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Overview

 3D Geometric Primitives

 Point

 Line

 Plane

 Polygon

 Sphere

 3D Object Representations

 Raw data

 Surfaces

 Solids

 High-Level Structure



3D Geometric Primitives

 Point

 Line Segment

 Polygon

 Polyhedron

 Curved Surface

 Solid Object

 Etc.



3D Point

 Specifies a Location

 Represented by three coordinates

 Infinitely small

typedef struct{

Coordinate x;

Coordinate y;

Coordinate z;

} Point;

(x, y, z)



3D Vector

 Specifies a Direction and a Magnitude

 Represented by three coordinates

 Magnitude ||v||=sqrt(dxdx + dydy +dzdz)

 Has no location

 Dot product of two 3D vector

 V1 V2 = dx1dx2 + dy1dy2 + dz1dz2

 V1 V2 = ||V1||||V2|| cos(   )

typedef struct{

Coordinate x;

Coordinate y;

Coordinate z;

} Vector;


 

(dx1, dy1, dz1)

(dx2, dy2, dz2)





3D Line

 Line Segment with Both Endpoints at Infinity

 Parametric representation

 P=P1+tV, (                    )
 t

typedef struct{

Point P1;

Vector V;

} Line;
P1

V



3D Ray

 Line Segment with One Endpoints at Infinity

 Parametric representation

 P=P1+tV, (                    )
 t0

typedef struct{

Point P1;

Vector V;

} Ray;
P1

V



3D Line Segment

 Specifies a Linear Combination of Two Points

 Parametric representation

 P=P1 + t(P2 - P1),   (                  )
10  t

typedef struct{

Point P1;

Point P2;

} Segment;

P1

P2



3D Plane

 Specifies a Linear Combination of Three Points

 Implicit representation

 P N + d = 0, or

 ax + by + cz + d = 0 

typedef struct{

Vector N;

Distance d;

} Plane;


N=(a, b, c)

P3

P2

P1

Origin

d



3D Polygon

 Area “Inside” a Sequence of Coplanar Points

 Triangle

 Quadrilateral

 Convex

 Star-shaped

 Concave

 Self-Intersecting 

 Hole

typedef struct{

Point *Points;

int npoints;

} Polygon; Points are in counter-clockwise order



3D Sphere

 All Points at Distance “r” from Point (cx, cy, cz) 

 Implicit representation

 (x-cx)
2 + (y-cy)

2 + (z-cz)
2  = r 2

 Parametric representation

 x= r sin(    ) cos(   )

 y= r sin(    ) sin(   )

 z= r cos(    )

 







r(cx, cy, cz)



3D Object Representations

 Raw Data

 Point cloud

 Range image

 Polygon soup

 Surfaces

 Mesh, Subdivision, Parametric, Implicit

 Solids

 Voxel, BSP tree, CSG, Sweep



Point Cloud

 Unstructured Set of 3D Point Samples

 Acquired from range finder, computer vision, etc



Range Image

 Set of 3D Points Mapping to Pixels of Depth Image

 Acquired from range scanner

Range Image Tessellation Range Surface



Polygon Soup

 Unstructured Set of Polygons

 Created with interactive modeling systems



3D Object Representations

 Raw Data

 Point cloud, Range image, Polygon soup

 Surfaces

 Mesh

 Subdivision

 Parametric

 Implicit

 Solids

 Voxel, BSP tree, CSG, Sweep



Mesh

 Connected Set of Polygons (Usually Triangles)

 May not be closed



Subdivision Surfaces

 Coarse Mesh & Subdivision Rule

 Define smooth surface as limit of sequence of refinements



Parametric Surfaces

 Tensor Product Spline Patches

 Careful constraints to maintain continuity



Implicit Surface

 Points satisfying: F(x,y,z) = 0

Polygonal Model Implicit Model



3D Object Representations

 Raw Data

 Point cloud, Range image, Polygon soup

 Surfaces

 Mesh, Subdivision, Parametric, Implicit

 Solids

 Voxel

 BSP tree

 CSG

 Sweep



Voxels

 Uniform Grid of Volumetric Samples

 Acquired from CAT, MRI, etc.



