4

LIMITS AND
METRIC SPACES

4.1 LIMIT OF A FUNCTION ON THE REAL LINE

In Chapter 2 we define limit of a sequence. We now recall from calculus the definition
of limit of a “function of a real variable” on which are based the definitions of
continuous function and derivative. Later in the chapter we generalize to a wide class of
spaces (called metric spaces) which includes the real line R as a very special case.

Let a € R, and let f be a real-valued function whose domain includes all points in some
open interval (a— h,a + h) except possibly the point a itself.

4.1A. DEFINITION. We say that f(x) approaches L (where L € R) as x approaches a if
given € >0, there exists § >0 such that

| f(x)—L|<e (0<|x—a|<8).

In this case we write lim,_ f(x)=L or f(x)—L as x—a. We sometimes say “f has the
limit L at a” instead of “f(x) approaches L as x approaches a.”

We emphasize that the point a need not be in the domain of f. You remember from
calculus (we hope) that lim,_,(sinx/x)=1, even though sinx/x is not defined for x=0.
We verify this limit in a later chapter, after we give a rigorous definition of sinx.

Consider Figure 12. In order for f(x) to approach L as x approaches a the following
must be true: Given any e parentheses about L there must exist § parentheses about a
such that every arrow which begins inside the § parentheses (except possibly the arrow, if
there is one, that starts at @) must end inside the € parentheses.

Roughly speaking, the following can be seen on the x-y graph of a function f such that
lim,_, f(x)= L: As the x coordinate of a moving point on the graph gets close to a (from
either the right or the left), the height f(x) of the point heads toward L. Be sure to think
out why this is a geometric interpretation of definition 4.1A. For example, the functions
in Figures 13, 14, and 15 all satisfy lim,_,f(x)=L. (An empty dot, as in Figure 15,
indicates a point not on the graph.) On the other hand, the function in Figure 16 has no
limit at a. This is because f(x) gets close to 3 when x gets close to a on the left, while
f(x) gets close to 1 when x gets close to a on the right. Hence there is no single number
L such that f(x) gets close to L when x gets close to a.
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y = fx)
fix) =x + 1

(—oo <x < o)

FIGURE 13. Example 1 of }i_)maf(x)=L
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}
flx)=x+1 (x < 2)
=x—-22+3 (x>2)
y = fx)
L=3["
| |
a=2
FIGURE 14. Example 2 of }imaf(x)= L
Yy
fx)=x+1 (x<2)
=(x-22+3 (x>2
f(2) =4 -
y = fx)
L=3—
I l
a=2

FIGURE 15. Example 3 of lim f(x)=L
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fe)=x+1 (x<2)

=(x—-22+1 (x> 2

- y = flx)

FIGURE 16. Example of a function f such that f(x) does not approach a limit as x approaches a

For a final pictorial example, consider Figure 17. This shows the graph of f where
fx)=sins  (x#0).
Here, as x gets close to a =0, the value f(x) oscillates rapidly. Even if we look on only

one side of q, it is clear that there is no number L toward which the value f(x) tends.

Hence f has no limit at 0.
Now, for some examples with proofs.
First, let us prove lim_;(x?+2x)=15. Here f(x)=x?+2x, L=15, a=3. Given ¢ >0

we must find § >0 such that
[(x*4+2x)—15|<e  (0<|x—3]|<$). 1))

ftx) = sin % (x #0)

FIGURE 17. The function has no limit at a=0
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We first note that |[(x*>+2x)— 15|=|x—3|-|x+5|. We are going to have |x—3|<§. The
question is, how big can |x +5| be? Without making our final choice of 8, let us agree
that when we do choose it we will take 8 < 1. Then, if |x —3| < §, we will have |x—3|<1.
Thus x €(2,4) and so x+5€(7,9). Hence |x+5| <9 if [x—3] <8< 1, and so |x —3|-|x +
5| <8-9if |[x—3|< 8 and § < 1. Let § =min(l,e/9). Then

[x =3 |x+5/<98<e (Ix=3]<9),
which implies (1). Given € >0 we have found a § [namely § =min(l,e/9)] for which (1)

holds, and this proves lim,_;(x*+2x)=15. Note that in this example a=3 and | f(x)—
L|< e even for x=a.

