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Multiple Regression Model
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In the preceding chapter we have explore d the si
in which the dependent variable was a linear funct

and developed techniques with which to estimate the values of B0 and B, and to

test hypothesis about the relationship Y = Bo +B, X, +u. Simple linear regression
models assume that the dependent variable is influenced by only one systematic
variable and the random error term (u). In reality, there may be several
independent variables that influence the dependent variable. In such cases, it
may be worthwhile to formulate a model that allows us to consider the relation
of our variable of interest with a set of independent variables. When several
independent variables are included in the model, the estimation technique is

called multiple regression. In this chapter we extend our analysis to deal with
more than one independent variable,

mple linear regression model
on of one independent variable

Recall the Keynesian consumption function C = Po +B, Y4 + u, which says

that consumption spending depends only on the level of disposable income;
the higher is a family’s level of disposable income, the higher should be its level
of spending on consumption. However, in economic reality each variable js
influenced by a very large number of factors. For instance, the level of

consumption expenditure depends not only on current disposable income but

also on a host of other factors such as wealth of the population (W) Liquid assets
(L), interest rates(R), the ag

e structure of the population (A), distribution of income
(D), past incomes (PY), expected future incomes (FY), the level of advertisement
expenditure in the economy (LA), previous consumption (PC) and so on.

Note that in the above equation consumption depends not only on a single
variable, Y but also on the values of a whole set of

independent variables. On
the basis of this information we now have a more realistic consumption function
as follows,

Ct=Bo+B) Y, + B W+ B,L+ ByR+ By A+ BgD +B, PY 45, FY 4,
LA+B|0PC+U

....(6.1)
A more realistic formulation of the model requires specification of

several
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the tollowing muluple repression model,

Mhe population multiple regression model with k- independent Vanp),

expressed as
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Y= B+ 0 Xy + By Xy By X+ A X

h'i' u.,

Where 3, .8 are the regression coefficients; Y is the dependent vanable,
e ) N

vanable we wish to predict; Xis ate the independent variables; and y the
CITor (erm.

——
The parameters B, like most parameters, will remain unknown ang canty

estimated only with sample data. linear model based on sample data is CXPresy
N

Y=by+b X b, X, +b, X +.....t b X, +e
Where b, are the estimates of b, and e is the random term. Customarily referreg

(0 as the residuals when using sample data. However, since e is random, Y can|
only be estimated. .

The estimated multiple linear regression model using sample data takes th
form.

? — b0+blxl+b2x2+""'+bkxk ‘1
Where Y is the estimated value for the dependent variable and bi are the |

, |
estmates for the population coefficients bi. The bi are called the partial (o

net) regression co-efficients and carry the same interpretation as in simple |
regression. Thus, b, is the amount by which Y, will change if X. changes b)‘
one umt, assuming all other independent variables are held constant. This

assumption was not necessary under simple regression because there were no|
other independent variables to hold constant.

o
‘ Mulliplc regression involves the same assumptions cited in previous chapt¢®
for simple regression, plus two others. The first assumption requires tha! i
number of observations, n exceed t

least 2. In multiple regression th

he number of independent variables, k by af
coefficient for the k independent

the degrees of freedom associated

variables plus the intercept term. Theref®
with the model are df = 1 — (k+1). If we retd!
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even one degree of freedom, n must exceed k by at least 2, so that n—(k + 1) is at
least 1. The second assumption involves the relationship between the independent
variables. It requires none of the independent variables is a linear combination
of others. For example,

X, =X, + X, (0r) X, =05 X, or

X, =3~ 2X,+ 17 Xy (or) X, = (X, + X, +X,)/ 3,
- then a linear relationship would exist between (wo or more independent variables
' and a serious problems would arise in the estimation. This problem is known as
. multicollinearity. Thus, multicollinearity exists if two or more of the independent
. vanables are linearly related. Multicollinzarity may cause the algebraic signs of
- the coefficients to be the opposite of what logic may dictate, while greatly
increasing the standard error of the coefficients. A more through discussion of
- multicollinearity follows later (chapter-12).
Assumptions: To complete the specification of our multiple linear regression
model. We need some assumptions about the random variable u. Multiple
| regression model is essentially very similar to the two variable model. The
assumption are the same as in the two variable case (for details, see assumption
- of OLS method ). It describes a linear functional relationship by which the values
- of a set of independent variables determine the value of a dependent variable.
We must develop a method to estimate the values of parameters in this
' relationship.