BSP Tree

 Binary Space Partition with Solid Cells Labeled

 Constructed from polygonal representations

a

b
cd

e

f

g

Object

a

b
cd

e

f

g

Binary Spatial Partition

1

2

3

4

5

6

7

1

2

a

3

b

c

4

d

5

6

e

7

f

BSP Tree



CSG

 Hierarchy of Boolean Set Operations (Union, Difference, Intersect) 

Applied to Simple Shapes



Sweep

 Solid Swept by Curve Along Trajectory

Constructing a Torus 
using Rotational Sweep



Summary

 Taxonomy of 3D Object Representations

Voxel

Discrete Continuous

Combinational Functional

Mesh

Subdivision

BSP Tree Bezier

B-Spline

Algebraic

Topological Set Membership Parametric Implicit



Contents

 Translation

 Scaling 

 Rotation

 Rotations with Quaternions

 Other Transformations

 Coordinate Transformations



Curve representation

 Many techniques are available for drawing & Design the curves ( Pen , 

pencil, brush etc)

 No single tool is sufficient for all tasks

 Two dimensional curve generation techniques are as  “ A curve may be 

represented as a collection of points” provided points are properly 

spaced , connection of points by short straight line segments”



Three dimension  representation

 Graphics scenes can contain many different kinds of objects: trees , 
flowers,clouds, rocks, water, bricks, wood paneling, rubber, paper, 
marble, steel,glass, plastic, and 

 cloth, just to mention a few. So it is probably not too surprising that there 
is no one method that we can use to describe objects that will include all 
characteristics of these different materials. And to produce realistic 
displays of scenes, we need to use representations that accurately 
model object characteristics.

 Polygon and quadric surfaces ,polyhedrons and ellipsoids; spline 
surfaces are useful for designing air craft wings, gears, and other 
engineering structures with curved surfaces; procedural methods, such 
as fractal constructions and particle systems, allow us to give accurate  
representations for clouds, clumps of grass, and other natural objects;



 Representation schemes for solid objects are often divided into two 

broad categories, although not all representations fall neatly into one or 

the other of these two categories. Boundary representations (B-reps)

describe a three-dimen-

 sional object as a set of surfaces that separate the object interior from 

the environment. examples of boundary representations are polygon 

and spline patches. 

 Space-partitioning representations are used to describe interior 

properties, by partitioning the spatial region containing an object into a 

set of small, nonoverlapping, contiguous solids (usually cubes). A 

common space partitioning description for a three-dimensional object is 

an octree representation. we consider the features of the various 

representation schemes and how they are used in applications.



Non parametric Curves

 Mathematically parametric or non parametric form is used to represent 

the curve. Nonparametric form is   y = f(x) & eqn of line y=m x +C

 Implicit form is  f( x , y) =0  and second degree eqn ax2 + 2b xy + cy2 + 

2dx + 2ey +f=0  if a=b=c=0 then eqn dx+ey+f=0 (line)

 B=d=e=0 then ellipse or hyperbola

 If a=b=e=0 then parabola

 A=c=1 and b=d=e=0 then circle



Parametric curves

 Point x=x(t) & y= y(t) then p(t)=[x(t), y(t)] dy / dx is slope

 Line p(t)=p1+(p2-p1)t  where o<= t<=1

 X(t)=x1+(x2-x1)t & Y(t)=y1+(y2-y1)t where 0<=t<=1 and dy/dx is slope 

of line

 Circle X2 +y2 =r2 then Y=+sqrt(r2-x2) where 0<=x<=r in first quadrant 

then parametric form is 

 X=r cos() & y=r sin() where 0<=<=2 pi

 Then p()=p[x,y]=[r cos(), r sin()]

 Xi+1=r cos(I+) Yi+1=r Sin(I+)



