEN FROM THE TEXTBOOKS AND

REFERENCE BOOKS GIVEN IN THE SYLLABUS