" MopeL wiTH Two EXPLANATORY VARIABLES

: Suppose we are using to estimate of regression equation in which the
. dependent variable Y is linearly related to two explanatory variables X, and X;
The population regression model for three variable case (two independent
. variables) can be expressed as

Y = Bo+B, X, +B, X, +u
where B, B, and B, are the population parameters and u is the deviation of
the observed value of Y from the one predicted by the true equation.

The estimated multiple regression model is

L )
- ¥

L.

v = %+ﬁ/x,+ B X,
where v is the predicted value of Y, the value lying on the estimated
regression surface. The terms b, i=0, | and 2, of the least squares estimates

of the population regression parameters B .

Then from the above regression we obtain the least squares estimates of

' Population parameters Bo, B, and PB,, which generate the predicted values,
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y - We then generate the residual, ¢, as the deviation between the Obserye, y
and predicted

where Ye = (Y YY)

Y o= b4 b X, by XyandY = by b, X, +b, X, +e

|

S o ® };(\" Y ‘)‘ };(Yi h(\ ) hl XI h) X,)))
Where bis are the regression co-efficients and u is the crr_or term.
Suppose we are given a sample of n observation, assuming that the leyey of
consumption expenditure Y depends not only on disposable income X by aly,
on the famuily size X,. Hence we try 10 determine the relationship betwee,

consumption expenditure as the dependent variable on the one hand, dlsposahlg

income and family size as the independent variables on the other.

o~
Y X, X,

o
Yl x“ x2l
Y, Xis Xn
Y.‘ X13 X23 .
Y;‘ Xln x2n

Given n observations on Y, X, and X, our problem is to estimate B, B, and
B, from the sample data. As in the case of simple regressi.on, the values of the
co—efficients by, b,, and b, or the estimates of the population parameters §, B,
and P, are obtained by minimizing the sum of the squared errors: We then
generate e as follows
e, = Y,-Y;= Y;-by-b X, -b, X,
We have to minimize the function

n
2
23.' = £[Y,-b,-b, X,;-b, ) .(6)
1=
A necessary condition for this expression to assume a minimum value 1$
that its partial derivatives with respect by, b, and b, be equal to zero.
Partial derivatives with respect to b,

a[zef] _ d.(z“Yi—bO—blxli —bzxzi)]2
dby

b, =0
=2 5 (Y;-bgb,X,,~ b, X;) (-1)=0
= 2%(Y,~by-b,X,;~b,X,) =0 {6

Partial derivative with respect to b,

6[2c§] _ q(ZY; ~by-b,X,; ‘bzxzi)]2
ob, db,
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il

23 (Y, ~byb X - b,X,) (-X,) =0
= -2%(Y,- byb X -0 X)) =0 (6.4)
partial derivatives with respect (o b,

qze!] i A(ZY, - by~ b, X, ~ b, X50)]
b,

db,
= 23 (Y, -bs-b, X, - b,X,) (-X;) =0
=23 X, (Y,-brb X, -b, X,)=0  ..(6.5)

Multiplying both sides of each equation ( 6.3, 6.4 and 6.5 ) by — % and
plifying, We obtain
=3 (Yl - bO = le“ - b2X2i) =0
= ZX;; (Y;=by=b,X,;=b,Xy) =0
= 2 Xy (Y;=by=b,X;; =b,X) =0
we now apply the ¥ operator to the terms inside the brackets to give.

=3 Y,-nbsb, rX,,-b,£X,=0 ....(6.6)
= £ X,;Y,-b, =X, -b, z;X“2 -b, X, X, =0 ..(6.7)
= $£X,Y;-b, = X2, -b XY, —bsz2i2 &0 ....(6.8)

~ On rearranging these equations ( 6.6, 6.7,and 6.8), we obtain the following
hree normal equations of the least squares method.

