PYTHON PROGRAMMING
(18MCA31C)

UNIT-V
Classes and Objects

FACULTY:
Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head,
Post Graduate and Research Department of Computer Applications,
Government Arts College (Autonomous), Coimbatore — 641 018.

Python Object Oriented
Programming

= |n this unit, we'll learn about Object-Oriented Programming (OOP) in Python
and its fundamental concept with the help of examples.

» Object Oriented Programming

= Python is a multi-paradigm programming language. It supports different
programming approaches. One of the popular approaches to solve a
programming problem is by creating objects. This is known as Object-
Oriented Programming (OOP).

= An object has two characteristics:
= Aftributes

= behavior
» |et's take an example:
= A parrot is can be an object, as it has the following properties:

= name, age, color as attributes

= singing, dancing as behavior

» The concept of OOP in Python focuses on creating reusable code. This
conceptis also known as DRY (Don't Repeat Yourself).

Class

» A class is a blueprint for the object.

» We can think of class as a sketch of a parrot with labels. It
contains all the details about the name, colors, size etc. Based
on these descriptions, we can study about the parrot. Here, a
parrdt is an object.

» Thie example for class of parrot can be:
class Fruit:

Pass

Here, we use the class keyword to define an empty class fruit
From class, we construct instances. An instance is a specific
object created from a particular class.

File Edit Format Run Options Window Help

class Parrot:

class attribute
species = "bird"

instance attribute

def init (self, name, age):
salf.name = name
self.age = age

instantiate the Parrot class
blu = Parrot("EBlu", 10)
woo Parrot ("Woo"™, 15)

access the class attributes
print ("Blu 1is a {}".format(blu.__ class__.species))
print ("Woo is also a {}".format (woo.__class__ .species))

access the instance attributes
print("{} is {} years old".format(blu.nam=, blu.age))
princ("{} i=s {} years old".format(woo.name, woo.age))

Object

An object (instance) is an instantiation of a class. When class is defined, only the description for the object is defined. Therefore, no memory or storage is allocated.
The example for object of parrot class can be:
obj = Parrot()
Here, objis an object of class Parrot.
Suppose we have details of parrots. Now, we are going fo show how to build the class and objects of parrots.

Example 1: Creating Class and Object in Python

1™ Mol

File Edit Format Run Options Window Help

class Parrot:

-
instance attributes
def _ init__ (self, name, age):
self.name = name
self.age = age
instance method
=

ief sing(self, song):
return "{} sings {}".format (self.name, song)
ef dance(self):
return "{} is now dancing".format (self.name)

instantiate the object
blu = Parrot ("Blu", 10)

call our instance methods
print (blu.sing (" 'Happy'"))
print (blu.dance())

Ln: 21 CokO‘

Methods

Methods are functions defined inside the body of a class. They are used to define the behaviors of an object.

In Tgle program, we define two methods i.e sing() and dance(). These are called instance methods because they are called on an instance object
i.e blu.

File Edit Format Run Options Window Help

def _ init__ (self):
self. maxprice = 900

def sell (self):
print ("Selling Price: {}".format(self. maxprice))

")
"
Hh

setMaxPrice (self, price):
self. maxprice = price

c = Computer() 1
c.sell()

change the price

C.__maxprice = 1000

c.sell ()

using setter function

c.setMaxPrice (1000)

c.sell()

In 22 Cakn

Encapsulation

Using OOP in Python, we can restrict access to methods and variables. This prevents data from direct modification which is called encapsulation. In Python, we denote private attributes using underscore as

the prefix i.e single _ or double N

We used init () method to store the maximum selling price of Computer. We tried to modify the price. However, we can't change it because Python treats the maxprice as private attributes.

r:

Polymorphism

Polymorphism is an ability (in OOP) to use a common inferface for multiple forms (data types).
Suppose, we need o color a shape, there are multiple shape options (rectangle, square, circle). However we could use the same method to color any shape. This concept is called Polymorphism.

To use polymorphism, we created a common inferface ie flying_test() function that takes any object and callls the objects fly() method. Thus, when we passed the blu and peggy objects in the fiying_test() function, it ran effectively.

