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Multipie Regression Model 

In the preceding chapter we have explore d the simple linear regression model
in which the dependent varíable was a linear function of one independent variable and developed techniques with which to estimate the values of BO and B, and to 
test hypothesis about the relationship Y = Bo +B, X, +u. Simple linear regression 
models assume that the dependent variable is influenced by only one systematic variable and the random error term (u). In reality, there may be severalindependent variables that influence the dependent variable. In such cases, it 
may be worthwhile to formulate a model that allows us to consider the relationof our variable of interest with a set of independent variables. When severalindependent variables are included in the model, the estimation technique is called multiple regression. In this chapter we extend our analysis to deal with 
more than one independent variable. 

Recall the Keynesian consumption function C= Bo+B, Y+ u, which says that consumption spending depends only on the level of disposable income;the higher is a family's level of disposable income, the higher should be its level of spending on consumption. However, in economic reality each variable is influenced by a very large number of factors. For instance, the level of 
consumption expenditure depends not only on current disposable income but also on a host of other factors such as wealth of the population (W) Liquid assets ), interest rates(R), the age structure of the population (A), distribution of income (D), past incomes (PY), expected future incomes (FY), the level of advertisementexpenditure in the economy (LA), previous consumption (PC) and so on. 

Note that in the above equation consumption depends not only on a single variable, Y but also on the values of a whole set of independent variables. On 
uhe basis of this information we now have a more realistic consumption functionas follows.

Ct Bo +P Y+ PW +BL+ B,R+ BsA+ B, D +B, PY +Bg FY +B, 
LA+PPC+u 6.1) A more realistic formulation of the model requires specification of several 
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eTor term. 

The parameters B,. like most parameters, will remain unknown and can t 
estimated only with sample data. linear model based on sample data is expre 

Y=b+b X, b, X, + b, X, +.b,X +e 
Where b, are the estimates of b, and e is the random term. Customarily referred
to as the residuals when using sample data. However, since e is random, Y can 
only be estimated. 

The estimated multiple linear regression model using sample data takes the 
form 

Y = bo+b,X, + b, X, +.+b, X, 
Where Y is the estimated value for the dependent variable and bi are the 
estimates for the population coefficients b. The bi are called the partial (or 
net) regression co-efficients and carry the same interpretation as in simple regression. Thus, b, is the amount by which Y, will change if X, changes by 
one unit, assuming all other independent variables are held constant. Tns assumption was not necessary under simple regression because there were n other independent variables to hold constant. 

Mulüple regression involves the same assumptions cited in previous chap for simple regression, plus two others. The first assumption requires that number of observations, n exceed the number of independent variables, k least 2. In multiple regression there are k + 1 parameters to be estuma coefficient for the k independent variables plus the intercept term. There the degrees of freedom associated with the model are df= n- (k+1). If we 
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even one degree of freedom, n must exced k by at lcast 2, so that n-(k + 1) is at 
least 1. The second assumption involves the relationship between the independent 

variables. Tt requires none of the independent variables is a linear combinalion 

of others.For example.

X, = X, +X,. (or) X, = 0.5 X, or X, = 3-2X, + 17 X, (or) X, = (X,+X,+ X,V 3, 

then a lincar relationship would exist between two or more independent variables 
and a serious problems would arise in the estimation. This problem is known as 

multicollinearity. Thus, multicollinearity exists if two or more of the independent 
variables are linearly related. Multicollinearity may cause the algebraic signs of 
the coefficients to be the opposite of what logic may dictate, while greatly
increasing the standard error of the coefficients. A more through discussion of 

multicollinearity follows later (chapter-12). 
Assumptions: To complete the specification of our multiple linear regression 

model. We need some assumptions about the random variable u. Multiple
regression model is essentially very similar to the two variable model. The 
assumption are the same as in the two variable case (for details, see assumption 

of OLS method ). It describes a linear functional relationship by which the values 
of a set of independent variables determine the value of a dependent variable. 
We must develop a method to estimate the values of parameters in this 

relationship. 

MoDEL WITH Two ExPLANATORY VARIABLES 

Suppose we are using to estimate of regression equation in which the 
dependent variable Y is linearly related to two explanatory variables X, and X,; 

The population regression model for three variable case (two independent 

variables) can be expressed as 

Y Po+B, X, +B, X+u 
where Po. B, and B2 are the population parameters and u is the deviation of 

the observed value of Y from the one predicted by the true equation. 

