
COMPUTER GRAPHICS AND MULTIMEDIA

- (18MCA41C)

UNIT-I

‘Basics & Two-Dimensional Concepts’

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer

Applications,

Government Arts College (Autonomous), Coimbatore – 641 018.

COMPUTER GRAPHICS AND

MULTIMEDIA-(18MCA41C)

Syllabus :

 UNIT I: Basics & Two-Dimensional Concepts: Overview of Graphics
Systems - Output primitives: Points and Lines - Line Drawing Algorithms -
Circle generating Algorithms - Ellipse generating Algorithms - Two
Dimensional Geometric Transformations: Basic Transformations, Matrix
Representations, Composite Transformations - Two Dimensional Viewing:
Line Clipping - Cohen-Sutherland algorithm.

 UNIT II: Three-Dimensional Concepts: Three Dimensional Concepts, Three
Dimensional Object Representations: Polygon Surfaces - Curved Lines and
Surfaces - Quadric Surfaces - Spline Representation - Three Dimensional
Geometric and Modelling Transformations - Three Dimensional Viewing,
Viewing Pipeline, Projections - Clipping. (Chapters 9, 10, 11 & 12).

 UNIT III: Visible Surface Detection Methods & Color Models: Visible
Surface Detection Methods: Classification of Visible - Surface Detection
Algorithms- Depth - Buffer Method, Scan line Method, BSPTree Method -
Color Models and Color Applications.

 UNIT IV: Fundamentals Of Multimedia: Multimedia-Overview - digital
representation - text - image - audio - video.

 UNIT V: Multimedia Architecture & Virtual Reality: Animation -
compression - multimedia architecture - multimedia documents -
multimedia application development - virtual reality.

 TEXT BOOKS: 1. Donald Hearn & M. Pauline Baker, “Computer Graphics -
C version” Second Edition, Pearson Education, 2006. 2. Ranjan Parekh,
“Principles of Multimedia”, Tata McGraw Hill Publications, 2008.

 REFERENCE BOOKS: 1. Foley James D., Vandam Andries and Hughes John
F., "Computer Graphics : Principles and Practice", Pearson Education,
2013. 2. Ralf Steinmetz, Klara Steinmetz , “Multimedia Computing ,
Communications and Applications”, Pearson Education, 2012.

What is Computer Graphics? (

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

What is Computer Graphics?

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

 On set: Pyrotechnics

Courtesy of Tippet Studio

What is Computer Graphics?

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

 Bugs:

Courtesy of Tippet Studio

What is Computer Graphics?

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

 The Final Stage: Burning the bugs

Courtesy of Tippet Studio

st.sor.high.15.mov
st.sor.high.15.mov

What is Computer Graphics?

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

 Batman & Robin: The Love Dust

Courtesy of Buf Compagnie

What is Computer Graphics?

 Definition

 Producing pictures or images using a computer

 Example

 Starship Troopers: Tango-Urilla, Death From Above

 Batman & Robin: The Love Dust

``

What is Computer Graphics?

 Imaging

 Representing 2D images

 Modeling

 Representing 3D objects

 Rendering

 Constructing 2D images from 3D models

 Animation

 Simulating changes over time

Applications

 Display of Information

 Design

 Simulation

 Computer Art

 Entertainment

Display of Information

 Graphics for Scientific, Engineering, and Medical Data

Medical ImageNebula

Design

 Graphics for Engineering and Architectural System

 Design of Building, Automobile, Aircraft, Machine etc.

AutoCAD 2002 Interior Design

Simulation

 Computer-Generated Models of Physical, Financial and Economic

Systems for Educational Aids

Flight Simulator Mars Rover Simulator

Computer Art

 Graphics for Artist

Metacreation Painter

Entertainment

 Graphics for Movie, Game, VR etc.

Final Fantasy Online Game

Contents

 Display Hardware

 How are images display?

 Raster Graphics Systems

 How are imaging system organized?

 Output Primitives

 How can we describe shapes with primitives?

 Color Models

 How can we describe and represent colors?

Display Hardware

 Video Display Devices

 Cathode Ray Tube (CRT)

 Liquid Crystal Display (LCD)

 Plasma panels

 Thin-film electroluminescent display

 Light-emitting diodes (LED)

 Hard-Copy Devices

 Ink-jet printer

 Laser printer

 Film recorder

 Electrostatic printer

 Pen plotter

Cathode Ray Tube (CRT)

Liquid Crystal Display (LCD)

Raster Graphics

Frame Buffer

Frame Buffer Refresh

 Refresh Rate

 Usually 30~75 Hz

Color Frame Buffer

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

255 150 75 0

Blue channel

Green channel

Red channel

Color CRT

Introduction

 For a raster display, a picture is completely specified by:

 intensity and position of pixels, or/and

 set of complex objects

 Shapes and contours can either be stored in terms of pixel patterns

(bitmaps) or as a set of basic geometric structures (for example,

line segments).