For a second example we will show that lim, ,Vx+3 =2. Here f(x)=Vx+3,L
=2,a=1. Given € >0 we must find § >0 such that

[Vx+3 =2|<e 0<|x—1]<8é). (2)
Multiplying the left side by |[(Vx+3 +2)/(Vx+3 +2)|, we see that (2) is equivalent to
(Vx+3) -2
p—— O<|x—1|<8)
[Vx+3 +2|
or
|x—1]
—<¢ (0<]x—1<8). 3)
[Vx+3 +2]

If we agree to take § < 1, then |x — 1| < § implies x €(0,2) and hence Vx+3 +2>V3 +
2. Thus if [x — 1| <8 <1, then

=1 __ 8
IVx+3 +2| V3 +2

If we pick §=min(l,e(V3 +2)), then §/(V3 +2)<e, hence (3) holds, hence (2) holds,
and we are done.

For an example in the other direction we shall prove what we have already inferred
from Figure 17—namely, that sin(l1/x) does not approach a limit as x— 0. For assume
the contrary—that is, assume there exists L € R such that lim_,sin(1/x)= L. Then for
€ =1 there would exist § >0 such that

.1
sin — L‘<l (0<]x|<8). 4)
Now
4n+ )7
. oy _
sm(2mr+ 5) =sin — 5 1

for any n€ 1. Thus sin(1/x)=1 for x=2/a(4n+ 1) and hence for some x €(0.8), since
lim, . 2/7(4n+1)=0. For this x (4) implies
[1-L|<]1. 5

Similarly, sin(2nw+37/2)=—1 for n€/l. There will thus be an x€(0,8) for which
sin(1/x)= — 1. By (4) again,

, |-1-L|<. (6)
The reader should be able to deduce a contradiction from (5) and (6). Hence lim,_
sin(1/x) does not exist.
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4.1B. We wish to emphasize the strong analogy between definition 4.1A and definition
2.2A. Indeed, consider the “table of analogues.”

TABLE OF ANALOGUES

224 4.14
S={Sn}:°-l f
n x
Sn J(x)
L L
0 a
€ €
N 8
n>N 0<|x—a|<8

If we substitute each entry in the right-hand column for the corresponding entry on
the left, we change definition 2.2A into definition 4.1A.

However, more than a mechanical process is involved here. Corresponding entries in
the table actually “have the same meaning.” For example, S={s,}%-, is the function
(sequence) involved in definition 2.2A, while f is the function involved in 4.1A. Also, s, is
the value of S at n, while f(x) is the value of f at x. Finally, n> N means “n is
sufficiently close to infinity” (but not, of course, equal to infinity), while 0<|x —a|<$
means “x is sufficiently close to a but not equal to a.”

We will now prove a theorem corresponding to 2.7A. The reader should first study the
proof and then see how it could be obtained from the proof of 2.7A by mechanical
substitution from our table.

4.1C. THEOREM. If* lim, f(x)=L and lim,_g(x)= M, then f(x)+ g(x) has a limit as
x—a and, in fact, lim,_,[f(x)+g(x)]=L+ M.

PROOF: Given € >0 we must find § >0 such that
ILf(x)+g()]=(L+M)|<e  (0<|x—a]<§). (M
Since lim, _,f(x)= L, there exists §, >0 such that
If(x)-LI<5  (0<|x—a|<8)).
Similarly, there exists §, >0 such that
lg(x)—M|<% (0<|x—a|<8§,).
Thus if §=min(§,,8,) and if 0<|x —a|<é, then
If()=LI<5.  lg(x)-M|<3,
and so
ILf(x)+g(x)]=(L+M)|=|[f(x)~ L]+[g(x)-M]|

<|f(X)—LI+|g(x)—M|<§+%=€~

Thus (1) holds for § =min(§,,6,) and the proof is completed.
* In this chapter, whenever we write a hypothesis such as lim,_,,f(x)= L it is understood that f is a function

whose domain contains all points whose distance from a is less than some h(h > 0) except perhaps the point
a itself. '
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Using the proofs of 2.7D, 2.7G, and 2.71 as models, the reader should now be able to
prove the following theorem.