3 Y, =nby+b, 2X;+b, £X,, ...(6.9)
£X,;Y; =by 2X;;+b, X2 -b,2X Xy e (6.10)
£X,Y; = by £Xy +b XXy -b, T Xy . (6.11)

. The three resulting equations are the normal equations for a regression with
the two explanatory variables. The sums and products associated with by, b, and
, in the normal equation can be computed from sample observations (data).
Dnce the sums and products have been computed, the three equations can be

_‘ olved for by, bl\and b,.

DeviaTion METHOD
The following formulae, in which the variables are expressed in deviation
from their mean, may. also be used for obtaining the value of the coefficients by,
0, and b,.
Solving ( 6.9 ) for b, gives
by =Y-b X,-b2X, (6.12)
and substituting this expression for b, in to equations 6.10 and 6.11 yields
£X,Y, =(Y-b, X,-b, X2 ZX;i+D, X% +by 2X Xy
£X,Y, =(¥-b; X, -b, X2 £Xy+by ZX,, Xy +b, X%
Rearranging the terms and using the result that
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< X (X, X))
b ‘\ ‘\ L I\ )4 \ .
ives | for Jvni'h seC ~in||plr linear regression equation)
l\’l‘& ) DA . . .
' v (X, X )Y ¥) b y (X X )by B X D (X,
as \7 M | ) | ‘ )\ \
v (X ' N (Yo ¥) o= b (X, X ,)(X,‘,' X, +tbh, L(X, - 3(1,‘/’
;;\|;\}“|(\\§‘«‘l case letters (o denote deviations from sample meap, *
Or usmy v

v y? v
Y XY |\| Y X5 | h‘, LXIX)

vx.y = b, LXX,+by Bx% | (:*1
Solving ‘(‘\ 13 and 6.14 for b, and, b, we obtain My
(‘\‘:xli)'i)(xxgi) (Lx;.—yﬁ_(}ﬁ,}ﬂz

(Zx, y,)(Lx,‘,)'--(Ex,,y,)()Jx,ixm)
P = (lezi)(zxgi)“(xxhxﬁf (6

STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMATES MUL’anE
. LINEaR REGRESSION MODEL

In order to investigate the statistical properties of the least square estimay
(given in ( 6.12), (6.15 ), and ( 6.16 ) of the multiple regression mode| j; :
necessary (o make some assumptions concerning the random errors, i
equation, 6.17.

Y, = Bo + By X +B, X, + u, w617

The assumptions made here will be the same as in the simple linear regressiy
model developed in the last chapter, with one modification. As before, we sl
assume that the expected value of the u; ’s is zero, that they are drawn than:

population with variance 5?2, and that they are uncorrelated among themselves
that is,
Eu, =0;i=1,.....n (0181
E(u?) = 42
E(yu) =0,wheni -j.

In multiple linear regression, the assumption of simple linear regressi”
model, E(Xu) = XE(u) =0, forallij=1,..... ... n) has to be modified, sit®
we now have two independent variasses, X, and X,. Our new assumption i (hl
both X, and X, may be treated as constants, so that .

E(Xju) =EX,u)=0 for all

This condition is automatically fulijilled if we assume that the values of i
X’s are a set of fixed pumbers in all hypothetical samples.

By virtue of E(u) = 0,i=1,..... n) in simple linear regression.

