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What is Computer Graphics? (

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above 



What is Computer Graphics? 

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

 On set: Pyrotechnics 

Courtesy of Tippet Studio



What is Computer Graphics? 

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

 Bugs: 

Courtesy of Tippet Studio



What is Computer Graphics? 

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

 The Final Stage: Burning the bugs 

Courtesy of Tippet Studio

st.sor.high.15.mov
st.sor.high.15.mov


What is Computer Graphics? 

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

 Batman & Robin: The Love Dust

Courtesy of Buf Compagnie



What is Computer Graphics? 

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

 Batman & Robin: The Love Dust

``



What is Computer Graphics? 

 Imaging

 Representing 2D images

 Modeling

 Representing 3D objects

 Rendering

 Constructing 2D images from 3D models

 Animation

 Simulating changes over time



Applications

 Display of Information

 Design

 Simulation

 Computer Art

 Entertainment



Display of Information

 Graphics for Scientific, Engineering, and Medical Data

Medical ImageNebula



Design

 Graphics for Engineering and Architectural System

 Design of Building, Automobile, Aircraft, Machine etc.

AutoCAD 2002 Interior Design



Simulation

 Computer-Generated Models of Physical, Financial and Economic 

Systems for Educational Aids

Flight Simulator Mars Rover Simulator



Computer Art

 Graphics for Artist

Metacreation Painter



Entertainment

 Graphics for Movie, Game, VR etc.

Final Fantasy Online Game



Contents

 Display Hardware

 How are images display?

 Raster Graphics Systems

 How are imaging system organized?

 Output Primitives

 How can we describe shapes with primitives?

 Color Models

 How can we describe and represent colors?



Display Hardware

 Video Display Devices

 Cathode Ray Tube (CRT)

 Liquid Crystal Display (LCD)

 Plasma panels

 Thin-film electroluminescent display

 Light-emitting diodes (LED)

 Hard-Copy Devices

 Ink-jet printer

 Laser printer

 Film recorder

 Electrostatic printer

 Pen plotter



Cathode Ray Tube (CRT)



Liquid Crystal Display (LCD)



Raster Graphics



Frame Buffer



Frame Buffer Refresh

 Refresh Rate

 Usually 30~75 Hz



Color Frame Buffer
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Introduction

 For a raster display, a picture is completely specified by:

 intensity and position of pixels, or/and

 set of complex objects

 Shapes and contours can either be stored in terms of pixel patterns 

(bitmaps) or as a set of basic geometric structures (for example, 

line segments).



Introduction

 Output primitives are the basic geometric structures which facilitate 

or describe a scene/picture. Example of these include:

 points, lines, curves (circles, conics etc), surfaces, fill colour, 

character string etc.



Points

 A point is shown by 

illuminating a pixel on the 

screen 



Lines

 A line segment is completely defined in terms of its two endpoints.

 A line segment is thus defined as:

Line_Seg = { (x1, y1), (x2, y2) }



Lines

 A line is produced by 

means of illuminating 

a set of intermediary 

pixels between the 

two endpoints.

x

y

x1 x2

y1

y2



Lines

 Lines is digitized into a set of discrete integer positions that 

approximate the actual line path.

 Example: A computed line position of (10.48, 20.51) is converted to 

pixel position (10, 21).



Line 

 The rounding of coordinate values to integer causes all but 

horizonatal and vertical lines to be displayed with a stair step 

appearance “the jaggies”.



Line Drawing Algorithms

 A straight line segment is defined by the coordinate position for the 

end points of the segment.

 Given Points (x1, y1) and (x2, y2) 



Line

 All line drawing algorithms make use of the fundamental equations:

 Line Eqn. y = m.x + b

 Slope m = y2 − y1 / x2 − x1 = Δy / Δx

 y-intercept b = y1 − m.x1

 x-interval→Δx = Δy / m

 y-interval→ Δy = m Δx



DDA Algorithm (Digital Differential 

Analyzer)

 A line algorithm Based on calculating either Δy or Δx using the 

above equations.