4.1D. THEOREM. If lim _ f(x)=L and lim,_,g(x)= M, then
(@) lim,_,[f(x)—g(x)]=L—-M,
(b) lim,_,,f(x)g(x)= LM,

and if M#0,
(©) lim,_,[f(x)/g(x)]=L/M.

We occasionally need to handle limits of the form lim,_,  f(x).

4.1E. DEFINITION. We say that f(x) approaches L as x approaches infinity, if given
€ >0, there exists M € R such that
[ f(x)—L|<e (x>M).

In this case we write lim,_,  f(x)=L, or f(x)—L as x—c0.

Definition 4.1E requires, of course, that the domain of the (real-valued) function f
contain some interval of the form (c, ). Note the very strong resemblance of 4.1E to
2.2A.

For example, let us prove that lim,_, _(1/x%=0. Given € >0 we must find M € R such
that

X

1
—2—O‘<e (x>M). (1)
Since (1) is equivalent to

%<\'/E (x> M),

it is clear that (1) will hold if we take M=1/Ve .
It is also useful to consider “one-sided” limits.

4.1F. DEFINITION. We say that f(x) approaches L as x approaches a from the right, if
given € >0, there exists § >0 such that

|f(x)—L|<e (a<x<a+d).

In this case we write lim,_,,, f(x)= L. (The number L is called the right-hand limit of f
at a.)

We say that f(x) approaches M as x approaches a from the left, if given € >0, there
exists 6 >0 such that

|f(x)-M|<e (a—d8<x<a).
In this case we write lim,_,_ f(x)= M. (The number L is called the left-hand limit of f
at a.)
Thus the statement lim,_, ., f(x)= L involves only values of f(x) for x to the right of
a, while lim,_,,_ f(x)= M involves only values of f(x) for x to the left of a. It should be
obvious to the reader that lim,_ ,f(x)= L if and only if

X—a

i, )= lim ()= L

On the other hand, both lim, _,,, f(x) and lim,_,_ f(x) may exist without being equal

X—a
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to each other. For example, if
f(x)=x (0<x<1),
f(x)=3-x (1<x<2),
then lim,_,, _ f(x)=1 while lim_,, f(x)=2.
It is not difficult to show that theorems analogous to 4.1C and 4.1D also hold for
limits of the form lim,_, _ f(x),lim,_,, f(x),or lim,_,_ f(x). (See problem 15.)

“One-sided” limits always exist for an important class of functions—namely, mono-
tone functions.

4.1G. peFINITION. If fis a real-valued function on an interval J C R, we say that f is
nondecreasing of J if
f()< f(») (x<y; x,y€J).
We say that f is nonincreasing on J if
f(x)=f(y) (x<y; x,y€&J).
We say that f is monotone if f is either nondecreasing or nonincreasing.

Thus definition 4.1G is analogous to definition 2.6A for sequences. As for sequences,
we say that a function f on an interval J C R is bounded above or bounded below if the
range of fis respectively bounded above or bounded below. We then have the following
important result analogous to 2.6B.

4.1H. THEOREM. Let f be a nondecreasing function on the bounded open interval (a, b).
If f is bounded above on (a,b), then lim,_,_ f(x) exists. Also, if f is bounded below on
(a,b), then lim,_,,, f(x) exists.

PROOF: If fis bounded above and nondecreasing on (a,b), let

M= lu.b. .
xlel%ak,)b) ()

Given € >0 the number M — ¢ is thus not an upper bound for the range of f. Hence there
exists y €(a, b) such that f(y)> M —e. Let §=b—y. Then
f(b=8)=f(»)>M—e.
Since f is nondecreasing, this implies
f(x)>M—e (b—8<x<b).
Hence since f(x) < M for all x €(a,b) we have

|[f(x)—M|<e (b—8<x<b).

