
PYTHON PROGRAMMING

(18MCA31C)

UNIT – V
Classes and Objects

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer Applications,
Government Arts College (Autonomous), Coimbatore – 641 018.

Python Object Oriented

Programming

 In this unit, we’ll learn about Object-Oriented Programming (OOP) in Python
and its fundamental concept with the help of examples.

 Object Oriented Programming

 Python is a multi-paradigm programming language. It supports different
programming approaches. One of the popular approaches to solve a
programming problem is by creating objects. This is known as Object-
Oriented Programming (OOP).

 An object has two characteristics:

 Attributes

 behavior

 Let's take an example:

 A parrot is can be an object, as it has the following properties:

 name, age, color as attributes

 singing, dancing as behavior

 The concept of OOP in Python focuses on creating reusable code. This
concept is also known as DRY (Don't Repeat Yourself).

Class

 A class is a blueprint for the object.

 We can think of class as a sketch of a parrot with labels. It

contains all the details about the name, colors, size etc. Based

on these descriptions, we can study about the parrot. Here, a

parrot is an object.

 The example for class of parrot can be:

class Fruit:

Pass

 Here, we use the class keyword to define an empty class fruit

From class, we construct instances. An instance is a specific

object created from a particular class.

Object
An object (instance) is an instantiation of a class. When class is defined, only the description for the object is defined. Therefore, no memory or storage is allocated.

The example for object of parrot class can be:

obj = Parrot()

Here, obj is an object of class Parrot.

Suppose we have details of parrots. Now, we are going to show how to build the class and objects of parrots.

Example 1: Creating Class and Object in Python

Methods
Methods are functions defined inside the body of a class. They are used to define the behaviors of an object.

In the program, we define two methods i.e sing() and dance(). These are called instance methods because they are called on an instance object
i.e blu.

Encapsulation
Using OOP in Python, we can restrict access to methods and variables. This prevents data from direct modification which is called encapsulation. In Python, we denote private attributes using underscore as
the prefix i.e single _ or double .

We used init () method to store the maximum selling price of Computer. We tried to modify the price. However, we can't change it because Python treats the maxprice as private attributes.

Polymorphism
Polymorphism is an ability (in OOP) to use a common interface for multiple forms (data types).

Suppose, we need to color a shape, there are multiple shape options (rectangle, square, circle). However we could use the same method to color any shape. This concept is called Polymorphism.

To use polymorphism, we created a common interface i.e flying_test() function that takes any object and calls the object's fly() method. Thus, when we passed the blu and peggy objects in the flying_test() function, it ran effectively.

In the above program, we created a class with the name Parrot. Then, we define attributes. The attributes are a characteristic of an object.

These attributes are defined inside the init method of the class. It is the initializer method that is first run as soon as the object is created.

Then, we create instances of the Parrot class. Here, blu and woo are references (value) to our

new objects.

We can access the class attribute using class.species. Class attributes are the same for all instances of a class. Similarly, we access the instance attributes using blu.name and blu.age. However, instance attributes are different for every instance of a class

Passing function as an argument in Python
A function can take multiple arguments, these arguments can be objects, variables(of same or differen data type)

and functions. Python functions are first class objects.

In the example below, a function is assigned to a variable.

This assignment doesn’t call the function. It takes the function object referenced by shout and creates second

name pointing to it, yell.

Example2: object as arguments

Returning Multiple Values in

Python

Build-in Class Attributes

 Every Python class keeps following built-in attributes and
they can be accessed using dot operator like any other
attribute −

 dict − Dictionary containing the class's namespace.

 doc − Class documentation string or none, if
undefined.

 name −. This gives us the class name

 module − Class nameModule name in which the class is
defined. This attribute is " main " in interactive

mode.

 bases − A possibly empty tuple containing the
base classes, in the order of their occurrence in the base
class list.

The ___doc___class attribute

 Program:

class

class Awesome:

‘Government Arts College,coimbatore.'

def init (self):

print("Hello from init method.")

class built-in attribute print(Awesome. doc)

The above code will give us the following output.

Government Arts College,coimbatore.

The name class attribute

❖ In the following example we are printing the name of the class.

 #class

 class Example:

 'This isa sample class called Awesome.'

 def init (self):

 print("Hello from init method.")

 # class built-in attribute
print(Example. name)

 Output:

 Example

The module class attribute

 In the following example we are printing the module of the class.

class

class Example: def init (self):

print("Hello from init method.")

class built-in attribute print(Example. module)

Output:

main

Python

Inheritanc

e

❖ Inheritance allows us to define a class that inherits all the methods and properties from another
class.

❖ Parentclass is the class being inherited from, also called base class.

❖ Child class is the class that inherits from another class, also called derived class.

❖ Python Inheritance Syntax

class BaseClass:
Body of base class

class DerivedClass(BaseClass):
Body of derived class

Types Of Inheritance

Types of inheritance depends upon the
number of child and parent classes
involved.

 There are five types of

inheritance in python

 Single inheritance

 Multiple inheritance

 Multilevel inheritance

 Hierarchical

inheritance

 Hybrid inheritance

Single inheritance:

One base class and one derived class calls
single inheritance.

2.Multipleinheritance:

❖ One derived class and two or more base classes

3.Multilevel inheritance:

❖ One base class(A),one derived class(B) which in
turn serves as a base class for
one or more derived(C)class.

4.Hierarchical inheritance:

❖ One base class and one or more derived classes.

5.Hybrid inheritance:

❖ Combination of two or more inheritance.

Example : PYTHONINHERITANCE

Output:

METHOD OVERLOADING
• Method Overloading is the class having methods that are the same name with different arguments.

• Arguments different will be based on a number of arguments and types of arguments.

• It is used in a single class. It is also used to write the code clarity as well as reduce complexity

EXAMPLES

EXAMPLE1: SINGLE

INHERITANCE

EXAMPLE2: MULTIPLE

INHERITANCE

EXAMPLE2: MULTILEVEL

INHERITANCE

Thank you
The Content in this Material are from the Textbooks and

Reference books given in the Syllabus

