

 18MCA33C Mobile Computing

UNIT V

Application Development

What is Android?

Android is an open source and Linux-based Operating System for mobile devices such as

smartphones and tablet computers. Android was developed by the Open Handset Alliance, led

by Google, and other companies.

Android offers a unified approach to application development for mobile devices which means

developers need to develop only for Android, and their applications should be able to run on

different devices powered by Android.

The first beta version of the Android Software Development Kit (SDK) was released by Google

in 2007, whereas the first commercial version, Android 1.0, was released in September 2008.

On June 27, 2012, at the Google I/O conference, Google announced the next Android version,

Jelly Bean. Jelly Bean is an incremental update, with the primary aim of improving the

user interface, both in terms of functionality and performance.

The source code for Android is available under free and open source software licenses. Google

publishes most of the code under the Apache License version 2.0 and the rest, Linux kernel

changes, under the GNU General Public License version 2.

Features ofAndroid

Android is a powerful operating system competing with Apple 4GS and support great features.

Few of them are listed below:

Feature Description

Beautiful UI Android OS basic screen provides a beautiful and intuitive user

interface.

Connectivity GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE, NFC

and WiMAX.

Storage SQLite, a lightweight relational database, is used for data storage

purposes.

Android

Media support H.263, H.264, MPEG-4 SP, AMR, AMR-WB, AAC, HE-AAC, AAC 5.1,

MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF, and BMP

Messaging SMS and MMS

Web browser Based on the open-source WebKit layout engine, coupled with

Chrome's V8 JavaScript engine supporting HTML5 and CSS3.

Multi-touch Android has native support for multi-touch which was initially made

available in handsets such as the HTC Hero.

Multi-tasking User can jump from one task to another and same time various

application can run simultaneously.

Resizable widgets Widgets are resizable, so users can expand them to show more

content or shrink them to save space

Multi-Language Support single direction and bi-directional text.

GCM Google Cloud Messaging (GCM) is a service that let developers send

short message data to their users on Android devices, without

needing a proprietary sync solution.

Wi-Fi Direct A technology that let apps discover and pair directly, over a high-

bandwidth peer-to-peer connection.

Android Beam A popular NFC-based technology that let users instantly share, just

by touching two NFC-enabled phones together.

AndroidApplications

Android applications are usually developed in the Java language using the Android Software

Development Kit.

Once developed, Android applications can be packaged easily and sold out either through a

store such as Google Play or the Amazon Appstore.

Android

Android powers hundreds of millions of mobile devices in more than 190 countries around the

world. It's the largest installed base of any mobile platform and is growing fast. Every day

more than 1 million new Android devices are activated worldwide.

This tutorial has been written with an aim to teach you how to develop and package Android

application. We will start from environment setup for Android application programming and

then drill down to look into various aspects of Android applications.

Android

3. ANDROID – Architecture

Android operating system is a stack of software components which is roughly divided into five

sections and four main layers as shown below in the architecture diagram.

Linuxkernel

At the bottom of the layers is Linux - Linux 2.6 with approximately 115 patches. This provides

basic system functionality like process management, memory management, device

management like camera, keypad, display etc. Also, the kernel handles all the things that

Linux is really good at, such as networking and a vast array of device drivers, which take the

pain out of interfacing to peripheral hardware.

Libraries
On top of Linux kernel there is a set of libraries including open-source Web browser engine
WebKit, well known library libc, SQLite database which is a useful repository for storage and
Android sharing of application data, libraries to play and record audio and video, SSL
libraries responsible for Internet security etc.

Android Runtime

This is the third section of the architecture and available on the second layer from the bottom.

This section provides a key component called Dalvik Virtual Machine which is a kind of Java

Virtual Machine specially designed and optimized for Android.

The Dalvik VM makes use of Linux core features like memory management and multi-

threading, which is intrinsic in the Java language. The Dalvik VM enables every Android

application to run in its own process, with its own instance of the Dalvik virtual machine.

The Android runtime also provides a set of core libraries which enable Android application

developers to write Android applications using standard Java programming language.