Introduction

 Output primitives are the basic geometric structures which facilitate

or describe a scene/picture. Example of these include:

 points, lines, curves (circles, conics etc), surfaces, fill colour,

character string etc.

Points

 A point is shown by

illuminating a pixel on the

screen

Lines

 A line segment is completely defined in terms of its two endpoints.

 A line segment is thus defined as:

Line_Seg = { (x1, y1), (x2, y2) }

Lines

 A line is produced by

means of illuminating

a set of intermediary

pixels between the

two endpoints.

x

y

x1 x2

y1

y2

Lines

 Lines is digitized into a set of discrete integer positions that

approximate the actual line path.

 Example: A computed line position of (10.48, 20.51) is converted to

pixel position (10, 21).

Line

 The rounding of coordinate values to integer causes all but

horizonatal and vertical lines to be displayed with a stair step

appearance “the jaggies”.

Line Drawing Algorithms

 A straight line segment is defined by the coordinate position for the

end points of the segment.

 Given Points (x1, y1) and (x2, y2)

Line

 All line drawing algorithms make use of the fundamental equations:

 Line Eqn. y = m.x + b

 Slope m = y2 − y1 / x2 − x1 = Δy / Δx

 y-intercept b = y1 − m.x1

 x-interval→Δx = Δy / m

 y-interval→ Δy = m Δx

DDA Algorithm (Digital Differential

Analyzer)

 A line algorithm Based on calculating either Δy or Δx using the

above equations.

 There are two cases:

 Positive slop

 Negative slop

DDA- Line with positive Slope

If m ≤ 1 then take Δx = 1

 Compute successive y by

yk+1 = yk + m (1)

 Subscript k takes integer values starting from 1, for the first point,
and increases by 1 until the final end point is reached.

 Since 0.0 < m ≤ 1.0, the calculated y values must be rounded to the
nearest integer pixel position.

DDA

 If m > 1, reverse the role of x and y and take Δy = 1, calculate

successive x from

xk+1 = xk + 1/m (2)

 In this case, each computed x value is rounded to the nearest

integer pixel position.

 The above equations are based on the assumption that lines are to

be processed from left endpoint to right endpoint.

DDA

 In case the line is processed from Right endpoint to Left endpoint,

then

Δx = −1, yk+1 = yk − m for m ≤ 1 (3)

or

Δy = −1, xk+1 = xk −1/m for m > 1 (4)

DDA- Line with negative
Slope
 If m < 1,

 use(1) [provided line is calculated from left to right] and

 use(3) [provided line is calculated from right to left].

 If m ≥ 1

 use (2) or (4).

Merits + Demerits

 Faster than the direct use of line Eqn.

 It eliminates the multiplication in line Eqn.

 For long line segments, the true line Path may be mislead due to
round off.

 Rounding operations and floating-point arithmetic are still time
consuming.

 The algorithm can still be improved.

 Other algorithms, with better performance also exist.

Code for DDA Algorithm

Procedure lineDDA(xa,ya,xb,yb:integer);

Var

dx,dy,steps,k:integer

xIncrement,yIncrement,x,y:real;

begin

dx:=xb-xa;

dy:=yb-ya;

if abs(dx)>abs(dy) then steps:=abs(dx)

else steps:=abs(dy);

xIncrement:=dx/steps;

yIncrement:=dy/steps;

x:=xa;

y:=ya;

setPixel(round(x),round(y),1);

for k:=1 to steps do

begin

x:=x+xIncrement;

y:=y+yIncrement;

setPixel(round(x),round(y),1)

end

end; {lineDDA}

Bresenham’s Line Algorithm

 It is an efficient raster line generation algorithm.

 It can be adapted to display circles and other curves.

 The algorithm

 After plotting a pixel position (xk, yk) , what is the next pixel to

plot?

 Consider lines with positive slope.

Bresenham’s Line

 For a positive slope, 0 < m < 1 and line is starting from left to right.

 After plotting a pixel position (xk, yk) we have two choices for next

pixel:

 (xk +1, yk)

 (xk +1, yk+1)

Bresenham’s Line

 At position xk +1, we pay attention

to the intersection of the vertical

pixel and the mathematical line

path.

Bresenham’s Line

 At position xk +1, we label

vertical pixel separations from

the mathematical line path as

dlower , dupper.