This proves that lim,_,_ f(x)= M.

If f is bounded below, a similar argument will show that lim,_,, f(x)=m where
m= g'l'b‘xe(a,b)f(x)'

If fis nonincreasing on (a,b), the following result may be proved by applying 4.1H to
— f (which will be nondecreasing).

4.11. THEOREM. Let f be a nonincreasing function on the bounded open interval (a, b).
If f is bounded below on (a,b), then lim,_, _ f(x) exists, while if fis bounded above on
(a,b) then lim,_,, f(x) exists.
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We then have the important corollary 4.1J.

4.1J. coroLLARY. If f is a monotone function on the open interval (a,b), and if
c€E€(a,b), then lim,_, ., f(x) and lim,_._ f(x) both exist.

PROOF: Suppose that f is nondecreasing. Choose 8 >0 such that (c—é,c+38)
(bounded open interval) is contained in (a,b). Then the values of f on the open interval
(c¢—8,c) are bounded above by f(c) and hence by 4.1H, lim,_._ f(x) exists. Similarly,
the values of f on the open interval (¢,c + &) are bounded below by f(c). Hence again by
4.1H, lim, ., f(x) exists.

If f in nonincreasing we use 4.11 instead of 4.1H. This completes the proof. Note that
we did not assume that (a,b) was bounded.

As long as we are on this subject we may as well define strictly increasing function and
strictly decreasing function.

4.1K. DEFINITION. The real-valued function f on the interval J C R is said to be strictly
increasing if

f)<f(y)  (x<y; xy€&J).
Similarly, f is said to be strictly decreasing if
F(x)>f(y)  (x<y; xy€J).

Thus if f is nonincreasing on J, then f is strictly increasing on J if and only if fis 1-1
onJ.

Exercises 4.1

1. (a) If |x—2|< 1, prove that |x2—4|<5.
(b) If |x —3| <45, prove that |x?>— x—6|<0.51.
(¢) If |x+1| <, prove that |x>+1|<0.331.
2. Let § be any number such that 0<§< 1.
(a) If |x—2| <8, prove that |x2—4|<58.
(b) If |x —3| <8, prove that |x*— x — 6| <68.
(c) If |x+1|< 8, prove that |x>+1|<78.
(d) If |x—2|< 8, prove that |[x—2)/(x+3)|< /4.
3. (a) Let f(x)=x2+4x. Find 8 >0 such that
F(x)=5<d . (0<|x-1]<8).
(b) Prove directly from definition 4.1A that lim__,(x*>+4x)=>5.
4. For each of the functions in Figures 13-17, draw a diagram of the type in Figure 7.
Relate the diagrams to definition 4.1A.
5. Prove, using only definition 4.1A, the truth of the following statements.
(@) lim x?+3x=-2.

x— =2

2_
() lim 2 =L =2,

x—1 x—1

(©) lirrz)V4— =2,

6. Prove that if lim,_,f(x)=L and lim_ f(x)=M, then L= M. (Compare with
theorem 2.3B.)

7. If lim,_ ,f(x)=L and c €R, prove that lim,_ ,c¢f(x)=cL.




8.

9.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.
20.-
21.

22.

23.

24.

25.

4.1 LIMIT OF A FUNCTION ON THE REAL LINE nz

Prove

lim x7—=2x5 +1_
x—1 x3-3x2 +2

If cER and f(x)=c for all x ER, prove that lim,_,f(x)=c, where a is any point in
R

Let [x] denote the greatest integer not exceeding x. (For example, [—4]= —4,
[—4.1]= =5, [15.4]=15.) Prove that if n€ I, then

lim [x]= lim [x]=n—1.

x—n* x—n"

Let
f(x)=[1—x2] (—1<x<]).

Does lim,_,  f(x) exist? If so, evaluate it.
For any a € R prove that lim,_ ,x = a. Then, using theorems from this section, prove
that lim,_, P (x)= P (a) where P is any polynomial function.