 Xi=r cos(I) Yi=r Sin(I) then 

 Xi+1= Xi cos() - Yi Sin() 

 Yi+1= Xi Sin() + Yi Cos() 

 Prametric eqn of ellipse

 X2/a2 +y2/b2=1

 X= a cos() 

 Y=b Sin() 

 Xi+1=a cos(I+) Yi+1=b Sin(I+)

 Xi+1= Xi cos() – (a/b)Yi Sin() 

 Yi+1= (b/a)Xi Sin() + Yi Cos() 

 Parabola y2=4ax then x= Tan2() & y=+-2sqrt(a Tan()) then x=a (
)2 & Y=2a ()

 Xi+1= Xi + Yi()+a ()2

 Yi+1= Yi + 2a ()  And min=ymin/(2a) and max= ymax/(2a) 



Polygon Surface

 The most commonly used boundary representation for a three-

dimensional graphics object is a set of surface polygons that enclose 

the object interior.

 Many graphics systems store all object descriptions as sets of surface 

polygons. since all surfaces are described with linear equations. For 

this reason, polygon descriptions are often referred to as "standard 

graphics objects." In some cases, A polygon representation for a 

polyhedron precisely defines the surface features of the object. But for 

other objects, surfaces are  tiled) to produce the polygon-mesh 

approximation. In Fig.  the surface of a cylinder is represented as a 

polygon mesh. 



Polygon Table

 We specify a polygon surface with a set of vertex coordinates and 
associated attribute parameters. As 

 information for each polygon is input, the data are placed

 into tables that are to be used in the subsequent processing, display, 
and manipulation of the objects in a scene. 

 Polygon data tables can be organized into two groups: geometric 
tables and attribute tables. Geometric data tables contain vertex 
coordinates and parameters to identify the spatial orientation of the 
polygon surfaces. Attribute information for an object includes 
parameters specifying the degree of transparency of the object and its 
surface reflectivity and texture characteristics.





Plane eqn

 To produce a display of a three-dimensional object, we must 

process the input data representation for the object through 

several

 procedures. 

 These processing steps include transformation of the modeling 

and world-coordinate descriptions to viewing coordinates, then to 

device coordinates; identification of visible surfaces;  we need 

information about the spatial orientation of the individual surface 

component object







Polygon Mess



Explicit Representation

Most familiar form of curve in 2D

y=f(x)

Cannot represent all curves

Vertical lines

Circles

Extension to 3D 

 y=f(x), z=g(x)

The form z = f(x,y) defines a surface x

y

x

y

z



Implicit Representation

Two dimensional curve(s)

g(x,y)=0

Much more robust

All lines ax+by+c=0

Circles x2+y2-r2=0

Three dimensions g(x,y,z)=0 defines a surface

 Intersect two surface to get a curve

 In general, we cannot solve for points that satisfy



QUADRIC SURFACES

 A frequently used class of objects are the quadric surfaces, which are 

described with second-degree equations (quadratics). They include 

spheres, ellipsoids, torus, paraboloids and hyperboloids.

 More complex objects can be constructed by these objects.



Sphere

 In Cartesian coordinates, a spherical surface with radius r centered on the 

coordinate origin is defined as the set of points (x, y, z) that satisfy the 

equation



Ellipsoid

 An ellipsoidal surface can be described as an extension of a spherical 

surface,where the radii in three mutually perpendicular directions can have 

different values. The Cartesian representation for points over the surface of 

an ellipsoid centered on the origin is 



ellipsoid

 And a parametric representation for the ellipsoid in terms of the latitude 

angle .and the longitude angle

 