The estimated multiple regression model is 

Y B6 +P/X, + % X, 

where is the predicted value of Y, the value lying on the estimated 

Tegression surface. The terms b, i = 0, I and 2, of the least squares estimates 

of the population regression parameters ,S. 
Then from the above regression we obtain the least squares estimates of 

Population parameters Bo. P, and B, which generate the predicted values, 
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ed Y 
We then generate the residual, e, as the deviation between the observe

and predicted. 

where Ye - (YY). 

Y 
= b b, X, + b, X, and Y bo+b,X, + b, X, +e 

e 2Y, -Y,)= 2Y-b-b,X, -b, X, 
Where bis are the regression co-efficients and u is the erTor term. 

Suppose we are given a sample of n observation, assuming that the level 

consumption expenditure Y depends not only on disposable income X, but al. 
een on the family size X,. Hence we try to determine the relationship betwen.

e consumption expenditure as the dependent variable on the one hand, disposahi 
income and family size as the independent variables on the other. 

Y 
X12 

Given n observations on Y, X, and X, our problem is to estimate Po» B, and 

B, from the sample data. As in the case of simple regression, the values of the 
co-efficients b b, and b, or the estimates of the population parameters B B 
and B, are obtained by minimizing the sum of the squared errors: We then 

generate e as follows 

Y-YY,-b,-b, X-b, X 
We have to minimize the function

6.2) 

i=l 

A necessary condition for this expression to assume a minimum value is 

that its partial derivatives with respect bg,b, and ba be equal to zero. 

Partial derivatives with respect to b 

ze(e-by-bXy-b,Xa 
= 2 2 (Y-bo-b,X- b, X,) -1)=0 
-22(Y,-bo-b, X,-b,X) =0 6.3 

Partial derivative with respect to b, 

e . aEY-bo-b,X -b,X 
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= 2 (Y,-b,-b,X - b,X,) (-X,) =0 

-22(Y,-b,-b,X,, -b,X,) = 0 .(6.4) 

Partial derivatives with respect to b, 

e Y- bo -bXy-bX)
= 22(Y,-bo-b,X -b,X2) (-X,) =0 

-2 X(Y-bg-b,X, -b, X) = 0 .6.5) 

Multiplying both sides of each equation (( 6.3, 6.4 and 6.5) by - % and 

simplitying, we obtain 

= XY-bo- b,X- b,X) = 0 

X, (Y,-b,- b,Xi -b,X�) = 0 

2X (Y- bo-b,X -b,X) = 0 

We now apply the 2 operator to the terms inside the brackets to give. 

Y,-n b,-b, 2X, -b, 2X =0 
XY,-b, EX-b, 2X-b, 2X,X =0 

XY-b, 2 X2, -b,X,Y-b, 2X =0 

(6.6) 

6.7) 

6.8) 

On rearranging these equations ( 6.6,6.7,and 6.8), we obtain the following 

three normal equations of the least squares method.

2Y, = nbo +b, 2 X, +b, zXz ..(6.9)

XY, = b, +b, b,2X,-b,2X,X; 
2XY, = b, 2X +b,XX-b, EX 

6.10) 

.6.11) 

The three resulting equations are the normal equations for a regression with 

the two explanatory variables. The sums and products associated with b, b, and 

b, in the normal equation can be computed from sample observations (data).

Once the sums and products have been computed, the three equations can be 

solved for bo, b, and b,. 

DEvIATION MeTHoD 

The following formulae, in which the variables are expressed in deviation

from their mean, may. also be used for obtaining the value of the coefficients b 
b, and b 

Solving (6.9 ) for b, gives 

Y-b, Xi-b, X2 6.12) 
and substituting this expression for b in to equations 6.10 and 6.11 yields 

2X,,Y, = (Y-b, -b, K EX, +b, 2X+b, 2X, X 
XY, = (Y-b, X1-b, X) EX% + b, 2X, Xa +b, 2X 

Rearranging the terms and using the result that 
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gives for details ,see simple linear regression equation| 

or using lower case letters to denote deviations from sample mean. 