Bresenham’s Line

 The y coordinate on the mathematical line at xk+1 is calculated as

y = m(xk +1)+ b

then

dlower = y − yk

= m (xk +1) + b − yk

and

dupper =(yk +1) − y

= yk +1− m(xk +1)− b

Bresenham’s Line

 To determine which of the two pixels is closest to the line path, we
set an efficient test based on the difference between the two pixel
separations

dlower - dupper = 2m (xk +1) − 2yk + 2b - 1

= 2 (Δy / Δx) (xk +1) − 2yk + 2b - 1

 Consider a decision parameter pk such that

pk = Δx (dlower - dupper)

= 2Δy.xk − 2Δx.yk + c

 where

c = 2Δy + Δx(2b −1)

Bresenham’s Line

 Since Δx > 0, Comparing (dlower and dupper), would tell which pixel

is closer to the line path; is it yk or yk + 1

 If (dlower < dupper)

 Then pk is negative

 Hence plot lower pixel.

 Otherwise

 Plot the upper pixel.

Bresenham’s Line

 We can obtain the values of successive decision parameter as
follows:

pk = 2Δy.xk − 2Δx.yk + c

pk+1=2Δy.xk+1−2Δx.yk+1+c

 Subtracting these two equations

pk+1− pk = 2Δy (xk+1 − xk) − 2Δx (yk+1 − yk)

 But xk+1 − xk = 1, Therefore

pk+1 = pk +2Δy − 2Δx (yk+1 − yk)

Bresenham’s Line

 (yk+1 − yk) is either 0 or 1, depending on the sign of pk (plotting

lower or upper pixel).

 The recursive calculation of pk is performed at integer x position,

starting at the left endpoint.

 p0 can be evaluated as:

p0 = 2Δy − Δx

Bresenham’s Line-Drawing Algorithm for m
< 1

1. Input the two line end points and store the left end point in (x0 , y0
).

2. Load (x0 , y0) into the frame buffer; that is, plot the first point.

3. Calculate the constants Δx, Δy, 2Δy, and 2Δy − 2Δx, and obtain
the starting value for the decision parameter as

p0 = 2Δy − Δx

4. At each xk along the line, starting at k = 0 , perform the following
test: If pk < 0,the next point to plot is (xk +1, yk and

pk+1=pk+2Δy

Otherwise, the next point to plot is (xk +1, yk +1) and

pk+1=pk+2Δy−2Δx

5. Repeat step 4, Δx−1 times.

Summary

 The constants 2Δy and 2Δy − 2Δx are calculated once for each line

to be scan converted.

 Hence the arithmetic involves only integer addition and subtraction

of these two constants.

Example

 To illustrate the algorithm, we digitize the line with endpoints
(20,10) and (30,18). This line has slope of 0.8, with

Δx = 10

Δy =8

 The initial decision parameter has the value

p0 = 2Δy − Δx = 6

 and the increments for calculating successive decision parameters
are

2 Δy = 16

2 Δy - 2 Δx = -4

Example

 We plot the initial point (x0 , y0)=(20,10) and determine successive pixel

positions along the line path from the decision parameter as

K pk (xk +1, yk +1) K pk (xk +1, yk +1)

0 6 (21,11) 5 6 (26,15)

1 2 (22,12) 6 2 (27,16)

2 -2 (23,12) 7 -2 (28,16)

3 14 (24,13) 8 14 (29,17)

4 10 (25,14) 9 10 (30,18)

Example

Circle Generating Algorithms

 A circle is defined as the set of points that are all at a given distance r

from a center point (xc, yc).

 For any circle point (x, y), this distance is expressed by the Equation

(x − xc)
2 + (y − yc)

2 = r 2

 We calculate the points by stepping along the x-axis in unit steps from

xc-r to xc+r and calculate y values as

Circle Generating Algorithms

 There are some problems with this approach:

1. Considerable computation at each step.

2. Non-uniform spacing between plotted pixels as in this Figure.

Circle Generating Algorithms

 Problem 2 can be removed using the polar form:

x = xc + r cos θ

y = yc + r sin θ

 using a fixed angular step size, a circle is plotted with equally

spaced points along the circumference.

Circle Generating Algorithms

 Problem 1 can be overcome by considering the symmetry of circles

as in Figure 3.

 But it still requires a good deal of computation time.

 Efficient Solutions

 Midpoint Circle Algorithm

Mid point Circle Algorithm

 To apply the midpoint method, we define a circle function:

 Any point (x,y) on the boundary of the circle with radius r satisfies

the equation fcircle(x, y)= 0.

Mid point Circle Algorithm

 If the points is in the interior of the circle, the circle function is

negative.

 If the point is outside the circle, the circle function is positive.