 There are two cases:

 Positive slop

 Negative slop



DDA- Line with positive Slope

If  m ≤ 1 then take Δx = 1

 Compute successive y by

yk+1 = yk + m (1)

 Subscript k takes integer values starting from 1, for the first point, 
and increases by 1 until the final end point is reached.

 Since 0.0 < m ≤ 1.0, the calculated y values must be rounded to the 
nearest integer pixel position.



DDA

 If  m > 1, reverse the role of x and y and take Δy = 1, calculate 

successive x from

xk+1 = xk + 1/m (2)

 In this case, each computed x value is rounded to the nearest 

integer pixel position.

 The above equations are based on the assumption that lines are to 

be processed from left endpoint to right endpoint.



DDA

 In case the line is processed from Right endpoint  to Left endpoint, 

then

Δx = −1, yk+1 = yk − m for m ≤ 1 (3)

or

Δy = −1, xk+1 = xk −1/m for m > 1 (4)



DDA- Line with negative 
Slope
 If  m < 1, 

 use(1) [provided line is calculated from left to right] and

 use(3) [provided line is calculated from right to left].

 If  m ≥ 1

 use (2) or (4).



Merits + Demerits

 Faster than the direct use of line Eqn.

 It eliminates the multiplication in line Eqn.

 For long line segments, the true line Path may be mislead due to 
round off.

 Rounding operations and floating-point arithmetic are still time 
consuming.

 The algorithm can still be improved.

 Other algorithms, with better performance also exist.



Code for DDA Algorithm

Procedure lineDDA(xa,ya,xb,yb:integer);

Var

dx,dy,steps,k:integer

xIncrement,yIncrement,x,y:real;

begin

dx:=xb-xa;

dy:=yb-ya;

if abs(dx)>abs(dy) then steps:=abs(dx)

else steps:=abs(dy);

xIncrement:=dx/steps;

yIncrement:=dy/steps;

x:=xa;

y:=ya;

setPixel(round(x),round(y),1);

for k:=1 to steps do

begin

x:=x+xIncrement;

y:=y+yIncrement;

setPixel(round(x),round(y),1)

end

end; {lineDDA}



Bresenham’s Line Algorithm

 It is an efficient raster line generation algorithm. 

 It can be adapted to display circles and other curves.

 The algorithm

 After plotting a pixel position (xk, yk) , what is the next pixel to 

plot?

 Consider lines with positive slope.



Bresenham’s Line

 For a positive slope, 0 < m < 1 and line is starting from left to right.

 After plotting a pixel position (xk, yk) we have two choices for next 

pixel:

 (xk +1, yk)

 (xk +1, yk+1)



Bresenham’s Line

 At position xk +1, we pay attention 

to the intersection of the vertical 

pixel and the mathematical line 

path.



Bresenham’s Line

 At position xk +1, we label 

vertical pixel separations from 

the mathematical line path as 

dlower ,  dupper.



Bresenham’s Line

 The  y coordinate on the mathematical line at xk+1 is calculated as

y = m(xk +1)+ b

then

dlower = y − yk

= m (xk +1) + b − yk

and 

dupper =(yk +1) − y 

= yk +1− m(xk +1)− b



Bresenham’s Line

 To determine which of the two pixels is closest to the line path, we 
set an efficient test based on the difference between the two pixel 
separations

dlower - dupper = 2m (xk +1) − 2yk + 2b - 1

= 2 (Δy / Δx) (xk +1) − 2yk + 2b - 1 

 Consider a decision parameter pk such that

pk = Δx (dlower - dupper )

= 2Δy.xk − 2Δx.yk + c

 where

c = 2Δy + Δx(2b −1)



Bresenham’s Line

 Since Δx > 0, Comparing (dlower and  dupper ), would tell which pixel 

is closer to the line path;  is it yk  or yk + 1 

 If (dlower < dupper ) 

 Then pk is negative

 Hence plot lower pixel.

 Otherwise

 Plot the upper pixel.



