
.NET PROGRAMMING (C#)

18 MCA 4 2 C

UNIT – III

ADVANCED FEATURE OF C#

FACULTY

Dr. K.ARTHI, MCA, M.Phil., Ph.D.

Assistant Professor,

Post Graduate and Research Department of Computer Applications,

Government Arts College (Autonomous),

Coimbatore – 641018.

CONTENT

Advantage of C#

Serialization

Deserialization

Serializing XML in C#

Multithreading

Reflection

Attributes

Properties

Indexers

ADVANCED FEATURES OF C#

C# is object oriented programming language. It provides a lot of featuresthat

are given below.

Simple - provides structured approach, rich set of library functions, data types

etc.

Modern programming language - based upon the current trend and it is very

powerful and simple for building scalable, interoperable and robust applications.

Object oriented - Procedure-oriented programming language it is not easy to

manage if code grows as project size grow.

Type safe - C# type safe code can only access the memory location that it has

permission to execute.Therefore it improves a security of the program.

Interoperability - Interoperability process enables the C# programs to do almost

anything that a native C++ application cando.

Scalable and Updateable - C# is automatic scalable and updateable programming

language. For updating our application we delete the old files and update them

with new ones.

Component oriented - C# is component oriented programming language. It is

the predominant software development methodology used to develop more

robust and highly scalable applications.

Structured programming language - C# is a structured programming language in

the sense that we can break the program into parts using functions. So, it is easy

to understand and modify.

Rich Library- C# provides alot of inbuilt functions thatmakes the development

fast

Fast speed - The compilation and execution time of C# language is fast.

C# SERIALIZATION

In C#, serialization is the process of

converting object into byte stream

so that it can be saved to memory,

file or database.The reverse process

of serialization is called

deserialization.

Serialization is internally used in

remote applications.

C# DESERIALIZATION

In C# programming,deserialization

is the reverse process of

serialization. It means you can read

the object from byte stream.

SERIALIZING XML IN C#

objects and classes can be serialized without adding any special directives or

attributes to the code. By default, all public properties of a class are already

serializable.

The actual serialization is done by an instance of the class XmlSerializer, from the

System.Xml.Serialization namespace.The serializer’s constructor requires a

reference to the type of object it should work with – which can be obtained by

using the GetType() method of an instanced object, or a call to the

function typeof() and specifying the class name as the only argument.

C# -MULTITHREADING

A thread is defined as the execution path of a program. Each thread defines a

unique flow of control.

Threads are lightweight processes. One common example of use of thread is

implementation of concurrent programming by modern operating systems.

In C#, the System.Threading.Thread class is used for working with threads. It

allows creating and accessing individual threads in a multithreaded application

C# program starts execution, the main thread is automatically created.

The threads created using the Thread class are called the child threads of the

main thread.

EXAMPLE

using System;

using

System.Threading;

namespace

MultithreadingApplication

{

class MainThreadProgram

{ static void Main(string[] args)

{Thread th = Thread.CurrentThread;th.Name = "MainThread";Console.WriteLine("This
is {0}", th.Name);Console.ReadKey();} } }

REFLECTION

Reflection objects are used for obtaining type information at runtime.The classes

that give access to the metadata of arunning program are in

the System.Reflectionnamespace.

The System.Reflection namespace contains classes that allow you to obtain

information about the application and to dynamically add types, values, and

objects to the application.

APPLICATIONS OF REFLECTION

It allows view attribute information at runtime.

It allows examining various types in an assembly and instantiate these types.

It allows late binding to methods and properties

It allows creating new types at runtime and then performs some tasks using

those types.

C# -ATTRIBUTES

An attribute is a declarative tag that is used to convey information to runtime

about the behaviors of various elements like classes, methods, structures,

enumerators, assemblies etc. in your program.

You can add declarative information to a program by using an attribute. A

declarative tag is depicted by square ([]) brackets placed above the element it is

used for.

SPECIFYING AN ATTRIBUTE

Syntax for specifying an attribute is as follows −

[attribute(positional_parameters, name_parameter = value, ...)]element

PredefinedAttributes

AttributeUsage

Conditional

Obsolete

ATTRIBUTEUSAGE

The pre-defined attribute AttributeUsage describes how a custom attribute class

can be used. It specifies the types of items to which the attribute can be applied.

Syntax for specifying this attribute is as follows −

[AttributeUsage (validon, AllowMultiple = allowmultiple, Inherited = inherited)]

C# -PROPERTIES

Properties are named members of classes, structures, and interfaces. Member

variables or methods in a class or structures are called Fields. Properties are an

extension of fields and are accessed using the same syntax.They

use accessors through which the values of the private fields can be read, written

or manipulated.

Properties do not name the storage locations. Instead, they have accessors that

read, write, or compute theirvalues.

ACCESSORS

The accessor of a property contains the executable statements that helps in

getting (reading or computing) or setting (writing) the property.The accessor

declarations can contain a get accessor, a set accessor, or both.

Abstract Properties

An abstract class may have an abstract property, which should be implemented in

the derived class

C# - INDEXERS

An indexer allows an object to be indexed such as an array.When you define an

indexer for a class, this class behaves similar to a virtual array.You can then

access the instance of this class using the array access operator ([]).

Syntax

A one dimensional indexer has the following syntax −

element-type this[int index]

{ // The get accessor.get

{ // return the value specified by index } // The set accessor. set

{ // set the value specified by index } }

USE OF INDEXERS

Declaration of behavior of an indexer is to some extent similar to a property.

similar to the properties, you use get and set accessors for defining an indexer.

However, properties return or set a specific data member, whereas indexers

returns or sets a particular value from the object instanceDefining a property

involves providing a property name. Indexers are not defined with names, but

with the this keyword, which refers to the object instance.

OVERLOADED INDEXERS

Indexers can be overloaded. Indexers can also be declared with multiple

parameters and each parameter may be a different type. It is not necessary that

the indexes have to be integers.

EXAMPLE

class IndexedNames

{ private string[] namelist = new string[size];

static public int size = 10;

public IndexedNames()

{ for (int i = 0;i < size;i++) { namelist[i] = "N.A.";} }

public string this[int index]

{ get { string tmp; if(index >= 0 && index <= size-1)

{ tmp = namelist[index]; } else { tmp = "";

} return (tmp); } set { if(index >= 0 && index <= size-1)

{ namelist[index] = value;

} }

} public int this[string name] { get { int index = 0; while(index < size)

{ if (namelist[index] == name)

{ return index; } index++; } return index;

} } static void Main(string[] args)

{ IndexedNames names = new IndexedNames();

names[0] = "Zara"; names[1] = "Riz"; names[2] = "Nuha"; names[3] = "Asif";

names[4] = "Davinder"; names[5] = "Sunil"; names[6] = "Rubic";//using the first

indexer with int parameter for (int i = 0; i < IndexedNames.size; i++) {

Console.WriteLine(names[i]); } //using the second indexer with the string

parameter Console.WriteLine(names["Nuha"]); Console.ReadKey(); } }}

THANK YOU

THE CONTENT IN THIS E-MATERIAL ISTAKEN FROM THE TEXTBOOKS AND

REFERENCE BOOKS PRESCRIBED IN THE SYLLABUS