File Edit Format Run Options Window Help
class Parrot: -
def fly(self): F
print ("Parrot can fly")
def swim(self):
print ("Parrot can't swim")
class Penguin:
def fly(self):
print ("Penguin can't fly")
def swim(self):
print ("Penguin can swim") =
common interface
def flying test(bird):
bird.fly()
#instantiate objects
blu = Parrot()
peggy = Penguin()
passing the object
flying test (blu)
flying_test(peggy) K&
Ln: 20 Col: 0

o T -

4l Debug Options Window Help

.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.191¢
1 win32
', "copyright"™, "credits"™ or "license()" for more information.

C:/Users/VICKY/AppData/Local/Programs/Python/Python37/objet ¢

lxd

) a birxrd
jears old
jears old

In the above program, we created a class with fhe name Parro. Then, we define affributes. The affributes are a characteristic of an object.

These atibutes are defined inside the. init method of the class. If s the inifializermethod that s first run as soon o the object is created.

Then, we create instances of the Parrot class. Here, blu and woo are references (value) to our

new objects

We can access fhe class affiibute using class.species. Class atfributes are the same for all instances of a class. Similarly, we access the instance affributes using blu.name and blu.age. However, instance affributes are different for every instance of o class

st Run Options Window Help

gram to illustrate functions
ated as objects

xt) =

rn text.upper|()

'‘Hello'))

Passing function as an argument in Python

Returning Multiple Values in
Python

- object as return values.py - Ci/Users/VICKY/AppDa
File Edit Format Run Options Window Help
A Python program to return multiple -~
values from a method using class
class Test:
def _ init__ (self):
self.str = "Department of MCA"
selfix=:20

=

m

Driver code to test above method
t = fun()

Ln:5 Col:38

Python 3.7.6 She! (= -

File Edit Shell Debug Options Window Help

Python 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.1916 64 bit =
(AMD64)] on win32

Type "help”, "copyright", "credits" or "license()" for more information.

>>>

= RESTART: C:/Users/VICKY/AppData/Local/Programs/Python/Python37/ocbject as retur
n values.py

Department of MCA

20

>>> |

Ln:7 Col:4

Build-in Class Attributes

= Every Python class keeps following built-in atftributes and

they can be accessed using dot operator like any other
attribute —
» dict — Dictionary containing the class's namespace.
» doc — Class documentation string or none, if
undefined.
= name —. This gives us the class name
» module - Class nameModule name in which the class is
defined. This attribute is " main "in interactive
mode.
» bases — A possibly empty tuple containing the

base classes, in the order of their occurrence in the base
class list.

~_doc class attribute

®» Program:
class
class Awesome:

‘Government Arts College,coimbatore.’

def init (self):
print("Hello from init method.")

class built-in attribute print(Awesome. doc)

The above code will give us the following output.

Government Arts College,coimbatore.

The name class attribute

)
0’0

In the following example we are printing the name of the class.

» #class
» class Example:
» Thisisa sample class called Awesome.’

» def__init_ (self):
= print("Hello from__init__method.")

» # class built-in attribute
print(Example._name_)

= Output:

= Example

The module class attribute

= |n the following example we are printing the module of the class.

class
class Example: def init (self):

print("Hello from init method.")

class built-in attribute print(Example. module)

Output:

main

Python

< Inheritance allows us to define a class that ipherits all the methods and properties from another

class. Inherntanc

% Parent class is the class being inherited from, also called base class.

% Child class is the class that inherits from another class, also called derived class.

< Python Inhertance Syntax

class BaseClass:
Body of base class

class DerivedClass(BaseClass):
Body of derived class

Types Of Inheritance

Types of inheritance depends upon the
number of child and parent classes
involved.

= There are five types of
inheritance in python

Single inheritance
Multiple inheritance
Multilevel inheritance

Hierarchical
inheritance

Hybrid inheritance

Single inheritance:

One base class and one derived class calls
single inheritance.

Base

ParentClass
A

extends

Child Class

Derived

2 Multiple inheritance:

+* One derived class and two or more base classes

ltilevel inheritance:

% One base class(A),one derived class(B) which in
turn serves as a base class for
one or more derived(C)class.

Multiple Inheritance

Base class A

A 4

Intermediary B
class

Derived class B

4.Hierarchical inheritance:

«» One base class and one or more derived classes.

- . o

Hierarchical Inheritance

5.Hybrid inheritance:

o mbination of two or more inheritance.

Hybrid Inheritance

Example : PYTHON INHERITANCE

Output

ormat Run Options Window Help

a/env python
artment:
2llo(self, name=lione):

o |
&
m
)
]
'
()

print ('Hello ')
nstance
artment ()
2 method
()
* method with a parameter
('Department of MCA')

METHOD OVERLOADING

Method Overloading is the class having methods that are the same name with different arguments.
Arguments different will be based on a number of arguments and types of arguments.