 A torus is a doughnut-shaped object, as shown in Fig.  It can be 

generated by rotating a circle or other conic about a specified axis. The 

Cartesian representation for point over surface of torus can be as 

Torus



Parametric eqn of torus



Curves and Surfaces



Objectives

 Introduce types of curves and surfaces

Explicit

 Implicit

Parametric

Strengths and weaknesses

Discuss Modeling and Approximations

Conditions

Stability



Escaping Flatland

Until now we have worked with flat entities such as lines and flat 

polygons

Fit well with graphics hardware

Mathematically simple

But the world is not composed of flat entities

Need curves and curved surfaces

May only have need at the application level

 Implementation can render them approximately with flat primitives



Modeling with Curves

data points

approximating curve

interpolating data point



Algebraic Surface

0 zyx
kj

i j k

i

•Quadric surface 2  i+j+k

•At most 10 terms 

•Can solve intersection with a ray by

reducing problem to solving quadratic equation



Parametric Curves

Separate equation for each spatial variable

x=x(u)

y=y(u)

z=z(u)

For umax  u  umin we trace out a curve in two or 

three dimensions

p(u)=[x(u), y(u), z(u)]T

p(u)

p(umin)

p(umax)



Selecting Functions

 Usually we can select “good” functions 

 not unique for a given spatial curve

 Approximate or interpolate known data

 Want functions which are easy to evaluate

 Want functions which are easy to differentiate

 Computation of normals

 Connecting pieces (segments)

 Want functions which are smooth



Parametric Lines

Line connecting two points p0 and p1

p(u)=(1-u)p0+up1

We can normalize u to be over the interval (0,1)

p(0) = p0

p(1)= p1

Ray from p0 in the direction d

p(u)=p0+ud

p(0) = p0

p(1)= p0 +d

d



Parametric Surfaces

Surfaces require 2 parameters

x=x(u,v)

y=y(u,v)

z=z(u,v)

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

Want same properties as curves: 

Smoothness

Differentiability

Ease of evaluation

x

y

z p(u,0)

p(1,v)
p(0,v)

p(u,1)



Normals

We can differentiate with respect to u and v to obtain the normal at any 

point p
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Parametric Planes

point-vector form

p(u,v)=p0+uq+vr

n = q x r
q

r

p0

n

three-point form

p0

n

p1

p2

q = p1 – p0

r = p2 – p0



Parametric Sphere

x(u,v) = r cos  sin 

y(u,v) = r sin  sin 

z(u,v) = r cos 

360    0

180    0

 constant: circles of constant longitude

 constant: circles of constant latitude

differentiate to show  n = p



Curve Segments

After normalizing u, each curve is written

p(u)=[x(u), y(u), z(u)]T,   1  u  0

 In classical numerical methods, we design a single global curve

 In computer graphics and CAD, it is better to design small connected 

curve segments

p(u)

q(u)
p(0)

q(1)

join point p(1) = q(0)



Parametric Polynomial Curves
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•If N=M=K, we need to determine 3(N+1) coefficients

•Equivalently we need 3(N+1) independent conditions

•Noting that the curves for x, y and z are independent,

we can define each independently in an identical manner

•We will use the form                       

where p can be any of x, y, z 
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Why Polynomials

Easy to evaluate

Continuous and differentiable everywhere

Must worry about continuity at join points including continuity of 

derivatives

p(u)

q(u)

join point p(1) = q(0)

but p’(1)  q’(0)



Cubic Parametric Polynomials

N=M=L=3, gives balance between ease of evaluation and flexibility in 
design

Four coefficients to determine for each of x, y and z

Seek four independent conditions for various values of u resulting in 
4 equations in 4 unknowns for each of x, y and z

Conditions are a mixture of continuity requirements at the join 
points and conditions for fitting the data 

ucu k

k
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
3

0

)(p



Cubic Polynomial Surfaces
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p(u,v)=[x(u,v), y(u,v), z(u,v)]T

where 

p is any of x, y or z

Need 48 coefficients ( 3 independent sets of 16) to 

determine a surface patch



Transformation in 3D

 Transformation Matrix
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3D Translation

 Translation of a Point
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3D Scaling

 Uniform Scaling
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Relative Scaling

 Scaling with a Selected Fixed Position
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3D Rotation