If f(x)> 0 for |x—a|<h and if lim,_,f(x)= L, prove that L >0.
If lim,_f(x)= L >0, show that there exists § >0 such that

f(x)>0  (0<|x—a|<$).

(Hint: Take e=L/2.)

If lim,_  f(x)=A4 and lim,_, g(x)= B, prove that lim,_, [ f(x)+g(x)]=4 + B. Do
the same with lim,_  replaced by lim,_,,, and lim_,_.

Let f and g be nondecreasing functions on an interval (a,b) and let h=f—g. If
c€(a,b) prove that lim,_ h(x) and lim,_,_h(x) exist.

If f is a real-valued function on (0, c0) and if

g(X)=f(;lc—) (0< x< o),

prove that lim _  f(x)= L if and only if llmx_+0+ g(x)=L.
Write out a definition of

Jim (=L
Prove, for this limit, a theorem corresponding to 4.1C.
Give an example of a 1-1 function on (0, o) that is not monotone.
Give an example of a nondecreasing function on [0, 1] that is not strictly increasing.
Prove that if f is nondecreasing and bounded above on (g, ), then lim,_ . f(x)
exists.
Let f be real-valued function on R and suppose lim,_ f(x)= L. If {x,};, is any
sequence of real numbers which converges to a, and if x,# a(n € I), prove that the
sequence { f(x,)}y-, converges to L.
Conversely, suppose lim,_,  f(x,)= L for every sequence {x,}%_, such that x,#a
(n€l) and lim,_ x,=a. Prove that lim,_ f(x)= L.
Suppose only that lim,_,  f(x,) exists for every sequence {x,}%_, such that x,#a
and lim,_,_x,=a. Prove that lim,_ ,f(x) exists.

n—»oo n

Use exercises 22 and 23 to give a new proof of theorem 4.1C.
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4.2 METRIC SPACES

4.2A. In the proofs of theorems 2.7A, 2.7D, 2.7G, and 2.71, and their counterparts 4.1C
and 4.1D, the following crucial properties of the absolute-value function were used.

[0]=0, (1
la]>0 (aER,a#0), ()
la|=|—a|l  (a€R), 3)
la+b|<|a|+|b| (a,bER). (4)

Now, for x,y € R, the geometric interpretation of |x — y| is the distance from x to y. If
we define the “distance function” p by

p(xy)=|x=y|  (xyER),
then the properties (1)-(4) have the following consequences for any points x,y,z € R:

p(x,x)=0. &)
(That is, the distance from a point to itself is 0.)
p(x.y)>0  (x#y). (6)
(The distance between two distinct points is strictly positive.)
p(x,y)=p(y,x). (M

(The distance from x to y is equal to the distance from y to x.)
p(x,p) <p(x,z)+p(z2,y) (triangle inequality). 3)

[This is proved by setting a=x—z,b=z—y in (4). The inequality (8) says that going
from x to y directly never takes longer than going from x to z and then to y.]

A satisfactory definition of limit can be constructed, not only for R, but for any set M
which has a “distance function” p satisfying (5)—(8). A “distance function” is usually
called a metric.

4.2B. DEFINITION. Let M be any set. A metric for M is a function p with domain
M X M and range contained in [0, 0) such that

p(x,x)=0 (xeM),

p(x,)>0  (x,yEM,x#y),

p(.y)=p(y,x)  (xyEM),

p(x,y) <p(x,z)+p(2,y) (x,y,2EM) (triangle inequality).

If p is a metric for M, then the ordered pair {(M,p) is called a metric space. (In many
cases we abuse language slightly and refer to the metric space {M,p) simply by M. Thus
if we say “let M be a metric space,” there is always a metric p for M lurking in the
background.)

A metric for M thus has all the properties (5)—(8) of the distance function |x —y| for R.