Application Framework

The Application Framework layer provides many higher-level services to applications in the

form of Java classes. Application developers are allowed to make use of these services in their

applications.

Applications

You will find all the Android application at the top layer. You will write your application to be

installed on this layer only. Examples of such applications are Contacts Books, Browser,

Games, etc.

Android

public class MainActivity extends Activity

{

}

4. ANDROID– Applications Component

Application components are the essential building blocks of an Android application. These

components are loosely coupled by the application manifest file AndroidManifest.xml that

describes each component of the application and how they interact.

There are following four main components that can be used within an Android application:

Components Description

Activities They dictate the UI and handle the user interaction to the

smartphone screen

Services They handle background processing associated with an

application.

Broadcast Receivers They handle communication between Android OS and

applications.

Content Providers They handle data and database management issues.

Activities

An activity represents a single screen with a user interface. For example, an email application

might have one activity that shows a list of new emails, another activity to compose an email,

and one for reading emails. If an application has more than one activity, then one of them

should be marked as the activity that is presented when the application is launched.

An activity is implemented as a subclass of Activity class as follows:

Android

public class MyService extends Service

{

}

public class MyReceiver extends BroadcastReceiver

{

}

public class MyContentProvider extends ContentProvider

{

Services

A service is a component that runs in the background to perform long-running operations. For

example, a service might play music in the background while the user is in a different

application, or it might fetch data over the network without blocking user interaction with an

activity.

A service is implemented as a subclass of Service class as follows:

Broadcast Receivers

Broadcast Receivers simply respond to broadcast messages from other applications or from

the system. For example, applications can also initiate broadcasts to let other applications

know that some data has been downloaded to the device and is available for them to use, so

this is broadcast receiver who will intercept this communication and will initiate appropriate

action.

A broadcast receiver is implemented as a subclass of BroadcastReceiver class and each

message is broadcasted as an Intent object.

Content Providers

A content provider component supplies data from one application to others on request. Such

requests are handled by the methods of the ContentResolver class. The data may be stored

in the file system, the database or somewhere else entirely.

A content provider is implemented as a subclass of ContentProvider class and must

implement a standard set of APIs that enable other applications to perform transactions.

Android

We will go through these tags in detail while covering application components in individual

chapters.

Additional Components

There are additional components which will be used in the construction of above mentioned

entities, their logic, and wiring between them. These components are:

Components Description

Fragments Represent a behavior or a portion of user interface in an Activity.

Views UI elements that are drawn onscreen including buttons, lists

forms etc.

Layouts View hierarchies that control screen format and appearance of the

views.

Intents Messages wiring components together.

Resources External elements, such as strings, constants and drawable

pictures.

Manifest Configuration file for the application.

}

Android

5. ANDROID – Hello World Example

Let us start actual programming with Android Framework. Before you start writing your first

example using Android SDK, you have to make sure that you have setup your Android

development environment properly as explained in Android - Environment Setup tutorial. We

also assume, that you have a little bit working knowledge with Eclipse IDE.

So let us proceed to write a simple Android Application which will print "Hello World!".

CreateAndroidApplication

The first step is to create a simple Android Application using Eclipse IDE. Follow the option

File -> New -> Project and finally select Android New Application wizard from the wizard

list. Now name your application as HelloWorld using the wizard window as follows:

Android

Next, follow the instructions provided and keep all other entries as default till the final step.

Once your project is created successfully, you will have the following project screen:

Anatomyof AndroidApplication

Before you run your app, you should be aware of a few directories and files in the Android

project:

Android

S.N. Folder, File & Description

1 src

Android

package com.example.helloworld;

This contains the .java source files for your project. By default, it includes

anMainActivity.java source file having an activity class that runs when your app

is launched using the app icon.

2 gen

This contains the .R file, a compiler-generated file that references all the

resources found in your project. You should not modify this file.

3 bin

This folder contains the Android package files .apk built by the ADT during the

build process and everything else needed to run an Android application.

4 res/drawable-hdpi

This is a directory for drawable objects that are designed for high-density screens.

5 res/layout

This is a directory for files that define your app's user interface.

6 res/values

This is a directory for other various XML files that contain a collection of resources,

such as strings and colors definitions.