 Coordinate-Axes Rotations

 X-axis rotation

 Y-axis rotation

 Z-axis rotation

 General 3D Rotations

 Rotation about an axis that is parallel to one of the coordinate 

axes

 Rotation about an arbitrary axis



Coordinate-Axes Rotations

 Z-Axis Rotation  X-Axis Rotation  Y-Axis Rotation
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Order of Rotations

 Order of Rotation Affects Final Position

 X-axis  Z-axis

 Z-axis  X-axis



General 3D Rotations

 Rotation about an Axis that is Parallel to One of the Coordinate 
Axes

 Translate the object so that the rotation axis coincides with the 
parallel coordinate axis

 Perform the specified rotation about that axis

 Translate the object so that the rotation axis is moved back to 
its original position



General 3D Rotations

 Rotation about an Arbitrary Axis

Basic Idea

1. Translate (x1, y1, z1) to the origin

2. Rotate (x’2, y’2, z’2) on to the z 

axis

3. Rotate the object around the z-axis

4. Rotate the axis to the original 

orientation

5. Translate the rotation axis to the 

original position

(x2,y2,z2)

(x1,y1,z1)

x

z

y

R-1

T-1

R

T

           TRRRRRTR  xyzyx
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General 3D Rotations

 Step 1. Translation



























1000

100

010

001

1

1

1

z

y

x

T

(x2,y2,z2)

(x1,y1,z1)

x

z

y



General 3D Rotations

 Step 2. Establish [ TR ]x x axis
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Arbitrary Axis Rotation

 Step 3. Rotate  about  y axis by  

(a,b,c)

(a,0,d)
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Arbitrary Axis Rotation

 Step 4. Rotate  about  z axis by the desired angle 


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Arbitrary Axis Rotation

 Step 5. Apply the reverse transformation to place the axis back in 

its initial position
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Find the new coordinates of a unit cube 90º-rotated about an axis 
defined by its endpoints A(2,1,0) and B(3,3,1).

A Unit Cube

Example



Example

 Step1. Translate point A to the origin

A’(0,0,0)
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y

B’(1,2,1)

























1000

0100

1010

2001

T



x

z

y

l

 



























1000

0
5

5

5

52
0

0
5

52

5

5
0

0001

xR

6121

5

5

5

1
cos

5

52

5

2

12

2
sin

222

22










l
B’(1,2,1)



Projected point 

(0,2,1)

B”(1,0,5)

Example

 Step 2. Rotate axis A’B’ about the x axis by and angle , until it lies 

on the xz plane.
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Example

 Step 3. Rotate axis A’B’’ about the y axis by and angle , until it 

coincides with the z axis.



Example

 Step 4. Rotate the cube 90° about the z axis 

 Finally, the concatenated rotation matrix about the arbitrary axis 

AB becomes,
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     PRP  
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Example

 Multiplying R(θ) by the point matrix of the original cube



Rotations with Quaternions

 Quaternion

 Scalar part s + vector part v = (a, b, c)

 Real part + complex part (imaginary numbers i, j, k)

 Rotation about any axis

 Set up a unit quaternion (u: unit vector)

 Represent any point position P in quaternion notation (p = (x, y, 

z))

2
sin  ,

2
cos


uv s

 pP   ,0

  ckbjaissq  v  ,



Rotations with Quaternions

 Carry out with the quaternion operation (q-1=(s, –v))

 Produce the new quaternion

 Obtain the rotation matrix by quaternion multiplication

 Include the translations: 

1 qqPP

 pP    ,0
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Example

 Rotation about z axis

 Set the unit quaternion: 

 Substitute a=b=0, c=sin(θ/2) into the matrix:
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Other Transformations

 Reflection Relative to the xy Plane

 Z-axis Shear
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Coordinate Transformations