Ny b, 2*, +b, EXX, 

xXN)(Yiy) = b, 2(X, X ,) (X X2)+b, 2(x,. 
ans 

Solving 6. 13 and 6. 14 for b, and, b, we obtain 

(xy)x)-(Ex1Y,) (xu*2) 

6. 

( y,)xi-(Exy,) (x,X2) 

xix)-(x, 6.16 

STATISTICAL ProPERTIES OF THE LEAST SQUARES ESTIMATES MULTIPLE

LINEAR REGRESSION MoDEL. 

In order to investigate the statistical properties of the least square estima 
(given in ( 6.12 ). ( 6.15), and ( 6.16) of the multiple regression model i 
necessary to make some assumptions concerning the random errors, u. i 
equation, 6.17. 

Y, = Po+ B, X +P2 Xz+u, 

The assumptions made here will be the same as in the simple linear regression 
model developed in the last chapter, with one modification. As before, we shal 
assume that the expected value of the u, 's is zero, that they are drawn thana 

6.17 

population with variance o, and that they are uncorrelated among themselve 

that is, 
Eu, = 0;i= 1,.n .6.18) 

E(u, u,) = 0, when i j. 

In multiple linear regression, the assumption of simple linear regresimodel, E(Xu,)= X,E{u) = 0, for all ij= 1,....n) has to be modified, sin 
we now have two independent variasses, X, and X,. Our new assumption is both X, and X, may be treated as constants, so that 

E(X, u) = E(X,u,)=0 for all 
of the This condition is automatically fulfilled if we assume that the values o X's are a set of fixed numbers in all hypothetical samples.By virtue of E(u,) = 0, i = I,....n) in simple linear regression. On the basis of these assumptions, let us show that the method of least * 

yields estimates, which are best linear and unbiased. 
quan 
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b, = 1.4 

bo= Y- b, X-b, X2 
15-0.61(5) - 1.4 (5) 
= 15-3.05-7 

15-10.05
4.95 

Hereafter we use this formula to compute bO)}The coefficients obtained from ieviation method are similar to the above one.Hence the estimated equation
Y = 4.95+0.61 X, +1.4X, 

Bereafter we use the deviation method for computing the values of b, b, and b, 
A MEASURE OF GooDNESS OF Frr - MULTIPLE LINEAR REGREssION MoDEL 

the last chapter, we have defined r and this measure extends easily to the muluple regression models. We have already seen that the coefficient of crmination r, measures the proportion of variation in the dependent variable plained by variations in independent variable. For a multiple regression,ECOetiicient of multiple determination, R2, measures the proportion of variation pendent variable (Y) which is explained by variation in two or more pendent variables. It is computed as the ratio of the explained variation to 
We fine coefficient of multiple determination (R) as. 

Be total variation about Y 
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R 

2(Y- (Y v 
2(Y-9 

(or) 

R 

Unexplained variation 

Total variation R 1- 

(Y-9 
R2= s(Y-Y 

e 
R y 

2y-e R2 Ey 
we know. 2e = E(¥,-b,-b,X,-b,X,) 

e = E(Y-(Y-b, Xb, X)-b,X -b, X,P, 

Since b Y-b,X- 
2(Y-Y +b, X*b, 2-b,X,-b,X, 

2e (Y,-)-b, (X-X)-b2 (X-X2 
= Ee, (y,-b,X - b,x 

since e= (y-b-D Te; y- b, Ze, X- b, 2e; Xi 
Now Ze; X and Xe X were set equal to zero in the equation (6.28) 

Since Ee, X= e; \% Substituting for e, in the above equation yields the residual variation as follows

whereY y, - b, 
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Rearranging the terms in equation ( 6.29), we obtain 

y= b, X, + b, Yxz Y, + e 
Total variation = explained variation + residual variation. We know, 

Explained Variation R2 Total variation- residual variation 
Total Variation Total variation 

2yi-(yi-b,x,y-b,x Y,) R2 

Ey-yi+b,Ex,y, +b,Ex, 
Eyf 

b, ExY +b,Ex¥ R2 = 
Ey ..(6.30)

where R called the coefficient of multiple determination. As with simple 
linear regression, the value of R lies between zero and unity. The closer to unity 
is R the grater the explanatory power of the estimated regression equation. At 
the other extreme, where the estimated equation explains less variation of the 
dependent variable, R2 is closer to zero. 