 To summarize, the relative position of any point (x,y) can be

determined by checking the sign of the circle function:

Mid point Circle Algorithm

 The circle function tests in (3) are performed for the mid positions
between pixels near the circle path at each sampling step. Thus,
the circle function is the decision parameter in the midpoint
algorithm, and we can set up incremental calculations for this
function as we did in the line algorithm.

Mid point Circle Algorithm

 Figure 4 shows the midpoint between the two candidate pixels at

sampling position xk +1. Assuming we have just plotted the pixel at

(xk , yk), we next need to determine whether the pixel at position (xk

+1, yk) or the one at position (xk +1, yk −1) is closer to the circle.

Mid point Circle Algorithm

 Our decision parameter is the circle function (2) evaluated at the

midpoint between these two pixels:

Mid point Circle Algorithm

 If pk < 0, this midpoint is inside the circle and the pixel on scan line

yk is closer to the circle boundary.

 Otherwise, the midpoint is outside or on the circle boundary, and

we select the pixel on scan line yk −1.

 Successive decision parameters are obtained using incremental

calculations.

Mid point Circle Algorithm

 We obtain a recursive expression for the next decision parameter
by evaluating the circle function at sampling position xk+1 +1 = xk +
2

 where yk+1 is either yk or yk-1,depending on the sign of pk.

Mid point Circle Algorithm

 Increments for obtaining pk+1 are either

 2xk+1 +1 (if pk is negative) or

 2xk+1 +1− 2yk+1 (if pk is positive)

 Evaluation of the terms 2xk+1 and 2yk+1 can also be done

incrementally as:

Mid point Circle Algorithm

 At the start position (0, r), these two terms (2x, 2y) have the values

0 and 2r, respectively.

 Each successive value is obtained by adding 2 to the previous

value of 2x and subtracting 2 from the previous value of 2y.

Mid point Circle Algorithm

 The initial decision parameter is obtained by evaluating the circle

function at the start position (x0 , y0)=(0, r):

Mid point Circle Algorithm

 If the radius r is specified as an integer, we can simply round p0 to

 since all increments are integers.

Summary of the Algorithm

 As in Bresenham’s line algorithm, the midpoint method calculates

pixel positions along the circumference of a circle using integer

additions and subtractions, assuming that the circle parameters are

specified in screen coordinates. We can summarize the steps in the

midpoint circle algorithm as follows.

Algorithm

Example

 Given a circle radius r = 10, we demonstrate the midpoint circle

algorithm by determining positions along the circle octant in the first

quadrant from x = 0 to x = y . The initial value of the decision

parameter is

Example

 For the circle centered on the coordinate origin, the initial point is (x0 ,
y0) =(0,10), and initial increment terms for calculating the decision
parameters are

 Successive decision parameter values and positions along the circle
path are calculated using the midpoint method as shown in the table.

Example

Example

 A plot of the generated pixel positions in the first

quadrant is shown in Figure 5.

Midpoint Ellipse Algorithm

 Ellipse equations are greatly simplified if the major and minor axes
are oriented to align with the coordinate axes.

 In Fig. 3-22, we show an ellipse in “standard position” with major
and minor axes oriented parallel to the x and y axes.

 Parameter rx for this example labels the semimajor axis, and
parameter ry labels the semiminor axis.

Midpoint Ellipse Algorithm

 The equation for the ellipse shown in Fig. 3-22 can be written in

terms of the ellipse center coordinates and parameters rx and ry as

Midpoint Ellipse Algorithm

 Using polar coordinates r and θ, we can also describe the ellipse in

standard position with the parametric equations

Midpoint Ellipse Algorithm

 The midpoint ellipse method is applied

throughout the first quadrant in two parts.

 Figure 3-25 shows the division of the first

quadrant according to the slope of an ellipse

with rx < ry.

Midpoint Ellipse Algorithm

 Regions 1 and 2 (Fig. 3-25) can be processed in various ways.

 We can start at position (0, ry) and step clockwise along the
elliptical path in the first quadrant, shifting from unit steps in x to unit
steps in y when the slope becomes less than −1.0.

 Alternatively, we could start at (rx, 0) and select points in a
counterclockwise order, shifting from unit steps in y to unit steps in
x when the slope becomes greater than −1.0.

Midpoint Ellipse Algorithm

 We define an ellipse function from Eq. 3-37 with (xc , yc) = (0, 0) as

 which has the following properties:

Midpoint Ellipse Algorithm

 Starting at (0, ry), we take unit steps in the x direction until we reach

the boundary between region 1 and region 2 (Fig. 3-25).

 Then we switch to unit steps in the y direction over the remainder of

the curve in the first quadrant.

 At each step we need to test the value of the slope of the curve.