 Multiple Coordinate System

 Local (modeling) coordinate system 

 World coordinate scene

Local Coordinate System



Coordinate Transformations

 Multiple Coordinate System

 Local (modeling) coordinate system 

 World coordinate scene

Word Coordinate System



Coordinate Transformations

 Example – Simulation of Tractor movement

 As tractor moves, tractor coordinate system and front-wheel 

coordinate system move in world coordinate system

 Front wheels rotate in wheel coordinate system



Coordinate Transformations

 Transformation of an Object Description from One Coordinate 

System to Another

 Transformation Matrix

 Bring the two coordinates systems into alignment

1. Translation

x

y

z (0,0,0)

y’

z’

x’u'y
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x
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 000   ,  , zyx T



Coordinate Transformations

2. Rotation & Scaling

x
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3D Viewing

 Viewing: virtual camera

 Projection

 Depth

 Visible lines and surfaces

 Surface rendering



3D Viewing pipeline 1

 Similar to making a photo

 Position and point virtuele camera, press button;

Projection plane aka

Viewing plane

• Pipeline has +/ same structure as in 2D



3D Viewing pipeline 2

MC: Modeling Coordinates

WC: World Coordinates

VC: Viewing Coordinates

PC: Projection Coordinates

NC: Normalized Coordinates

DC: Device Coordinates

Apply model transformations

To camera coordinates

Project

To standard coordinates  

Clip and convert to pixels



3D viewing coordinates 1

Specification of projection:

P0 :   View or eye point

Pref : Center or look-at point

V:    View-up vector (projection along 

vertical axis)

zvp : positie view plane

P0

zw

yw

xw

Pref

N
V

P0, Pref , V: define viewing coordinate system

Several variants possible



3D viewing coordinates 2

P0

zw

yw

xw

Pref

N
V

zview

yview
xview

P0, Pref , V: define viewing coordinate system

Several variants possible



3D view coordinates 3

P0
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3D viewing coördinaten 4
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Projection transformations

P1

P2

P’1

P’2

View plane

Parallel projection

P1

P2

P’1

P’2

View plane

Perspective projection



Orthogonal projections 1

P’1

P’2
Parallell projection:

Projection lines are parallel

Orthogonal projection:

Projection lines are parallel and 

perpendicular to projection plane

Isometric projection:

Projection lines are parallel, 

perpendicular to projection plane,

and have the same angle with axes.

P1

P2

P’1

P’2P1

P2

xy

z



Orthogonal projections 2

Orthogonal projection:

P’1

P’2P1

P2

Trivial!

:s)coordinate projection

 toscoordinate  view(from

 ),,( of Projection

zz

yy

xx

zyx

p

p

p




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Orthogonal projections 3

Clipping

window

zview

xview

yview

Near plane

Far plane

View volume



Orthogonal projections 4

zview

xview

yview

View volume

(xwmin, ywmin, znear)

(xwmax, ywmax, zfar)



Orthogonal projections 4

zview

xview

yview

View volume

(xwmin, ywmin, znear)

(xwmax, ywmax, zfar)

znorm

xnorm

ynorm

Normalized View volume

(1,1,1)

(-1,-1,-1)

Translation

Scaling

From right- to left handed



Perspective projection 1

P1

P2

P’1

P’2

View plane: z = zvp

Projection reference point

zview

xview

yview

View plane: orthogonal to zview axis.



Perspective projection 2

P = (x, y, z) R: Projection reference point

zview

xview

yview

(xr, yr, zr)
(xp, yp, zp)

To simplify, 

Assume R in origin

View plane: z = zvp

Question: What is the projection of P

on the view plane?



Perspective projection 3

P = (x, y, z)

zview

xview

yview
(xp, yp, zp)

(0,0, 0)R=

.' and;';'or  

 ,10  with ,'

 :  to(origin)  from Line

uzzuyyuxx
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.  hence '

:plane with crossingAt 

z

z
uzz

vp
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y
z

z
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z

z
x

vp
p

vp
p    and  

giveson Substituti

View plane: z = zvp



Perspective projection 4

P = (x, y, z) View plane

zview

yview

Viewed from the side

R

z

y

zvp

yp

y
z

z
y

z

y

z

y

vp
p

vp

p





hence

: thatseecan  We



Perspective projection 5

P = (x, y, z)
Clipping window

in View plane

zview

yview

R

zvpW

wmax

wmin

Ratio between

W=wmaxwmin and zvp

determines strenght perspective

Viewed from the side



Viewed from the side

Perspective projection 6

Clipping window

in View plane

zview

yview

R


Ratio between

W=wmaxwmin and zvp

determines strenght perspective.