Bresenham’s Line

 We can obtain the values of successive decision parameter as 
follows:

pk = 2Δy.xk − 2Δx.yk + c

pk+1=2Δy.xk+1−2Δx.yk+1+c

 Subtracting these two equations

pk+1− pk = 2Δy (xk+1 − xk) − 2Δx ( yk+1 − yk)

 But xk+1 − xk = 1, Therefore

pk+1 = pk +2Δy − 2Δx (yk+1 − yk)



Bresenham’s Line

 ( yk+1 − yk) is either 0 or 1, depending on the sign of pk (plotting 

lower or upper pixel).

 The recursive calculation of pk is performed at integer x position, 

starting at the left endpoint.

 p0 can be evaluated as:

p0 = 2Δy − Δx



Bresenham’s Line-Drawing Algorithm for m 
< 1

1. Input the two line end points and store the left end point in (x0 , y0
).

2. Load (x0 , y0 ) into the frame buffer; that is, plot the first point.

3. Calculate the constants Δx, Δy, 2Δy, and 2Δy − 2Δx, and obtain 
the starting value for the decision parameter as

p0 = 2Δy − Δx

4. At each xk along the line, starting at k = 0 , perform the following 
test: If pk < 0,the next point to plot is (xk +1, yk and

pk+1=pk+2Δy

Otherwise, the next point to plot is (xk +1, yk +1) and

pk+1=pk+2Δy−2Δx

5. Repeat step 4, Δx−1 times.



Summary

 The constants 2Δy and 2Δy − 2Δx are calculated once for each line 

to be scan converted. 

 Hence the arithmetic involves only integer addition and subtraction 

of these two constants.



Example

 To illustrate the algorithm, we digitize the line with endpoints 
(20,10) and (30,18). This line has slope of 0.8, with

Δx = 10

Δy =8

 The initial decision parameter has the value

p0 = 2Δy − Δx = 6

 and the increments for calculating successive decision parameters 
are

2 Δy = 16

2 Δy - 2 Δx = -4



Example

 We plot the initial point (x0 , y0)=(20,10) and determine successive pixel 

positions along the line path from the decision parameter as

K pk (xk +1, yk +1) K pk (xk +1, yk +1)

0 6 (21,11) 5 6 (26,15)

1 2 (22,12) 6 2 (27,16)

2 -2 (23,12) 7 -2 (28,16)

3 14 (24,13) 8 14 (29,17)

4 10 (25,14) 9 10 (30,18)



Example



Circle Generating Algorithms

 A circle is defined as the set of points that are all at a given distance r

from a center point (xc, yc).

 For any circle point (x, y), this distance is expressed by the Equation 

(x − xc)
2 + (y − yc)

2 = r 2

 We calculate the points by stepping along the x-axis in unit steps from 

xc-r to xc+r and calculate y values as 



Circle Generating Algorithms

 There are some problems with this approach:

1. Considerable computation at each step.

2. Non-uniform spacing between plotted pixels as in this Figure.



Circle Generating Algorithms

 Problem 2 can be removed using the polar form:

x = xc + r cos θ

y = yc + r sin θ

 using a fixed angular step size, a circle is plotted with equally 

spaced points along the circumference.



Circle Generating Algorithms

 Problem 1 can be overcome by considering the symmetry of circles 

as in Figure 3. 

 But it still requires a good deal of computation time.

 Efficient Solutions

 Midpoint Circle Algorithm



Mid point Circle Algorithm

 To apply the midpoint method, we define a circle function:

 Any point (x,y) on the boundary of the circle with radius r satisfies 

the equation fcircle(x, y)= 0. 



Mid point Circle Algorithm

 If the points is in the interior of the circle, the circle function is 

negative.

 If the point is outside the circle, the circle function is positive. 

 To summarize, the relative position of any point (x,y) can be 

determined by checking the sign of the circle function:



Mid point Circle Algorithm

 The circle function tests in (3) are performed for the mid positions 
between pixels near the circle path at each sampling step. Thus, 
the circle function is the decision parameter in the midpoint 
algorithm, and we can set up incremental calculations for this 
function as we did in the line algorithm.