ADJUSTED Co-EFFICIENT OF MULTIPLE DETERMINATION 

The above formula for R? does not take in to account the loss of degrees of 
freedom from the inclusion of additional explanatory variable in the regression 
equation. To correct this, a new measure of fit of a multiple linear regression 
model must be introduced. This measure is appropriately named the Adjusted or 

Corected Coefficient of Multiple Determination, and is designated as R. 

This new statistic 2 takes explicit account of the number of explanatory 

variables used in the function. It is useful for comparing the fit of specifications
nat differ in the inclusion or exclusions of explanatory variables. The unadjusted 
will never decrease with the addition of any explanatory variable. If the added 
aable is totaly irrelevant the ESS (explained sum of squares) simply remains 
Cconstant and will usually raise it. That is, if the number of irrelevant explanatory 
vaTriable is increased, R2 will never decrease, it will generally increase. The 
usied coefficient does not always increase as new variables are entered in to 

Tegression equation. When R2 does increase as a new variable entered in to 
egression equation, it may be worthwhile to include the variable in the 
on.The adjusted coefficient of muliple determination may decrease with 
e addition of variable of low explanatory power. As Theil points: It is a good 
Pacice of use 2 rather than R2 because R2 tends to give an overly optimistic 
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eKpanattobservatio Aions. The 
picture of the fit of the regression, particularly when the number of exni 

variables is not very small compared with the number of 

formula for R is. 

(n-k) 
(or) 

R1-2e /n-k) 

Where n is the number of observations, k is the number of paramet.estimated from the sample and R is the(un adjusted) coefficient of multin.determination.

Computer output for multiple regression analysis usually includes th 
adjusted coefficient of multiple determination (R).Let us note the followin
properties of R?. 

. Unless R? is equal to 1,R? is always less than R? 
2. If the number of data points (observations) is relatively large compared to 

the number of regressors or explanatory variables, R and R are close to each other in value. 
3. If the number of data points is relatively small in relation to the regressors Ris much smaller than R and can even take negative values, in which

case R should be interpreted as zero (R can be < 0) 
4. IfR=0,R2 = (1-k)/ (n-k), in which case R? can be negative if k >1. 5. If the change in R? is smaller than the percentage change in the degrees ot freedom when additional variable is added to the regression equation, R will fall. 

TESTING OF SiGNIFICANCE OF INDIVIDUAL REGrEsslON COEFFICIENTS
Since the hypotheses to be tested are H; B; = 0 and H,: P, » 0, it may shown that the t- ratio for each b, s as follows.

* 
Sb i=0,1,2 .(6.32) 

[Which follows the t distribution with (n-k) degrees of freedom. It is no that this is a test for the population regression coefficient.]More specifically 
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bo-Po 
(Sb) 

b-P 
(Sb,) and 

b-P2 
(Sb,) 

Note that the most important statistical test in linear regression model is the test of whether the slope of the (true) parameter âi is equal to zero. If we assume that the slope of the true but unknown population regression line is zero, there is no relationship between the independent variables and Y. The hypothesis makes 
statement about the true parameter value, B, and not the estimate, b, which was obtained from the regression equation and is known for certain.Testing of Individual Coefficients: One tailed test: Step 1: 

Ho:B = 0 

H,:B; >0 or P, <0 
Step 2:Apply t-statistic: 

tP(n -xJi.f.selb) 
where k is the number or parameter estimates (including the intercapt b). Step 3: Reject H, if the absolute value of t is greater than the tabular value of't. 

Itcaab 
Testing of Individual Coefficients: Two tailed Test 
Step 1: 

H:P, =0 
H,:B, #0 

Step 2: Construct same t-statistic as one tail test i.e. 

B-0 
ts.e.(b;) c n-k)d.f.

Step 3: Reject H, if the absolute value of t is greater than the tabular value 
of' 

calab 
Evaluating the Model as a Whole : In the last chapter we developed a 

Chnique for the goodness of fit which involved the F distribution. This test 
ay also be extended in the content of multiple linear regress1on modei. ANOVA 



176 Econometrics 
procedure (F-test) for goodness of fit of the regression ofY on X, and X 

shown in Table [6.1 1. ANOVA procedure tests whether any of the independen 
as 

Variables has a relationship with the dependent variable. ANOVA procedure te 

e 

tests 
the null hypothesis that all the B--values are zero against the alternativ 

hypothesis that at least one b is not zero. That is 

H: B, B, =P,.=Pi =0 

H, At least one B is not zero (or) Not all the -values are zero, 

If the null hypothesis is accepted, there is no linear relationship betweeny

and any of the independent variables in the regression equation. On the other 
hand, if the null hypothesis is rejected, there is a linear relationship between y 
and at least one of the independent variables. Table 6.1 provides the general
format for ANOVA Table for multiple linear regression. 