Midpoint Ellipse Algorithm

 The ellipse slope is calculated from Eq. 3-39 as

 At the boundary between region 1 and region 2, dy/dx = −1.0 and

 Therefore, we move out of region 1 whenever

Midpoint Ellipse Algorithm

 Figure 3-26 shows the midpoint between the two candidate pixels
at sampling position xk +1 in the first region.

 Assuming position (xk , yk) has been selected in the previous step,
we determine the next position along the ellipse path by evaluating
the decision parameter (that is, the ellipse function 3-39) at this
midpoint:

Midpoint Ellipse Algorithm

 If p1k < 0, the midpoint is inside the ellipse and the pixel on scan

line yk is closer to the ellipse boundary.

 Otherwise, the midposition is outside or on the ellipse boundary,

and we select the pixel on scan line yk − 1.

Midpoint Ellipse Algorithm

 At the next sampling position (xk+1 + 1 = xk + 2), the decision

parameter for region 1 is evaluated as

Midpoint Ellipse Algorithm

 Decision parameters are incremented by the following amounts:

Midpoint Ellipse Algorithm

 At the initial position (0, ry), these two terms evaluate to

 As x and y are incremented, updated values are obtained by adding
2r 2y to the current value of the increment term in Eq. 3-45 and
subtracting 2r 2x from the current value of the increment term in Eq.
3-46.

 The updated increment values are compared at each step, and we
move from region 1 to region 2 when condition 3-42 is satisfied.

Midpoint Ellipse Algorithm

 In region 1, the initial value of the decision parameter is obtained by

evaluating the ellipse function at the start position (x0, y0) = (0, ry):

Midpoint Ellipse Algorithm

 Over region 2, we sample at unit intervals in the negative y

direction, and the midpoint is now taken between horizontal pixels

at each step (Fig. 3-27).

 For this region, the decision parameter is evaluated as

Midpoint Ellipse Algorithm

 If p2k > 0, the midposition is outside the ellipse boundary, and we

select the pixel at xk.

 If p2k <= 0, the midpoint is inside or on the ellipse boundary, and we

select

 pixel position xk+1.

Midpoint Ellipse Algorithm

 To determine the relationship between successive decision

parameters in region 2,we evaluate the ellipse function at the next

sampling step yk+1 −1 = yk −2:

Midpoint Ellipse Algorithm

 When we enter region 2, the initial position (x0, y0) is taken as the

last position selected in region 1 and the initial decision parameter

in region 2 is then

Algorithm

Example

 Given input ellipse parameters rx =8 and ry = 6, we illustrate the

steps in the midpoint ellipse algorithm by determining raster

positions along the ellipse path in the first quadrant.

 Initial values and increments for the decision parameter calculations

are

Example

 For region 1, the initial point for the ellipse centered on the origin is
(x0, y0) = (0, 6), and the initial decision parameter value is

 Successive midpoint decision parameter values and the pixel
positions along the ellipse are listed in the following table.

Example

Example

 We now move out of region 1, since

2r 2 y x > 2r 2 x y.

 For region 2, the initial point is

(x0, y0) = (7, 3)

 and the initial decision parameter is

Example

 The remaining positions along the ellipse path in the first quadrant

are then calculated as

Example

 A plot of the calculated positions for the ellipse within the first

quadrant is shown bellow:

Computer Graphics

2D transformations

Overview

 Why transformations?

 Basic transformations:

 translation, rotation, scaling

 Combining transformations

 homogenous coordinates, transform. Matrices

Transformations

image

train

world

wheel
modelling…

instantiation…

viewing…

animation…

Why transformation?

 Model of objects

world coordinates: km, mm, etc.

Hierarchical models::

human = torso + arm + arm + head + leg + leg

arm = upperarm + lowerarm + hand …

 Viewing

zoom in, move drawing, etc.

 Animation

Translation

Translate over vector (tx, ty)

x’=x+ tx, y’=y+ ty

or

x

y

P

P+T
T

y

x

t

t

y

x

y

x
TPP

TPP'

 and ,
'

'
'

 with,

Translation polygon

Translate polygon:

 Apply the same operation on all

points.

 Works always, for all

transformations of objects defined

as a set of points.

x

y

T

Rotation

x

y

P

x

y

P’

a

y

x

y

x

yxy

yxx

PRP

RPP'

 and
cossin

sincos
,

'

'
'

 with,

Or

cossin'

sincos'

: anglean over Rotate

aa

aa

aa

aa

a

Rotation around a point Q

x

y

P

x

y

P’

a

Q

PQ

aa

aa

cossin'

sincos'

:origin around Rotate

yxy

yxx

PPP

PPP

aa

aa

a

cos)(sin)('

sin)(cos)('

: anglean over around Rotate

yyxxyy

yyxxxx

QPQPQP

QPQPQP

Q

Schale with factor sx and sy:

x’= sx x, y’= sy y

or

 and
0

0
,

'