7 AndroidManifest.xml

This is the manifest file which describes the fundamental characteristics of the

app and defines each of its components.

Following section will give a brief overview few of the important application files.

The MainActivity File

The main activity code is a Java file MainActivity.java. This is the actual application file

which ultimately gets converted to a Dalvik executable and runs your application. Following

is the default code generated by the application wizard for Hello World! application:

Android

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.helloworld"

android:versionCode="1"

android:versionName="1.0" >

Here, R.layout.activity_main refers to the activity_main.xml file located in the res/layout

folder. The onCreate() method is one of many methods that are fired when an activity is

loaded.

The ManifestFile

Whatever component you develop as a part of your application, you must declare all its

components in a manifest file called AndroidManifest.xml which resides at the root of the

application project directory. This file works as an interface between Android OS and your

application, so if you do not declare your component in this file, then it will not be considered

by the OS. For example, a default manifest file will look like as following file:

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.MenuItem;

import android.support.v4.app.NavUtils;

public class MainActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.activity_main, menu);

return true;

}

}

http://schemas.android.com/apk/res/android

Android

Here <application>...</application> tags enclosed the components related to the application.

Attribute android:icon will point to the application icon available underres/drawable-hdpi. The

application uses the image named ic_launcher.png located in the drawable folders.

The <activity> tag is used to specify an activity and android:name attribute specifies the fully

qualified class name of the Activity subclass and the android:label attributes specifies a string

to use as the label for the activity. You can specify multiple activities using <activity> tags.

The action for the intent filter is named android.intent.action.MAIN to indicate that this

activity serves as the entry point for the application. The category for the intent-filter is

named android.intent.category.LAUNCHER to indicate that the application can be launched

from the device's launcher icon.

The @string refers to the strings.xml file explained below. Hence, @string/app_name refers to

the app_name string defined in the strings.xml file, which is "HelloWorld". Similar way, other

strings get populated in the application.

Following is the list of tags which you will use in your manifest file to specify different Android

application components:

<uses-sdk

android:minSdkVersion="8"

android:targetSdkVersion="15" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name=".MainActivity"

android:label="@string/title_activity_main" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category

android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

</application>

</manifest>

Android

<resources>

<string name="app_name">HelloWorld</string>

<string name="hello_world">Hello world!</string>

<string name="menu_settings">Settings</string>

<string name="title_activity_main">MainActivity</string>

</resources>

/* AUTO-GENERATED FILE. DO NOT MODIFY.

*

* This class was automatically generated by the

* aapt tool from the resource data it found. It

* should not be modified by hand.

*/

package com.example.helloworld;

public final class R {

 <activity>elements for activities

 <service> elements for services

 <receiver> elements for broadcast receivers

 <provider> elements for content providers

The StringsFile

The strings.xml file is located in the res/values folder and it contains all the text that your

application uses. For example, the names of buttons, labels, default text, and similar types of

strings go into this file. This file is responsible for their textual content. For example, a default

string file will look like as following file:

The RFile

The gen/com.example.helloworld/R.java file is the glue between the activity Java files

likeMainActivity.java and the resources like strings.xml. It is an automatically generated file

and you should not modify the content of the R.java file. Following is a sample of R.java file:

Android

public static final class attr {

}

public static final class dimen {

public static final int padding_large=0x7f040002;

public static final int padding_medium=0x7f040001;

public static final int padding_small=0x7f040000;

}

public static final class drawable {

public static final int ic_action_search=0x7f020000;

public static final int ic_launcher=0x7f020001;

}

public static final class id {

public static final int menu_settings=0x7f080000;

}

public static final class layout {

public static final int activity_main=0x7f030000;

}

public static final class menu {

public static final int activity_main=0x7f070000;

}

public static final class string {

public static final int app_name=0x7f050000;

public static final int hello_world=0x7f050001;

public static final int menu_settings=0x7f050002;

public static final int title_activity_main=0x7f050003;

}

public static final class style {

public static final int AppTheme=0x7f060000;

}

}

Android

The LayoutFile

The activity_main.xml is a layout file available in res/layout directory that is referenced by

your application when building its interface. You will modify this file very frequently to change

the layout of your application. For your "Hello World!" application, this file will have following

content related to default layout:

This is an example of simple RelativeLayout which we will study in a separate chapter.