Itis used in a single class. It is also used fo write the code clarity as well as reduce complexity

EXAMPLES

EXAMPLET: SINGLE
INHERITANCE

‘t;;ﬁngkinhuﬂmncapy-CAUﬂ{ﬂ!E?N\AppD&z

File Edit Format Run Options Window Help

ss base: L
def cal_sum(self,a,b):
return (a+b)

ief cal_mul (self,a,b):
return (a*b)
nl=int (input ("enter first number:"))
n2=int (input ("enter sec« wumber: ™))
d=Derived()
print (" (from base class)Addrti :",d.cal_sum(nil,n2))
print (" (from Derived class)r tiplication is:",d.cal_mul (n1,n2))

File Edit Shell Debug Options Window Help
Python 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.1916 64 bit
(AMD64)] on win32
| Type "help”, "copyright", "credits" or "license ()" for more information.
>>>
= RESTART: C:\Users\VICKY\AppData\Local\Programs\Python\Python37\single inherita
nce.py
enter first number:45S
enter second number:62
(from base class)Addtion is: 107
(from Derived class)multiplication is: 2790

Ln:9 Col: 4

EXAMPLE2Z: MULTIPLE
INHERITANCE

E=lolixa]

File Edit Format Run Options Window Help

class ComputerDealer: 2
getComputerCost (self,piece):
piece * 1500

ass PrinterDealer:
ef getPrinterCost (Self,piece):
recturn piece * 5000

: Dealer (ComputerDealer,PrinterDealer):
f getTotalCost(self,cQ,pQ):
c_cost=self.getComputerCost (cQ)
p_cost=self.getPrinterCost (pQ)
totalCost=c_cost + p_cost
return totalCost
computer = int (input ("en
printer = int (input(”

a=Dealer()
total_cost=a.getTotalCost (computer,printer)
print ("TOTAL CCST:“,tocal_co:c)

Python 3.7.6 Shell
File Edit Shell Debug Options Window Help
Python 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.1916 64 bit s
(AMD64)] on win32
Type "help", "copyright", "credits" or "license ()" for more information.
| >>>
‘ = RESTART: C:\Users\VICKY\AppData\Local\Programs\Python\Python37\multiple inheri
tane.py
enter computer pieces:25
enter printer pieces:25
TOTAL COST: 162500
>>> | -

Ln:8 Col:4 |

EXAMPLE2Z: MULTILEVEL
INHERITANCE

File Edit Format Run Options Window Help
class University:
ief getUdetails(self):
self.Uname = input("enter u
self.uRID = input("en
def showUdetails (self):

self.Uname)
.:",self.uRiID)

prin
class ccllege(Unlver:lcy)
=f getClgDetails (self):
self.cName = input("e
self.cRID = input("e
self.getUdetails()
def showClgDetails (self):
print ("coll :",self.cName)
print("c F :",self.cRID)
self. showUde:alls()

as=s Student (college):
ief getStudDeca;ls(aelf)

self. gecCque:alls()
def showStudDetails (self):
print ("\n STUDENT D
self.sName)
rint ("STUDEN :",self.sName)
nc(" NO:",self.sRoll)
print CH:",self.sBranch)
self. showCIgDecalls()
s = Student()
s.getStudDetails ()
s.showScudDecails(ﬂ

\ Ln:33 Cok:19 |

iAo O

Derivedl (Base) :
def sum(self):
add=self.a+self.b
print ("Addtion is",add)

DerivedRB (Base):
def mul (self):
mul=self.a*self.b
print ("multiplication is",mul)
dA=Derivedid ()
dB=DerivedB ()
di.sum()
ds.mul ()|

|
|
l
\

|

-

Ln:17 Col:8

| | Python 37.6 Shell -
| File Edit Shell Debug Options Window Help

Python 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.1916 64 bit
(AMD64)] on win32
Type "help"”, "copyright", "credits" or "license ()" for more information.

>>>
= RESTART: C:\Users\VICKY\AppDatal\Local\Programs\Python\Python37\hierarchical in
heritance.py

Addtion is 30
multiplication is 200
>>> |

-

Ln:7 Col: 4 |

Thank you

The Content in this Material are from the Textbooks and
Reference books given in the Syllabus