Mid point Circle Algorithm

 Figure 4 shows the midpoint between the two candidate pixels at 

sampling position xk +1. Assuming we have just plotted the pixel at 

(xk , yk), we next need to determine whether the pixel at position (xk

+1, yk) or the one at position (xk +1, yk −1) is closer to the circle.



Mid point Circle Algorithm

 Our decision parameter is the circle function (2) evaluated at the 

midpoint between these two pixels:



Mid point Circle Algorithm

 If pk < 0, this midpoint is inside the circle and the pixel on scan line 

yk is closer to the circle boundary. 

 Otherwise, the midpoint is outside or on the circle boundary, and 

we select the pixel on scan line  yk −1.

 Successive decision parameters are obtained using incremental 

calculations.



Mid point Circle Algorithm

 We obtain a recursive expression for the next decision parameter 
by evaluating the circle function at sampling position  xk+1 +1 = xk + 
2

 where yk+1 is either yk or yk-1,depending on the sign of pk.



Mid point Circle Algorithm

 Increments for obtaining pk+1 are either 

 2xk+1 +1 (if pk is negative) or 

 2xk+1 +1− 2yk+1 (if pk is positive) 

 Evaluation of the terms 2xk+1 and 2yk+1 can also be done 

incrementally as:



Mid point Circle Algorithm

 At the start position (0, r), these two terms (2x, 2y) have the values 

0 and 2r, respectively. 

 Each successive value is obtained by adding 2 to the previous 

value of 2x and subtracting 2 from the previous value of 2y.



Mid point Circle Algorithm

 The initial decision parameter is obtained by evaluating the circle 

function at the start position (x0 , y0)=(0, r):



Mid point Circle Algorithm

 If the radius r is specified as an integer, we can simply round p0 to

 since all increments are integers.



Summary of the Algorithm

 As in Bresenham’s line algorithm, the midpoint method calculates 

pixel positions along the circumference of a circle using integer 

additions and subtractions, assuming that the circle parameters are 

specified in screen coordinates. We can summarize the steps in the 

midpoint circle algorithm as follows.



Algorithm



Example

 Given a circle radius r = 10, we demonstrate the midpoint circle 

algorithm by determining positions along the circle octant in the first 

quadrant from x = 0 to x = y . The initial value of the decision 

parameter is



Example

 For the circle centered on the coordinate origin, the initial point is (x0 , 
y0) =(0,10), and initial increment terms for calculating the decision 
parameters are

 Successive decision parameter values and positions along the circle 
path are calculated using the midpoint method as shown in the table.



Example



Example

 A plot of the generated pixel positions in the first 

quadrant is shown in Figure 5.



Midpoint Ellipse Algorithm

 Ellipse equations are greatly simplified if the major and minor axes 
are oriented to align with the coordinate axes. 

 In Fig. 3-22, we show an ellipse in “standard position” with major 
and minor axes oriented parallel to the x and y axes.

 Parameter rx for this example labels the semimajor axis, and 
parameter ry labels the semiminor axis.



Midpoint Ellipse Algorithm

 The equation for the ellipse shown in Fig. 3-22 can be written in 

terms of the ellipse center coordinates and parameters rx and ry as



Midpoint Ellipse Algorithm

 Using polar coordinates r and θ, we can also describe the ellipse in 

standard position with the parametric equations



Midpoint Ellipse Algorithm

 The midpoint ellipse method is applied 

throughout the first quadrant in two parts. 

 Figure 3-25 shows the division of the first 

quadrant according to the slope of an ellipse 

with rx < ry. 



Midpoint Ellipse Algorithm

 Regions 1 and 2 (Fig. 3-25) can be processed in various ways. 

 We can start at position (0, ry) and step clockwise along the 
elliptical path in the first quadrant, shifting from unit steps in x to unit 
steps in y when the slope becomes less than −1.0.