TheTextView is an Android control used to build the GUI and it has various attributes like

android:layout_width, android:layout_height, etc., which are being used to set its width and

height etc. The @string refers to the strings.xml file located in the res/values folder. Hence,

@string/hello_world refers to the hello string defined in the strings.xml file, which is "Hello

World!".

Running theApplication

Let's try to run our Hello World! application we just created. We assume, you had created

your AVD while doing environment setup. To run the app from Eclipse, open one of your

project's activity files and click Run icon from the toolbar. Eclipse installs the app on your

AVD and starts it and if everything is fine with your setup and application, it will display

following Emulator window:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent" >

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_centerHorizontal="true"

android:layout_centerVertical="true"

android:padding="@dimen/padding_medium"

android:text="@string/hello_world"

tools:context=".MainActivity" />

</RelativeLayout>

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

Android

Congratulations! You have developed your first Android Application and now just keep

following rest of the tutorial step by step to become a great Android Developer. All the very

best!

Android

MyProject/

src/

MyActivity.java

res/

drawable/

icon.png

layout/

activity_main.xml

info.xml

values/

strings.xml

6. ANDROID–Organizing&Accessingtheresources

There are many more items which you use to build a good Android application. Apart from

coding for the application, you take care of various other resources like static content that

your code uses, such as bitmaps, colors, layout definitions, user interface strings, animation

instructions, and more. These resources are always maintained separately in various sub-

directories under res/ directory of the project.

This tutorial will explain you how you can organize your application resources, specify

alternative resources and access them in your applications.

OrganizeResources

You should place each type of resource in a specific subdirectory of your

project's res/directory. For example, here's the file hierarchy for a simple project:

The res/ directory contains all the resources in various sub-directories. Here we have an

image resource, two layout resources, and a string resource file. Following table gives a detail

about the resource directories supported inside project res/ directory.

Directory Resource Type

anim/ XML files that define property animations. They are saved in res/anim/

folder and accessed from the R.anim class.

40

Android

color/ XML files that define a state list of colors. They are saved in res/color/

and accessed from the R.color class.

drawable/ Image files like .png, .jpg, .gif or XML files that are compiled into

bitmaps, state lists, shapes, animation drawables. They are saved in

res/drawable/ and accessed from the R.drawable class.

layout/ XML files that define a user interface layout. They are saved in

res/layout/ and accessed from the R.layout class.

menu/ XML files that define application menus, such as an Options Menu,

Context Menu, or Sub Menu. They are saved in res/menu/ and

accessed from the R.menu class.

raw/ Arbitrary files to save in their raw form. You need to call

Resources.openRawResource() with the resource ID, which is

R.raw.filename to open such raw files.

values/ XML files that contain simple values, such as strings, integers, and

colors. For example, here are some filename conventions for resources

you can create in this directory:

arrays.xml for resource arrays, and accessed from the R.array class.

integers.xml for resource integers, and accessed from the

R.integer class.

bools.xml for resource boolean, and accessed from the R.bool class.

colors.xml for color values, and accessed from the R.color class.

dimens.xml for dimension values, and accessed from the

R.dimen class.

strings.xml for string values, and accessed from the R.string class.

styles.xml for styles, and accessed from the R.style class.

xml/ Arbitrary XML files that can be read at runtime by calling

Resources.getXML(). You can save various configuration files here

which will be used at run time.

41

Android

MyProject/

src/

MyActivity.java

res/

drawable/

icon.png

background.png

drawable-hdpi/

icon.png

background.png

layout/

activity_main.xml

info.xml

values/

strings.xml

Alternative Resources

Your application should provide alternative resources to support specific device configurations.

For example, you should include alternative drawable resources (i.e. images) for different

screen resolution and alternative string resources for different languages. At runtime, Android

detects the current device configuration and loads the appropriate resources for your

application.