'
'

 with,

y

x

s

s

y

x

y

x
PSP

SPP'

Scaling

x

y

P

x

P’

Q’

Q

Scaling with respect to a
point F

Scale with factors sx and sy:

Px’= sx Px, Py’= syPy

With respect to F:

Px’ Fx = sx (Px Fx),

Py’ Fy = sy (Py Fy)

or

Px’= Fx + sx (Px Fx),

Py’= Fy + sy (Py Fy)

x

y

P

x

P’

Q’

QF

PF

Transformations

 Translate with V:

T = P + V

 Schale with factor sx = sy =s:

S = sP

 Rotate over angle a:

R’x = cos a Px sin a Py

R’y = sin a Px + cos a Py

x

y

P

T

S

R

Transformations…

 Messy!

 Transformations with respect to points: even more messy!

 How to combine transformations?

Homogeneous coordinates 1

 Uniform representation of translation, rotation, scaling

 Uniform representation of points and vectors

 Compact representation of sequence of transformations

Homogeneous coordinaten 2

 Add extra coordinate:

P = (px , py , ph) or

x = (x, y, h)

 Cartesian coordinates: divide by h

x = (x/h, y/h)

 Points: h = 1 (for the time being…),

vectors: h = 0

),('

or

1100

10

01

1

'

'

:nTranslatio

PTP yx

y

x

tt

y

x

t

t

y

x

Translation matrix

)('

or

1100

0cossin

0sincos

1

'

'

:Rotation

PRP

y

x

y

x

Rotation matrix

Scaling matrix

),('

or

1100

00

00

1

'

'

:Scaling

PSP yx

y

x

ss

y

x

s

s

y

x

Inverse transformations

)
1

,
1

(),(

 :Scaling

)()(

 :Rotation

),(),(

 :nTranslatio

1

1-

1-

yx
yx

yxyx

ss
ss

tttt

SS

RR

TT

12

12

12
''

'
2

''

1
'

MMMMP

PMM

P)(MMP

PMP

PMP

 with

:Combined

ation... transformsecond

...sformationfirst tran

Combining transformations 1

PT

P P

PTTP

PTP

PTP

''

'''

'

),(

100

10

01

100

10

01

100

10

01

),(),(

:Combined

on translatisecond),(

slationfirst tran),(

2121

21

21

1

1

2

2

1122

22

11

yxxx

yy

xx

y

x

y

x

yxyx

yx

yx

tttt

tt

tt

t

t

t

t

tttt

tt

tt

Combining transformations 2

),(),(),(

:scaling Composite

)()()(

:rotations Composite

),(),(),(

:ons translatiComposite

21211122

2112

21211122

yyxxyxyx

yxxxyxyx

ssssssss

R

tttttttt

SSS

RR

TTT

Combining transformations 3

back. Translate 3)

origin; around angleover Rotate 2)

origin; with coincides such that Translate 1)

:point around angleover Rotate

R

R

Rotation around a point 1

R

1) 2) 3)

'''''

'''

'

)PT(P

)PR(P

)PT(P

R

yx

yx

,RR

R,R

 3)

 2)

 1)

:point around angleover Rotate

Rotation around a point 2

R

1) 2) 3)

)P)T()R(T(

)P)R(T(

)PT(P

)P)T(R()PR(P

)PT(P

'

'''''

'''

'

yxyx

yx

yx

yx

yx

R,R,RR

,RR

,RR

R,R

R,R

 3)

 2)

 1)

Rotation around point 3

R

1) 2) 3)

PP

)P)T()R(T(P

'''

'''

100

sin)cos1(cossin

sin)cos1(sincos

or

 3)-1

xy

yx

yxyx

RR

RR

R,R,RR

Rotation around point 4

R

1) 2) 3)

again.back Translate 3)

origin; w.r.t.Schale 2)

origin; with coincides such that Translate 1)

:point w.r.t. and factors with Scale

F

Fxx ss

Scaling w.r.t. point 1

F

1) 2) 3)

'''''

'''

'

)PT(P

)PS(P

)PT(P

F

yx

yx

yx

,FF

ss

F,F

 3)

, 2)

 1)

:point w.r.t.Schale

Scaling w.r.t.point 2

F

1) 2) 3)

PP

)PT()ST(P

'''

'''

100

)1(0

)1(0

or

),(3)-1

yyy

xxx

yxyxyx

sFs

sFs

F,Fss,FF

Scaling w.r.t.point 3

F

1) 2) 3)

again.back Rotate 3)

origin; w.r.t.Scale 2)

frame;- standard with coincides framesuch that Rotate 1)

:frame rotated w.r.t. and factors with Scale 21

xy

ss

Scale in other directions 1

1) 2) 3)

'''''

'''

'

)PR(P

)PS(P

)PR(P

 3)

, 2)

 1)

:directionother in Scale

21 ss

Scale in other directions 2

1) 2) 3)

PP

)P)R()S(R(P

'''

'''

100

0cossinsincos)(

0sincos)(sincos

or

, 3)-1

2
2

2
112

12
2

2
2

1

21

ssss

ssss

ss

Scale in other directions 3

1) 2) 3)

Order of transformations 1

x

y

x

y

x’

y’

xx)T(2,3)R(30'' xx)R(30)T(2,3''
Matrix multiplication does not commute.