 Alternatively, we could start at (rx, 0) and select points in a 
counterclockwise order, shifting from unit steps in y to unit steps in 
x when the slope becomes greater than −1.0.



Midpoint Ellipse Algorithm

 We define an ellipse function from Eq. 3-37 with (xc , yc) = (0, 0) as

 which has the following properties:



Midpoint Ellipse Algorithm

 Starting at (0, ry), we take unit steps in the x direction until we reach 

the boundary between region 1 and region 2 (Fig. 3-25). 

 Then we switch to unit steps in the y direction over the remainder of 

the curve in the first quadrant.

 At each step we need to test the value of the slope of the curve. 



Midpoint Ellipse Algorithm

 The ellipse slope is calculated from Eq. 3-39 as

 At the boundary between region 1 and region 2, dy/dx = −1.0 and

 Therefore, we move out of region 1 whenever



Midpoint Ellipse Algorithm

 Figure 3-26 shows the midpoint between the two candidate pixels 
at sampling position xk +1 in the first region. 

 Assuming position (xk , yk) has been selected in the previous step, 
we determine the next position along the ellipse path by evaluating 
the decision parameter (that is, the ellipse function 3-39) at this 
midpoint:



Midpoint Ellipse Algorithm

 If p1k < 0, the midpoint is inside the ellipse and the pixel on scan 

line yk is closer to the ellipse boundary. 

 Otherwise, the midposition is outside or on the ellipse boundary, 

and we select the pixel on scan line yk − 1.



Midpoint Ellipse Algorithm

 At the next sampling position (xk+1 + 1 = xk + 2), the decision 

parameter for region 1 is evaluated as



Midpoint Ellipse Algorithm

 Decision parameters are incremented by the following amounts:



Midpoint Ellipse Algorithm

 At the initial position (0, ry), these two terms evaluate to

 As x and y are incremented, updated values are obtained by adding 
2r 2y to the current value of the increment term in Eq. 3-45 and 
subtracting 2r 2x from the current value of the increment term in Eq. 
3-46. 

 The updated increment values are compared at each step, and we 
move from region 1 to region 2 when condition 3-42 is satisfied.



Midpoint Ellipse Algorithm

 In region 1, the initial value of the decision parameter is obtained by 

evaluating the ellipse function at the start position (x0, y0) = (0, ry):



Midpoint Ellipse Algorithm

 Over region 2, we sample at unit intervals in the negative y 

direction, and the midpoint is now taken between horizontal pixels 

at each step (Fig. 3-27). 

 For this region, the decision parameter is evaluated as



Midpoint Ellipse Algorithm

 If p2k > 0, the midposition is outside the ellipse boundary, and we 

select the pixel at xk. 

 If p2k <= 0, the midpoint is inside or on the ellipse boundary, and we 

select

 pixel position xk+1.



Midpoint Ellipse Algorithm

 To determine the relationship between successive decision 

parameters in region 2,we evaluate the ellipse function at the next 

sampling step yk+1 −1 = yk −2:



Midpoint Ellipse Algorithm

 When we enter region 2, the initial position (x0, y0) is taken as the 

last position selected in region 1 and the initial decision parameter 

in region 2 is then



Algorithm



Example

 Given input ellipse parameters rx =8 and ry = 6, we illustrate the 

steps in the midpoint ellipse algorithm by determining raster 

positions along the ellipse path in the first quadrant. 

 Initial values and increments for the decision parameter calculations 

are



Example

 For region 1, the initial point for the ellipse centered on the origin is 
(x0, y0) = (0, 6), and the initial decision parameter value is

 Successive midpoint decision parameter values and the pixel 
positions along the ellipse are listed in the following table.



Example



Example

 We now move out of region 1, since 

2r 2 y x  > 2r 2 x y. 