On the basis of these assumptions, let us show that the method of least squir
yields estimates, which are best linear and unbiased.
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=14

= ?_bl Yl“‘bz X,
15-0.61(5)-14 (5)
= 15-3.05-7

= 15-10.05

=495

Hereafter we use this formula to compute b0 The coefficients obtained from
% deviation method are similar to the above one.Hence the estimated equation

=
=)

(=]

Y = 4951061 X, +14X,

Hereafter we use the deviation method for computing the values of b

AMeAsURE
MobeL

ob1 and b3.

oF GOODNESS oF FiT — MuLripLE LiINEAR REGRESSION

Inthe last chapter, we have defined r2
tiple regression models. We have
emination 12, measures the proportio
1) explaineg by variations in indepen

and this measure extends easily to the
il already seen that the coefficient of
n of variation in the dependent variable

dent variable. For a multiple regression,
metcfffﬁdenl of multiple determination, R2. measures the proportion of variation
mdepenspenden't variable (Y) which is explaim?d by varlatlon. in two or more
b, enl.vz?rlables, It is computed as the ratio of the explained variation to

Varation ahoyg Y:

" _ _ o
eline coefficient of multiple determination (R2) as.
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Total vart | variation

Tota
R? = ?))
pd N\ Y
y () Y) ,.(} -
l lm'xpluincd variation
R = Total variation
A 2
x(v-¥)
| POy |
R =15 (v-v)
Te;
3 o =
R Ly;
2
Zyi2 - 2e€;j )
2 o ———t
. Zy;

2
weknow, Ze? = Z(Y;-by-b X -bX)
bp = Y-b, X=b, X .
e} = Z(Y;-(Y-b, X-b, X,)-bX, ~b,X,)?,
1 [Slnce bo: ‘?—b]-x.l‘h.}(
B 2
Z(Y;-Y +b, X +b, X2_blxl_bzxz)
X = 12
Ze2 = E(Yi— -Y-)—bl (XI_X l)-.b2 (X?.— X 2)
= Z(y-b, x;~b, x,)?
- zei(yi_blxli_bzxgi)
[ since &= (y; - byx, -by
2i (o
1

and Ye; x,. were set equal to zero in the equation (6.28)
= Eel yl

Ze;y; - b, Ze, X;—b,Ze. x
Now Ze;x,

[Since Te, X = Zej by
Substituling for ¢ in the ab

: : . . g I
OVE equation yields the residual variation,
as follows:
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Rearranging the terms in equation ( 6.29), we obtain

2 _ - \
Zy; =b Ix;+b, Ex,y + e

Total variation = explained variation + residual variation. We know,

R? = Explained Variation  Total variation — residual variation

Total Variation

Total variation

Ty; -(Zy? - b, Zx;y; —b,Zx,;y;)

R? =
Ty?
~ Eyl? - Z}’i2 +b,Zxy; + b, Zxyy;
- Iyt
b, Zx;y; +b,y X,y
R? =

zyiz ....(6.30)

where R? called the coefficient of multiple determination. As with simple
linear regression, the value of R? lies between zero and unity. The closer to unity
is R? the grater the explanatory power of the estimated regression equation. At

the other extreme, where the estimated equation explains less variation of the
dependent variable, R? is closer to zero.

ApJusTED CO—EFFICIENT OF MULTIPLE DETERMINATION - - ——.

The above formula for R? does not take in to account the loss of degrees of
freedom from the inclusion of additional explanatory variable in the regression
equation. To correct this, a new measure of fit of a multiple linear regression
model must be introduced. This measure is appropriately named the Adjusted or

Corrected Coefficient of Multiple Determination, and is designated as R?.

This new statistic R2 takes explicit account of the number of explanatory
variables used in the function. It is useful for comparing the fit of specifications
that differ in the inclusion or exclusions of explanatory variables. The unadjusted
R? will never decrease with the addition of any explanatory variable. If the added
variable is totally irrelevant the ESS (explained sum of squares) simply remains
C0n§tant and will usually raise it. That is, if the number of irrelevant explanatory -
variable is increased, R2 will never decrease, it will generally increase. The
justed coefficient does not always increase as new variables are entered in to

Our regression equation. When R? does increase as a new variable entered in to

the fegression equation, it may be worthwhile to include the variable in the
fq“a‘lol}-‘ The adjusted coefficient of multiple determination may decrease with
© addition of variable of low explanatory power. As Theil points: It is a good

St _ : —
Practice of e R’ rather than R” because R? tends to give an overly optimistic