The order of transformations makes a difference!

Rotation, translation… Translation, rotation…

Order of transformations 2

 Pre-multiplication:

P’ = M n M n-1…M 2 M 1 P

Transformation M n in global coordinates

 Post-multiplication:

P’ = M 1 M 2…M n-1 M n P

Transformation M n in local coordinates: the

coordinate system after application of

M 1 M 2…M n-1

Order of transformations 3

OpenGL: glRotate, glScale, etc.:

 Post-multiplication of current transformation matrix

 Always transformation in local coordinates

 Global coordinate version: read in reverse order

Order of transformations 4

xx)R(30)T(2,3'' glTranslate(…);

glRotate(…);

x

y

Local trafo

interpretation

Local transformations:

x

y

Global transformations:

Global trafo

interpretation

Matrices in general

rotation and scaling
translation

Direct construction of matrix

x

y

A
B

T

If you know the target frame:

Construct matrix directly.

Define shape in nice local

u,v coordinates, use matrix

transformation to put it

in x,y space.

11001

or ,

11

or , '

v

u

TBA

TBA

y

x

v

u

y

x

vu

yyy

xxx

TBA

TBAP

Direct construction of matrix

x

y

A
B

T

If you know the target frame:

Construct matrix directly.

11001

of , '

v

u

trrr

trrr

y

x

yyyyx

xxyxx

MPP

Rigid body transformation

only rotation
translation

x

y

A
B

T

0,1||,1||, and

submatrix lorthonorma :

BABABA
yy

xy

yx

xx

yyyx

xyxx

r

r

r

r

rr

rr

Other 2D transformations

 Reflection

 Shear

Can also be combined

PP'

100

010

001

Reflection over axis

Reflext over x-axis:

x’= x, y’= y

or

x

y

PRP'

PP'

)180(as Same

100

010

001

Reflect over origin

Reflect over origin:

x’= x, y’= y

or

x

y

tanwith

100

010

01

f

f

PP'

Shear

Shear the y-as:

x’=x+fy, y’=y

or

x

y

Transformations coordinates

Given (x,y)-coordinates,

Find (x’,y’)-coordinates.

Reverse route as

object transformaties.

x

y

(x0, y0)

Given (x,y)-coordinates,

Find (x’,y’)-coordinates.

Example: user points at

(x,y), what’s the position

in local coordinates?

Transformations coordinates

x

y

(x0, y0)

Given X: (x,y)-coordinates,

Find X’: (x’,y’)-coordinates.

Standard:

X=MX’ (object trafo:

from local to global)

Here:

X’=M-1X (from global to local)

Transformations coordinates

x

y

(x0, y0)

Given X: (x,y)-coordinates,

Find X’: (x’,y’)-coordinates.

Here:

X’=M-1X (from global to local)

Approach 1:

- Determine “standard matrix” M (from local to global coordinates)

and invert

Transformations coordinates

x

y

(x0, y0)

Given X: (x,y)-coordinates,

Find X’: (x’,y’)-coordinates.

Here:

X’=M-1X (from global to local)

Approach 2:

- construct transformation that maps local frame to global (reverse

of usual).

Transformations coordinates

x

y

(x0, y0)

Given X: (x,y)-coordinates,

Find X’: (x’,y’)-coordinates.

Here:

X’=M-1X (from global to local)

Approach 2:

1. Translate (x0, y0) to origin;

2. Rotate x’-axis to x-axis.

Transformations coordinates

x

y

(x0, y0)

Given X: (x,y)-coordinates,

Find X’: (x’,y’)-coordinates.

Here:

X’=M-1X (from global to local)

Approach 2:

M-1 = T(x0, y0) R()

Transformations coordinates

x

y

(x0, y0)

OpenGL 2D transformations 1

Internally:

 Coordinates are four-element row vectors

 Transformations are 44 matrices

2D trafo’s: Ignore z-coordinates, set z = 0.