This ratio is 2tan(/2),

with  the view angle.



Perspective projection 7

zview

yview

R



Perspective projection 7

zview

yview

R



Perspective projection 7

R



Perspective projection 8

zview

yview

R

zvp

W

How to specify the ratio between W en zvp?

How to specify ‘how much’ perspective I want to see? 

Option 1: Specify view angle .





Perspective projection 9

zview

yview

R

zvp

W

Use camera as metaphor. User specifies focal length f .

(20 mm – wide angle, 50 mm – normal, 100 mm – tele). 

Application adjusts W and/or zvp, such that W/zvp = 24/f.

For x: W/zvp = 36/f.

f (mm) 

24 mm



View volume orthogonal…

Clipping

window

zview

xview

yview

Near 

clipping plane

Far 

clipping plane

View volume



View volume perspective

Clipping

window

zview

xview

yview

Near 

clipping plane

Far 

clipping plane

View volume

R



To Normalized Coordinates…

zview

xview

yview

R

znorm

xnorm

ynorm

Normalized View volume

(1,1,1)

(1, 1, 1)

Rectangular frustum

View Volume



Side view       Front view

Perspective projection 10

yview

R
zview

znorm

ynorm

Perspective transformation:

Distort space, such that perpendicular projection gives 

an image in perspective.



Perspective projection 10

yview

R2r

zn

zf

zview

znorm

ynorm

Simplest case:

Square window, 

clipping plane coincides with view plane: zn=zvp



Perspective projection 11

yview

R

zn

zf

zview

znorm

ynorm

(-r, -r, zn)

((zf /zn)r, (zf /zn)r, zf )

2r

(-1,-1,-1)

(1,1,1)



(r,  r, zn)

(rzf /zn, rzf /zn, zf )

Perspective projection 11

yview

R
zview

znorm

ynorm

(1, 1, 1)

(1,1,1)

How to put this transformation in the pipeline?

How to process division by z?

Earlier: y
z

z
yx

z

z
x

vp
p

vp
p  ,



Homogeneous coordinates (reprise)

 Add extra coordinate:

P = (px , py , pz , ph)   or

x = (x, y, z, h)

 Cartesian coordinates: divide by h

x = (x/h, y/h, z/h)

 Points: h = 1 (temporary…) 

perspective: h = z !
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Perspective projection 12

xview

R
zview

znorm

ynorm

(r, r, zn)

(rzf /zn, rzf /zn, zf )

(1, 1, 1)

(1,1,1)(r, r, zn)
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Perspective projection 13

yview

R
zview

znorm

ynorm

(r, r, zn)

(rzf /zn, rzf /zn, zf )

(1, 1, 1)

(1,1,1)
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Perspective projection 14

yview

R
zview

znorm

ynorm
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Perspective projection 15
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3D Viewport coordinates 1

znorm

xnorm

ynorm

Normalized View volume

(1,1,1)

(1, 1, 1)

zv xv

yv

3D screen

(xvmin, yvmin, 0)

(xvmax, yvvmax, 1)

scaling

translation



3D Viewport coordinaten 2
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OpenGL 3D Viewing 1

3D Viewing in OpenGL:

- Position camera;

- Specify projection.



OpenGL 3D Viewing 2

z

x

y

View volume

Camera always in origin, in direction of negative z-axis. 

Convenient for 2D, but not for 3D.



OpenGL 3D Viewing 3

Solution for view transform: Transform your model such that you look at it in 

a convenient way.