TABLE 6.1. ANALYSIS OF VARIANCE TABLE FOR MULTIPLE LINEAR 

REGRESSION 

Degrees of Mean sum F* ratio 

Freedomn of Squares
Source of Sum of 
Variation Squares

Due to ESS k-1 ESS/k-1

(ESS/k -1) 
RSS/ (n -k) 

Regression 2yf =S 
Due to RSS n-k RSS/(n-k) 
Residual/Error Ee S 

Total TSS 

Ey n-1 

Let as recall the analysis variance technique to test the goodness of fit " he simple linear regression analysis. In this case we may set up our test for u the 0odness ot fit of the regression of Y on X, and X, as shown in the Table [o.I Ye y -b, 2X, V,- b, Ex% ..(6.33)

Rearranging the equation, we have 
[Refer equation 6.29 

Total Explained Variation variation Residual
variation The above equation may be expressed in several other fonns. .For 

nstance 
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Notice that the degrees of frecdom for ESS is cqual to k-1, where k is the 

mher of parameter estimates includng the intercept b, while the degrce of 
dom for RSS is n-k. The F-test follows the F distribution with k-I (number 

explanatory variables) and n-k degrees of freedom. This forms the basis for 

esting R = 0. 

TABLE 6.2 . ANOVA TABLE FOR THE REGRESSION Y ON X, AND X 

Source of Sum of Squares

Variation 
Degrees Mean sum 

of Squares
F ratio 

of 

Freedom

Regressionb X , t+ b, 2 * y, k-I = 2 6, XY,+b, Eks -1 
(or) (or) 
(b,X, +b, x2 ) 
(ESS) 

Ee(RSS) e /n-k= S Eror n-k 

Tbtal Ey (TSS) n-1 

The F-ratio may be related to R By the following modifications, we know, 

b,2x1 +bxay;/k-1 
ef /n-k 6.34) 

(n-k)bZxiyi +b2 x2;y 
Ee; (k-1) 

Co-efficient of Multiple Determination and F Value 

6.35) 

(n-k)b,2xY;+b,2X2;yi F = 

Eef (k-1) 6.36) 

Y-Y yi-e 
Ey 

We know R =2 x(Y-Y 

1yi 
y-e 

Eyi .6.37) 

R2y = y -e 
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e = y-R 2y} 
= (1-R) Ey 

substituting equation [6.38] in equation(6.36), we have the 

(n-k)b, 2xiyi t b,2*21Yi
k-1(1- R )Ey 

have the F-value

F 

(n-k)R2
k-1(1-R2Since R2 =- b, 2x +b. 

y k-1(1-R)

(n-k)R 

k-1(1-R2) 
Where k is the number of independent variables and n is the numhe observations. The F-ratio must be sufficiently larger to reject the null hypote 

that H: B, = B2 = B3..P = 0; that is, Y is unrelated to X, and X, A 
calculated FF* -Value, suggests that the explained variation is larger rela to the unexplained variation of the dependent variable. In other words, al F-test signals that the model possesses significant explanatory power. Let us consider the following empirical examples to illustrate the meh of obtaining the multiple linear regression equation, coefficient of muli; determination adjusted coefficient of multiple determinations, t' test and F-t 

EMPIRICAL ILLUSTRATIONS

Example 6.2: The manager of a supermarket would like to determine relationship between the quantity demanded Y and two independent varnad X, and X,, where X, represents the price of Y and X, represents the incomt the customers . Ten customers were selected at random and the values of variables are presented in the following table. 
(a) Given the data below, estimate the parameters of the demand function least squares method. 

(b) Evaluate the results on the basis of 'a priori' criteria and calculate efficient of multiple determination
(c) Test the significance of the regression coefficients at the 5 percent leve significance.
(d) Find the confidence limits of the regression coefficients for a confide= coefficient at 95 percent.
(e)Is the overall regression significant at the five percent level? 
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