OpenGL 2D transformations 2

OpenGL maintains two matrices:

 GL_PROJECTION

 GL_MODELVIEW

Transformations are applied to the current matrix, to be selected with:

 glMatrixMode(GL_PROJECTION) or

 glMatrixMode(GL_MODELVIEW)

OpenGL 2D transformations 3

Initializing the matrix to I:

 glLoadIdentity();

Replace the matrix with M:

 GLfloat M[16]; fill(M);

 glLoadMatrix*(M);

Matrices are specified in column-
major order:

Multiply current matrix with M:

 glMultMatrix*(M);

m[15]m[11]m[7]m[3]

m[14]m[10]m[6]m[2]

m[13]m[9]m[5]m[1]

m[12]m[8]m[4]m[0]

M

OpenGL 2D transformations 4

Basic transformation functions: generate matrix and post-multiply

this with current matrix.

Translate over [tx, ty, tz]:

glTranslate*(tx, ty, tz);

Rotate over theta degrees (!) around axis [vx, vy, vz]:

glRotate*(theta, vx, vy, vz);

Scale axes with factors sx, sy, sz:

glScale*(sx, sy, sz);

OpenGL 2D Transformations 5

OpenGL maintains stacks of transformation matrices.

Two operations:

 glPushMatrix():

Make copy of current matrix and put that on top of the stack;

 glPopMatrix():

Remove top element of the stack.

Handy for dealing with hierarchical models

Handy for “undoing” transformations

OpenGL 2D Transformations 6
Standard:

glRotate(10, 1, 2, 0);

glScale(2, 1, 0.5);

glTranslate(1, 2, 3);

glutWireCube(1);

glTranslate(1, 2, 3);

glScale(0.5, 1, 2);

glRotate(10, 1, 2, 0);

Using the stack:

glPushMatrix();

glRotate(10, 1, 2, 0);

glScale(2, 1, 0.5);

glTranslate(1, 2, 3);

glutWireCube(1);

glPopMatrix();

Undo transformation

Shorter, more robust

2D transformations summarized

- Transformations: modeling, viewing, animation;

- Several kinds of transformations;

- Homogeneous coordinates;

- Combine transformations using matrix multiplication.

2D Rendering Pipeline

Clipping

Viewport Transformation

Scan Conversion

Image

Clip portions of geometric primitives
residing outside window

Transform the clipped primitives
from screen to image coordinates

Fill pixel representing primitives
in screen coordinates

2D Primitives

2D Rendering Pipeline

Clipping

Viewport Transformation

Scan Conversion

Image

Clip portions of geometric primitives
residing outside window

Transform the clipped primitives
from screen to image coordinates

Fill pixel representing primitives
in screen coordinates

2D Primitives

Clipping

 Avoid Drawing Parts of Primitives Outside Window

 Window defines part of scene being viewed

 Must draw geometric primitives only inside window

World
Coordinates

Clipping

 Avoid Drawing Parts of Primitives Outside Window

 Window defines part of scene being viewed

 Must draw geometric primitives only inside window

Clipping

 Avoid Drawing Parts of Primitives Outside Window

 Points

 Lines

 Polygons

 Circles

 etc.

Point Clipping

 Is Point(x,y) Inside the Clip Window?

(x, y)

wx2wx1
wy1

wy2
Inside =

(x>=wx1) &&
(x<=wx2) &&
(y>=wy1) &&
(y<=wy2);

Line Clipping

 Find the Part of a Line Inside the Clip Window

P7

P8

P10

P9

P1

P2

P5

P4

P3

P6

Before Clipping

Line Clipping

 Find the Part of a Line Inside the Clip Window

After Clipping

P4

P3

P6

P’8

P’7

P’5

Cohen-Sutherland Line
Clipping

 Use Simple Tests to Classify Easy Cases First

P7

P8

P10

P9

P1

P2

P5

P4

P3

P6

Cohen-Sutherland Line
Clipping

 Classify Some Lines Quickly by AND of Bit Codes Representing

Regions of Two Endpoints (Must Be 0)

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

P1

P2

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

Cohen-Sutherland Line
Clipping

 Classify Some Lines Quickly by AND of Bit Codes Representing

Regions of Two Endpoints (Must Be 0)

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

P1

P2

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

Cohen-Sutherland Line
Clipping

 Classify Some Lines Quickly by AND of Bit Codes Representing

Regions of Two Endpoints (Must Be 0)

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

P9

0001

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

P9

0001

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P10

P6

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

P’9

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P6

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

P10

P’9

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for Lines That Can’t

be Classified Quickly

P6

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

Textbook

 Computer Graphics

C Version

 D. Hearn and M. P. Baker

 2nd Edition

 PRENTICE HALL

Thank you
The Content in this Material are from the Textbooks and

Reference books given in the Syllabus