 For region 2, the initial point is 

(x0, y0) = (7, 3) 

 and the initial decision parameter is



Example

 The remaining positions along the ellipse path in the first quadrant 

are then calculated as



Example

 A plot of the calculated positions for the ellipse within the first 

quadrant is shown bellow:



Computer Graphics

2D transformations



Overview

 Why transformations?

 Basic transformations:

 translation, rotation, scaling

 Combining transformations

 homogenous coordinates, transform. Matrices



Transformations

image

train

world

wheel
modelling…

instantiation…

viewing…

animation…



Why transformation?

 Model of objects

world coordinates: km, mm, etc.

Hierarchical models::

human = torso + arm + arm + head + leg + leg

arm = upperarm + lowerarm + hand …

 Viewing

zoom in, move drawing, etc.

 Animation



Translation

Translate over vector (tx, ty)

x’=x+ tx,  y’=y+ ty
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Translation polygon

Translate polygon:

 Apply the same operation on all 

points.

 Works always, for all 

transformations of objects defined 

as a set of points.

x

y
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Rotation
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Rotation around a point Q
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Schale with factor sx and sy:

x’= sx x,  y’= sy y

or

  and 
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Scaling with respect to a 
point F

Scale with factors sx and sy:

Px’= sx Px,  Py’= syPy

With respect to F:

Px’  Fx = sx (Px  Fx),   

Py’  Fy = sy (Py  Fy)

or

Px’= Fx + sx (Px  Fx),   

Py’= Fy + sy (Py  Fy)

x

y

P

x

P’

Q’

QF

PF



Transformations

 Translate with V:

T = P + V

 Schale with factor sx = sy =s:

S = sP

 Rotate over angle a:

R’x = cos a Px  sin a Py

R’y  = sin a Px  + cos a Py

x

y

P

T

S

R



Transformations…

 Messy!

 Transformations with respect to points: even more messy!

 How to combine transformations?



Homogeneous coordinates 1

 Uniform representation of translation, rotation, scaling

 Uniform representation of points and vectors

 Compact representation of sequence of transformations



Homogeneous coordinaten 2

 Add extra coordinate:

P = (px , py , ph)   or

x = (x, y, h)

 Cartesian coordinates: divide by h

x = (x/h, y/h)

 Points: h = 1 (for the time being…), 

vectors: h = 0 
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Scaling matrix
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Inverse transformations
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back. Translate  3)

origin; around  angleover  Rotate  2)

origin; with coincides such that  Translate  1)
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again.back  Translate  3)
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:point   w.r.t. and  factors with Scale

F

Fxx ss

Scaling w.r.t. point 1

F

1)                      2)                      3)



'''''

'''

'

)PT(P

)PS(P 

)PT(P

F

yx

yx

yx

,FF

ss

F,F







  3)

, 2)

  1)

:point   w.r.t.Schale

Scaling w.r.t.point 2

F

1)                      2)                      3)



PP

)PT()ST(P

'''

'''

























100

)1(0

)1(0

 

or

),( 3)-1

yyy

xxx

yxyxyx

sFs

sFs

F,Fss,FF

Scaling w.r.t.point 3

F

1)                      2)                      3)



again.back  Rotate  3)

origin;  w.r.t.Scale  2)

frame;- standard with coincides framesuch that  Rotate  1)

:frame rotated  w.r.t. and  factors with Scale 21

xy

ss

Scale in other directions 1

1)                      2)                      3)



'''''

'''

'

)PR(P

)PS(P 

)PR(P











  3)

, 2)

  1)

:directionother in  Scale

21 ss

Scale in other directions 2

1)                      2)                      3)



PP

)P)R()S(R(P

'''

'''



























100

0cossinsincos)(

0sincos)(sincos

or

,  3)-1

2
2

2
112

12
2

2
2

1

21







ssss

ssss

ss

Scale in other directions 3

1)                      2)                      3)



Order of transformations 1

x

y

x

y

x’

y’

xx )T(2,3)R(30''  xx )R(30)T(2,3'' 
Matrix multiplication does not commute. 

The order of transformations makes a difference!