Approach 1: Do it yourself. Apply rotations, translations, scaling, etc., before 

rendering the model. Surprisingly difficult and error-prone.

Approach 2: Use gluLookAt();



OpenGL 3D Viewing 4

MatrixMode(GL_MODELVIEW);

gluLookAt(x0,y0,z0, xref,yref,zref, Vx,Vy,Vz);

x0,y0,z0: P0, viewpoint, location of camera;

xref,yref,zref: Pref, centerpoint;

Vx,Vy,Vz: V, view-up vector.

Default: P0 = (0, 0, 0); Pref = (0, 0, 1); V=(0, 1, 0). 



OpenGL 3D Viewing 5

z

x

y

Orthogonal projection:

MatrixMode(GL_PROJECTION);

glOrtho(xwmin, xwmax, ywmin, ywmax, dnear, dfar);

xwmin

xwmax
ywmin

ywmax

xwmin, xwmax, ywmin,ywmax: 

specification window

dnear: distance to near clipping plane

dfar : distance to far clipping plane

Select dnear and dfar right: 

dnear < dfar, 

model fits between clipping planes.



OpenGL 3D Viewing 6

Perspective projection:

MatrixMode(GL_PROJECTION);

glFrustrum(xwmin, xwmax, ywmin, ywmax, dnear, dfar);

xwmin
xwmaxywmin

ywmax

xwmin, xwmax, ywmin,ywmax: 

specification window

dnear: distance to near clipping plane

dfar : distance to far clipping plane

z

x
y

Standard projection: xwmin = -xwmax,
ywmin = -ywmax

Select dnear and dfar right: 

0 < dnear < dfar, 

model fits between clipping planes.



OpenGL 3D Viewing 7

Finally, specify the viewport (just like in 2D):
glViewport(xvmin, yvmin, vpWidth, vpHeight);

xvmin, yvmin: coordinates lower left corner (in pixel 

coordinates);

vpWidth, vpHeight: width and height (in pixel coordinates);

(xvmin, yvmin)

vpWidth

vpHeight



OpenGL 2D Viewing 8

In short:

glMatrixMode(GL_PROJECTION);

glFrustrum(xwmin, xwmax, ywmin, ywmax, dnear, dfar);

glViewport(xvmin, yvmin, vpWidth, vpHeight);

glMatrixMode(GL_MODELVIEW);

gluLookAt(x0,y0,z0, xref,yref,zref, Vx,Vy,Vz);

To prevent distortion, make sure that:
(ywmax – ywmin)/(xwmax – xwmin) = vpWidth/vpHeight

Make sure that you can deal with resize/reshape of the (OS) 
window.



Clipping 

 The primary use of clipping in computer graphics is to remove 

objects, lines, or line segments that are outside the viewing pane.

 The viewing transformation is insensitive to the position of points 

relative to the viewing volume − especially those points behind the 

viewer − and it is necessary to remove these points before 

generating the view.



Point Clipping

 The X-coordinate of the given point is inside the window, if X lies in 

between Wx1 ≤ X ≤ Wx2. Same way, Y coordinate of the given 

point is inside the window, if Y lies in between Wy1 ≤ Y ≤ Wy2.



Line Clipping

 The concept of line clipping is same as point clipping. In line 

clipping, we will cut the portion of line which is outside of window 

and keep only the portion that is inside the window.



Cohen-Sutherland Line 

Clippings



Cyrus-Beck Line Clipping 

Algorithm



Polygon         

Clipping SutherlandHodgman 

Algorithm



Text Clipping

 Various techniques are used to provide text clipping in a computer 

graphics. It depends on the methods used to generate characters 

and the requirements of a particular application. There are three 

methods for text clipping which are listed below −

 All or none string clipping

 All or none character clipping

 Text clipping





Textbook

 Computer Graphics

C Version

 D. Hearn and M. P. Baker

 2nd Edition

 PRENTICE HALL



Thank you
The Content in this Material are from the Textbooks and

Reference books  given in the Syllabus