T
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" n;"
. ; T Seérvat: O
mall compared with the number of ()hsuvdtmnS y,
WS VOry 8 . |
varables 18 not \

ht"
‘ .
formula for R* 18

5\ (n=1)
R = I (l- R )[m)

(or)

| Te? /n-k
RY = Eyz /n-1
Where n is the number of observations, k is the number of a

Parameyg,
estimated from the sample and R? is the(un adjusted) coefficient of

multime

determination. . ) e
Computer output for multiple regression analysis usually InCludeg the
adjusted coefficient of multiple determination ( R2

)-Let us note the follom,Ig
properties of R? .

. Unless R? is equal to 1, R2 is always less than R2,

If the number of data points (observations) is relatively large compareq

[

the number of regressors or explanatory variables, R? and R? are close (g
each other in value.

If the number of data points is relatively small in relation to the regressors

.R? is much smaller than R? and can even take negative values, in which
case R? should be interpreted as zero (R? canbe < 0)
IfR*=0,R? = (1-k)/ (n-k), in which case R?
5. If the change in R? g smaller than the percenta

freedom when additional variable i1s added to
will fall.

can be negative if k >|.
ge change in the degrees of

the regression equation, {’
TEsTING OF SIGNIFICANCE oF INDIVIDUAL, REGRESsI0N COEFFICIENTS

Since the hypotheses to be tested are Hy: B, =0angd H @B, = 0,itmayb
shown that the 1 - ratio for each b, s as follows,

,  bi-B
"= s, 1=0,12 .63

distribution with (n

k) degrees of freedom, It is noted
pulation regression coefficient, )

[Which follows the t-
that this is a test for the po
More specifically,
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L= (ﬁb*l;,w)- and

(Sb,)
Note that the most important statistic
test of whether the slope of the ( true) par
that the slope of the true bug unknown
is no relationship between the independe

al test in linear regression model is the
ameter ai is equal to zero. If we assume
Population regression line is zero, there
nt variables and Y, The hypothesis makes
statement about the true parameter value, Bl and not the estimate, bi, which was
obtained from the regression equation and is known for certain.

Testing of Individual Coefficients : One tailed test:

Step 1:

HO:Bi =O

H;:B;>00rB, <0
Step 2 : Apply t—statistic:

fe= B _O;(n—k)d.f.

selb,

where k is the number or parameter estimates (including the intercant by).
Step 3 : Reject H, if the absolute value of ‘t’ is greater than the tabular value

of .
ltcal :> ttab
Testing of Individual Coefficients: Two tailed Test
Step 1:
H,:B,=0
H :B,20
Step 2: Construct same t—statistic as one tail test i.e.
= B-0 :(n-k)d.f.
~ s.e(b;)

Step 3: Reject H, if the absolute value of '’ is greater than the tabular value
Of’t..

l";calp Liab
Evaluating the Model as a Whole : In the last chapter we developed a
Mque for the gondness of fit which involved the F distribution. This test
"4y also be extended in the content of multiple Linear regression modcl. ANQVA

lech
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procedure (F-test) for goodness of fit of the regression of Y Qn x.| and X 4
shown in Table [6.1 ]. ANOVA procedure tests whether any of the '“dependcm
vaniables has a relationship with the dependent variable. ANQYA procedure tegy
the null hypothesis that all the B-values are zero against the alternatin
hypothesis that at least one b is not zero. That is

H,: By =By =Py,...= Py =0

H, : At least one B is not zero (or) Not all the B—Yalue§ are zerq,

If the null hypothesis is accepted, there is no lm.ear relatl(?nshlp betweenY
and any of the independent variables in the regression equation. _On the othe,
hand, if the null hypothesis is rejected, there is a linear relatlor}shlp betweep Y
and at least one of the independent variables. Table 6.1 provides the genery|
format for ANOVA Table for multiple linear regression.