Rotation, translation…       Translation, rotation…



Order of transformations 2

 Pre-multiplication:

P’ = M n M n-1…M 2 M 1 P

Transformation M n in global coordinates

 Post-multiplication:

P’ = M 1 M 2…M n-1 M n P

Transformation M n in local coordinates: the

coordinate system after application of

M 1 M 2…M n-1 



Order of transformations 3

OpenGL: glRotate, glScale, etc.:

 Post-multiplication of current transformation matrix

 Always transformation in local coordinates

 Global coordinate version: read in reverse order



Order of transformations 4

xx )R(30)T(2,3''  glTranslate(…);

glRotate(…);

x

y

Local trafo

interpretation

Local transformations:

x

y

Global transformations:

Global trafo

interpretation



Matrices in general

rotation and scaling
translation



Direct construction of matrix

x

y

A
B

T

If you know the target frame:

Construct matrix directly.

Define shape in nice local

u,v coordinates, use matrix

transformation to put it

in x,y space.
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Construct matrix directly.
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Other 2D transformations

 Reflection

 Shear

Can also be combined
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Reflect over origin:
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or

x

y



tanwith 

100

010

01





















f

f

PP'

Shear

Shear the y-as:

x’=x+fy,  y’=y

or

x

y





Transformations coordinates

Given (x,y)-coordinates,

Find (x’,y’)-coordinates.

Reverse route as

object transformaties.

x

y



(x0, y0)



Given (x,y)-coordinates,

Find (x’,y’)-coordinates.

Example: user points at

(x,y), what’s the position

in local coordinates?

Transformations coordinates

x

y



(x0, y0)



Given X: (x,y)-coordinates,

Find X’: (x’,y’)-coordinates.

Standard:

X=MX’ (object trafo:

from local to global)

Here:

X’=M-1X (from global to local)

Transformations coordinates

x

y



(x0, y0)



Given X: (x,y)-coordinates,

Find X’: (x’,y’)-coordinates.

Here:

X’=M-1X (from global to local)

Approach 1:

- Determine “standard matrix” M (from local to global coordinates) 

and invert

Transformations coordinates

x

y



(x0, y0)



Given X: (x,y)-coordinates,

Find X’: (x’,y’)-coordinates.

Here:

X’=M-1X (from global to local)

Approach 2:

- construct transformation that maps local frame to global (reverse 

of usual).

Transformations coordinates

x

y



(x0, y0)



Given X: (x,y)-coordinates,

Find X’: (x’,y’)-coordinates.

Here:

X’=M-1X (from global to local)

Approach 2:

1. Translate (x0, y0) to origin;

2. Rotate x’-axis to x-axis.

Transformations coordinates

x

y



(x0, y0)



Given X: (x,y)-coordinates,

Find X’: (x’,y’)-coordinates.

Here:

X’=M-1X (from global to local)

Approach 2:

M-1 = T(x0, y0) R()

Transformations coordinates

x

y



(x0, y0)



OpenGL 2D transformations 1

Internally:

 Coordinates are four-element row vectors

 Transformations are 44 matrices

2D trafo’s: Ignore z-coordinates, set z = 0.



OpenGL 2D transformations 2

OpenGL maintains two matrices:

 GL_PROJECTION 

 GL_MODELVIEW

Transformations are applied to the current matrix, to be selected with:

 glMatrixMode(GL_PROJECTION) or

 glMatrixMode(GL_MODELVIEW)



OpenGL 2D transformations 3

Initializing the matrix to I:

 glLoadIdentity();

Replace the matrix with M:

 GLfloat M[16]; fill(M);

 glLoadMatrix*(M);

Matrices are specified in column-
major order:

Multiply current matrix with M:

 glMultMatrix*(M);





















m[15]m[11]m[7]m[3]

m[14]m[10]m[6]m[2]

m[13]m[9]m[5]m[1]

m[12]m[8]m[4]m[0]

M



OpenGL 2D transformations 4

Basic transformation functions: generate matrix and post-multiply 

this with current matrix.