4.2C. Here are five examples of metric spaces.
1. The function p defined by p(x,y)=|x —y| is obviously a metric for the set R of real

numbers. We denote the resulting metric space (R,p) by R!. We call this metric p
the absolute value metric.
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2. Here is another metric for the set R. Define d: R X R—[0, o) by
d(x,x)=0 (xER),
d(x,y)=1 (x,y ER; x5#y).
That is, the “distance” d(x,y) between any two distinct points x,y ER is 1. The
reader should verify that 4 is a metric for R. The metric d is called the discrete
metric. We will henceforth denote the metric space {R,d) by R,. The examples 1
and 2 show that a given set may have more than one metric.

3. Fix nel. If x=<{x,,...,x,) and y={y,,...,y,» are two ordered n-tuples of real
numbers, define

n 172
p(x,y)= [ 2 (% —yk)2:| .
k=1

[For n=2, p(x,y) is thus the usual distance formula for points in the Cartesian
plane.] We will show that p satisfies the triangle inequality. Thus, if z={z,,...,z,),
we must show p(x,y) <p(x,z)+p(z,y). For k=1,...,n let a,=x, — z,,b, =z, — y,.
Then

" 1/2
oo $)”
k=1

u 1/2
p(z,y>=( z~bz) ,
k=1

and
1/2

p(x.y)= ki, (a4 + By

We must thus show that
1/2 172

n n l/2 n
[2 (a+ b <( zaz) +( $ b,f)
k=1 k=1 k=1

But this follows from 3.10C. It is trivial to verify that p satisfies the other
requirements for a metric. We denote by R” the metric space formed by the set of
all n-tuples of real numbers with this metric p. The metric space R" is called
Euclidean n-space. (Note that for n=1, R" becomes the R' of example 1 since

{ 1/2
[ 2 (Xx ‘)’k)z} =|x; =yl
k=1

4. Let {* denote the set of all bounded sequences of real numbers. If x={x,}5_, and
y={y,}r-, are points in £, define

,y)= lub. -Vl
p(x.y)= Lub. |x,—y,|
For example, if x={1+1/n}%_,, y={2-1/n}7_,, then

p(x,y)= lLub. ‘(1+;11_)_(2_1)

I<n<oo n

= lub. [—1+ 2
n

I<n<oo

=1.

Again, it is easy to see that p satisfies the first three requirements of a metric. To

demonstrate the triangle inequality, let z={z,}_, also be a point in (*. For any
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keI we have
| X =il =% = 2 + 2 =y <X =zl |z =i
< lub. |x,—z,|+ Lub. |z,—y,l,
I<n<oo I<n<oo
and so

=il <p(x,2)+p(zy)  (KET).

From this it follows that Lu.b.; ;o |x =y < p(x,2)+p(z,y) (Why?), and this is
the triangle inequality for p.
It is customary to denote this metric space {({*,p> simply by {*. (The reason for
the co symbol on the ¢ is usually disclosed in the next course in analysis.)
5. For a final example of a metric space, consider the set {*> from Section 3.10. For
x,y € (* define p(x,y)=|x—y|l,- Then theorem 3.10E shows that p is a metric for
f2. For example, using (3) of 3.10E, we have

p(x.y)=llx=yl2=1I(= (¥ —x)l2
=|=1-lly = xl=lly = xll,=p(y,x).
Also, for x,y,z € > we have, using (4) of 3.10E,
p(x.p)=lx=yla=llx—z+z=yl,
<llx=zl+llz=ylla=p(x,2) +p(2.y).
We denote the metric space {f?,p) simply by 2.

We have thus listed R', R,, R", I, and ? as examples of metric spaces.

It is important to note that if p is a metric for the set M, then p defines a metric for
any subset of M in an obvious way. For example, p(x,y)=|x—y| defines a metric for
any closed interval [a,b] of real numbers.

4.2D. In the next section we will make use of the concept of cluster point.

DEFINITION. Let (M, p) be a metric space and suppose A C M. The point a € M is called
a cluster point of 4 in M if, for every h>0, there exists a point x €A such that
0<p(x,a)< h.

That is, a is a cluster point of A4 if there are points of 4 distinct from a but arbitrarily
near a. Note that a need not belong to 4.