To specify configuration-specific alternatives for a set of resources, follow these steps:

 Create a new directory in res/ named in the form <resources_name>-

<config_qualifier>. Here resources_name will be any of the resources mentioned

in the above table, like layout, drawable etc. The qualifier will specify an individual

configuration for which these resources are to be used. You can check official

documentation for a complete list of qualifiers for different type of resources.

 Save the respective alternative resources in this new directory. The resource files must

be named exactly the same as the default resource files as shown in the below

example, but these files will have content specific to the alternative. For example

though image file name will be same but for high resolution screen, its resolution will

be high.

Below is an example which specifies images for a default screen and alternative images for

high resolution screen.

42

Android

MyProject/

src/

MyActivity.java

res/

drawable/

icon.png

background.png

drawable-hdpi/

icon.png

background.png

layout/

activity_main.xml

info.xml

layout-ar/

main.xml

values/

strings.xml

ImageView imageView = (ImageView) findViewById(R.id.myimageview);

Below is another example which specifies layout for a default language and alternative layout

for Arabic language (layout-ar/).

Accessing Resources

During your application development you will need to access defined resources either in your

code, or in your layout XML files. Following section explains how to access your resources in

both the scenarios:

Accessing Resourcesin Code

When your Android application is compiled, a R class gets generated, which contains resource

IDs for all the resources available in your res/ directory. You can use R class to access that

resource using sub-directory and resource name or directly resource ID.

Example:

To access res/drawable/myimage.png and set an ImageView you will use following code:

43

Android

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello">Hello, World!</string>

</resources>

TextView msgTextView = (TextView) findViewById(R.id.msg);

msgTextView.setText(R.string.hello);

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="vertical" >

<TextView android:id="@+id/text"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello, I am a TextView" />

<Button android:id="@+id/button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello, I am a Button" />

Here first line of the code uses the R.id.myimageview to get ImageView defined with

idmyimageview in a Layout file. Second line of code uses the R.drawable.myimage to get an

image with name myimage available in drawable sub-directory under /res.

Example:

Consider next example where res/values/strings.xml has following definition:

Now you can set the text on a TextView object with ID msg using a resource ID as follows:

Example:

Consider a layout res/layout/activity_main.xml with the following definition:

44

imageView.setImageResource(R.drawable.myimage);

http://schemas.android.com/apk/res/android

Android

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main_activity);

}

<?xml version="1.0" encoding="utf-8"?>

<resources>

<color name="opaque_red">#f00</color>

<string name="hello">Hello!</string>

</resources>

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:textColor="@color/opaque_red"

android:text="@string/hello" />

This application code will load this layout for an Activity, in the onCreate() method as follows:

Accessing Resourcesin XML

Consider the following resource XML res/values/strings.xml file that includes a color resource

and a string resource:

Now you can use these resources in the following layout file to set the text color and text

string as follows:

Now if you go through the previous chapter once again where we have explained Hello

World! example, surely you will have better understanding on all the concepts explained in

this chapter. So we highly recommend to check previous chapter for working example and

check how we have used various resources at very basic level.

45

</LinearLayout>

http://schemas.android.com/apk/res/android

Android

7. ANDROID – Activities

An activity represents a single screen with a user interface. For example, an email application

might have one activity that shows a list of new emails, another activity to compose an email,

and another activity for reading emails. If an application has more than one activity, then one

of them should be marked as the activity that is presented when the application is launched.

If you have worked with C, C++ or Java programming language then you must have seen

that your program starts from main() function. Very similar way, Android system initiates its

program within an Activity starting with a call on onCreate() callback method. There is a

sequence of callback methods that start up an activity and a sequence of callback methods

that tear down an activity as shown in the below Activity lifecycle diagram: (image courtesy:

android.com)

The Activity class defines the following callbacks i.e. events. You don't need to implement all

the callback methods. However, it's important that you understand each one and implement

those that ensure your app behaves the way users expect.

Callback Description

onCreate() This is the first callback and called when the activity is first created.

onStart() This callback is called when the activity becomes visible to the user.