TABLE 6.1. ANALYSIS OF VARIANCE TABLE FOR MULTIPLE LINEAR

REGRESSION

Source of Sum of Degrees of Meansum  F* ratio -
Variation  Squares Freedom of Squares

Due to ESS k-1 ESS/k-1 o

S5 E -1
Regression  xj? =§2 S% = ;SSSS/ /(: - 11())
Due to RSS n-k RSS/( n—k)
Residual/Error ze? =2
fotal - TSS
Zy; n-1

CT AT IX Gy -, B, LY
Rearranging the €quation, we haye [Refer equation 6.29)

2
i =b12xliyi+b2 Lx

_Total Explained
Variation variation
The above equati

2 yi * Zef
Residual
variation

" 6
N several other forms. .For insta’
. s,
li + b2 x2i) + 20'2

On may be eXpressed
LYi = L(b,x
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Notice that the degrees of freedom for ESS is cqual to k-1, where k is the

- mber of parameter estimates includng the intercept b, while the degree of
dom for RSS is n-k. The F-test follows the F distribution with k- | (number

C 4 .- m r . ' "
xplanatory variables) and n-k degrees of freedom. This forms the basis for
e) ‘

¥ )

TABLE 6.2 . ANOVA TABLE FOR THE REGRESSION Y ON X, AND X,

Sum of Squares Degrees  Mean sum F* ratio
of of Squares
Freedom
2
Si

pression bl Exliyi+b2 z Xy Yi k-1=2 (b| zxnyi"’bz ZX?_“)/k—l F=—3

(or) (or)

= 3 (byx,; + b, x, . )? z (b) x,; +b, x,)? /k~1
(ESS)

};cl—’ (RSS) n-k Zeiz /n-k = S%

Zy? (TSS) n-1

The F-ratio may be related to R? By the following modifications, we know,

Sy b,Zx);y; +b,Xxyy; /k -1 63
—S_g- z\clz/n_k ..... (6.34)
(n-k)b,Zx;;y; + by Ix,;y; 655

= Zelz (k _ 1) ..... N

Co-efficient of Multiple Determination and F Value

5 (n-k)b,Zx,;y; + b, Zx,,y, |
” = .21 6.36
L F = e?(k - 1) (6.36)

W , I KY-Y) Byl -3¢
e know R? =Zy2 = Z(Y—V)Z = 5y

& Ze;
=|- 7
Zy;

y e—— ...(6.37)
= T o3

. S R R R
W
£
bt
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7 <. .2
ye! = Lyj-R’ Ly

- (I-R?) Ly
substituting equation [6.38] in equation(6.36), we have the F‘Valuea,“
(n-k)b;Zx;;y; + b ZXy;y; |
F = C11-R?)zy?
(n-k)R? Since R2 b, Zxiy; +b22x2 y,
= k-10-R?) o
(n-k)R?
F = k—l(l_Rz) ""(6‘1

Where k is the number of independent variables and n is the Nump,
observations. The F-ratio must be sufficiently larger to reject the nul] hYPOth;

thatHy: B, = B, = Bs,....= By, =0;thatis, Y is unrelated to X, and Xz-Ath

calculated F F* - Value, suggests that the explained variation is larger r,
to the unexplained variation of the dependent variable. In other words, a by
F-test signals that the model possesses significant explanatory power.

Let us consider the following empirical examples to illustrate the mel
of obtaining the multiple linear regression equation, coefficient of multp
determination adjusted coefficient of multiple determinations,’ t’ test and F-t

EMPIRICAL ILLUSTRATIONS

Example 6.2: The manager of a supermarket would like to determine!
relationship between the quantity demanded Y and two independent varia
X, and X,, where X, represents the price of Y and X, represents the incom

the customers . Ten customers were selected at random and the values of
variables are presented in the following table.

(a) Given the data below , estimate the Parameters of the demand functior
least squares method.

(b) Evaluate the results on the basis of
efficient of multiple determination

(c) Test the significance of the re
significance.

(d) Find the confidence limits of the re
coefficient at 95 percent.

(¢) Is the overall regression significant at the five Percent leye]?

a priori’ criteria ang calculate

gression coefficients at the 5 percent leve

gression coefficients for 4 confide
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