Translate over [tx, ty, tz]:

glTranslate*(tx, ty, tz);

Rotate over theta degrees (!) around axis [vx, vy, vz]:

glRotate*(theta, vx, vy, vz);

Scale axes with factors sx, sy, sz:

glScale*(sx, sy, sz);



OpenGL 2D Transformations 5

OpenGL maintains stacks of transformation matrices.

Two operations:

 glPushMatrix():

Make copy of current matrix and put that on top of the stack;

 glPopMatrix():

Remove top element of the stack.

Handy for dealing with hierarchical models

Handy for “undoing” transformations



OpenGL 2D Transformations 6
Standard:

glRotate(10, 1, 2, 0);

glScale(2, 1, 0.5);

glTranslate(1, 2, 3);

glutWireCube(1);

glTranslate(1, 2, 3);

glScale(0.5, 1, 2);

glRotate(10, 1, 2, 0);

Using the stack:

glPushMatrix();

glRotate(10, 1, 2, 0);

glScale(2, 1, 0.5);

glTranslate(1, 2, 3);

glutWireCube(1);

glPopMatrix();

Undo transformation

Shorter, more robust



2D transformations summarized

- Transformations: modeling, viewing, animation;

- Several kinds of transformations;

- Homogeneous coordinates;

- Combine transformations using matrix multiplication.



2D Rendering Pipeline

Clipping

Viewport Transformation

Scan Conversion

Image

Clip portions of geometric primitives 
residing outside window

Transform the clipped primitives 
from screen to image coordinates

Fill pixel representing primitives 
in screen coordinates

2D Primitives



2D Rendering Pipeline

Clipping

Viewport Transformation

Scan Conversion

Image

Clip portions of geometric primitives 
residing outside window

Transform the clipped primitives 
from screen to image coordinates

Fill pixel representing primitives 
in screen coordinates

2D Primitives



Clipping

 Avoid Drawing Parts of Primitives Outside Window

 Window defines part of scene being viewed

 Must draw geometric primitives only inside window 

World
Coordinates



Clipping

 Avoid Drawing Parts of Primitives Outside Window

 Window defines part of scene being viewed

 Must draw geometric primitives only inside window



Clipping

 Avoid Drawing Parts of Primitives Outside Window

 Points

 Lines

 Polygons

 Circles

 etc.



Point Clipping 

 Is Point(x,y) Inside the Clip Window?

(x, y)

wx2wx1
wy1

wy2
Inside =

(x>=wx1) &&
(x<=wx2) &&
(y>=wy1) &&
(y<=wy2);



Line Clipping

 Find the Part of a Line Inside the Clip Window 

P7

P8
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P4

P3

P6

Before Clipping



Line Clipping

 Find the Part of a Line Inside the Clip Window 

After Clipping

P4

P3

P6

P’8

P’7

P’5



Cohen-Sutherland Line 
Clipping

 Use Simple Tests to Classify Easy Cases First
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Cohen-Sutherland Line 
Clipping

 Classify Some Lines Quickly by AND of Bit Codes Representing 

Regions of Two Endpoints (Must Be 0)
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Cohen-Sutherland Line 
Clipping

 Classify Some Lines Quickly by AND of Bit Codes Representing 

Regions of Two Endpoints (Must Be 0)
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Cohen-Sutherland Line 
Clipping

 Classify Some Lines Quickly by AND of Bit Codes Representing 

Regions of Two Endpoints (Must Be 0)
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Cohen-Sutherland Line 
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t 

be Classified Quickly
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Cohen-Sutherland Line 
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t 

be Classified Quickly
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Cohen-Sutherland Line 
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t 

be Classified Quickly
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Cohen-Sutherland Line 
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t 

be Classified Quickly
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Cohen-Sutherland Line 
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t 
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Textbook

 Computer Graphics

C Version

 D. Hearn and M. P. Baker

 2nd Edition

 PRENTICE HALL



Thank you
The Content in this Material are from the Textbooks and

Reference books  given in the Syllabus