46

Android

package com.example.helloworld;

onResume() This is called when the user starts interacting with the application.

onPause() The paused activity does not receive user input and cannot execute

any code and called when the current activity is being paused and the

previous activity is being resumed.

onStop() This callback is called when the activity is no longer visible.

onDestroy() This callback is called before the activity is destroyed by the system.

onRestart() This callback is called when the activity restarts after stopping it.

Example:

This example will take you through simple steps to show Android application activity life

cycle. Follow the below mentioned steps to modify the Android application we created

in Hello World Example chapter:

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

HelloWorld under a package com.example.helloworld as explained in the Hello

World Example chapter.

2 Modify main activity file MainActivity.java as explained below. Keep rest of the

files unchanged.

3 Run the application to launch Android emulator and verify the result of the

changes done in the application.

Following is the content of the modified main activity file

src/com.example.helloworld/MainActivity.java. This file includes each of the

fundamental lifecycle methods. The Log.d() method has been used to generate log

messages:

Android

import android.os.Bundle;

import android.app.Activity;

import android.util.Log;

public class MainActivity extends Activity {

String msg = "Android : ";

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

Log.d(msg, "The onCreate() event");

}

/** Called when the activity is about to become visible. */

@Override

protected void onStart() {

super.onStart();

Log.d(msg, "The onStart() event");

}

/** Called when the activity has become visible. */

@Override

protected void onResume() {

super.onResume();

Log.d(msg, "The onResume() event");

}

/** Called when another activity is taking focus. */

@Override

protected void onPause() {

Android

setContentView(R.layout.activity_main);

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.helloworld"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk

android:minSdkVersion="8"

An activity class loads all the UI component using the XML file available in res/layout folder of

the project. Following statement loads UI components from res/layout/activity_main.xml file:

An application can have one or more activities without any restrictions. Every activity you

define for your application must be declared in your AndroidManifest.xml file and the main

activity for your app must be declared in the manifest with an <intent-filter> that includes

the MAIN action and LAUNCHER category as follows:

super.onPause();

Log.d(msg, "The onPause() event");

}

/** Called when the activity is no longer visible. */

@Override

protected void onStop() {

super.onStop();

Log.d(msg, "The onStop() event");

}

/** Called just before the activity is destroyed. */

@Override

public void onDestroy() {

super.onDestroy();

Log.d(msg, "The onDestroy() event");

}

}

http://schemas.android.com/apk/res/android

Android

07-19 15:00:43.405: D/Android :(866): The onCreate() event

07-19 15:00:43.405: D/Android :(866): The onStart() event

07-19 15:00:43.415: D/Android :(866): The onResume() event

If either the MAIN ction or LAUNCHER category are not declared for one of your activities,

then your app icon will not appear in the Home screen's list of apps.

Let's try to run our modified Hello World! application we just modified. We assume, you had

created your AVD hile doing environment setup. To run the app from Eclipse, open one of

your project's activity files and click Run icon from the toolbar. Eclipse installs the app on

your AVD and starts it and if everything is fine with your setup and application, it will display

Emulator window and you should see following log messages in LogCat window in Eclipse

IDE:

android:targetSdkVersion="15" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name=".MainActivity"

android:label="@string/title_activity_main" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category

andr id:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

</application>

</manifest>

Android

07-19 15:01:10.995: D/Android :(866): The onPause() event

07-19 15:01:12.705: D/Android :(866): The onStop() event

07-19 15:01:13.995: D/Android :(866): The onStart() event

07-19 15:01:14.705: D/Android :(866): The onResume() event

07-19 15:33:15.687: D/Android :(992): The onPause() event

07-19 15:33:15.525: D/Android :(992): The onStop() event

07-19 15:33:15.525: D/Android :(992): The onDestroy() event

Let us try to click Red button on the Android emulator and it will generate following events

messages in LogCat window in Eclipse IDE:

Let us again try to click Menu button on the Android emulator and it will generate following

events messages in LogCat window in Eclipse IDE:

Next, let us again try to click Back button on the Android emulator and it will generate

following events messages in LogCat window in Eclipse IDE and this completes the Activity

Life Cycle for an Android Application.

Android

 THANK YOU

This content is taken from the text books and reference books prescribed in the

syllabus.