For example, let M=R'and let 4=(1,4,4,4,...}. Then 0 is the only cluster point of
A in M. See Figure 18.

o 1 1
6 8

ESE J
-

FIGURE 18. The only cluster point of A ={1, -+ }is 0.

N|— N=¢

1.
’4’

Exercises 4.2

1. Show that if p is a metric for a set M, then so is 2p.

2. Show that if p and ¢ are both metrics for a set M, then p+ o is also a metric for M.

3. Suppose p, and p, are metrics for the set M. Prove that max(p,,p,) is also a metric
for M.

4. Let (M,p) be a metric space. Prove that min(l,p) is also a metric for M.
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5. Let

p(x.y)=

l—ii (x>0, >0).
x oy

Prove that p is a metric for (0, o).

6. Let (M,p) be a metric space. Prove that

lo(x,y)—p(x.y)|<p(y,2)  (x.0,zEM).

7. Let {' be the class of all sequences {s,}_, of real numbers such that Z7_|s,| < .
Show that if s={s,_, and t={z,}%_, are in !, then p(s,))=22_,|s,—1,| defines a
metric for f'.

8. For P{x,,y,) and Q<{x,,y,), define

o(P,Q)=|x;—x)| +|y;—y,l-
Show that o is a metric for the set of ordered pairs of real numbers.
Also, if
7(P,Q)=max(|x,— x|, |y, = yJl),

show that 7 defines a metric for the same set.
9. Let 0 denote the point {0,0> in R2 For o, as in Exercise 4, sketch the following
subsets of R?:

{PERYs(0,P)<1},

A
B={PeR2|T(b,P)<1}.

Compare with

C={PeERp(0,P)<1},

where p is the metric for R2.
10. If P, Q, R are points in R* and p(P,R)=p(P,Q)+p(Q,R), what can you say about
the relative position of P, Q, R?
Answer the same question with R, in place of R>.
11. Let A4 denote the open interval (0, 1). Show that the set of cluster points of 4 in R' is
[0,1].
12. If A=(0,1), find the set of cluster points of 4 in R,.

4.3 LIMITS IN METRIC SPACES

If we examine definition 4.1A we see that lim,_ ,f(x)= L means that given € >0 there
exists § >0 such that the distance from f(x) to L is less than e provided that the distance
from x to a is less than & (but greater than 0). Now that we have stated this definition in
terms of distances, it is not difficult to see how to formulate the corresponding definition
for arbitrary metric spaces. '

Suppose that {(M,,p,> and {M,,p,> are metric spaces, that a € M,, and that f is a
function whose range is contained in M, and whose domain contains all x € M, such
that p,(a,x) < h (for some h > 0) except possibly x =a. We also assume that a is a cluster
point of the domain of f.

4.3A. DEFINITION. We say that f(x) approaches L (where L € M,) as x approaches a if
given € >0, there exists § >0 such that

pa(f(x),L)<e (0<py(x,a)<8).
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In this case we write lim,_ f(x)=L, or f(x)—L as x—a. If (M,,p;)={M,,p,>=R",
then p,(f(x),L)=|f(x)— L|, p;(x,a)=|x— al, and 4.3A reduces to 4.1A.

In later chapters we very often consider functions f on the metric space M =[a,b]
(closed bounded interval with absolute-value metric). For this space the statement

lim f(x)=L (*)

involves only points x to the right of a (since points in R! to the left of a are not in M).
In 4.1F, L is referred to as the “right-hand limit of f.” However, there is no need for us
to use this terminology as long as we remember on what space f is defined. A similar
remark applies to

lim f(x)=N.

These remarks are also relevant when we define the derivative of a real-valued function
on [a,b].

Here is an example illustrating 4.3A. Let f:f2—>R' be defined as follows: If x
={x,}2., € let f(x)=x,. That is, the image under f of any sequence in f* is the first
term of the sequence. Now let a={a,}%_, be any fixed element of (2. We will prove that
lim,_,f(x)=a,. Given ¢ >0 we must find 6 >0 such-that the distance from f(x) to a, (in
the metric for R') is less than € whenever the distance from x to a (in the metric for (2) is
less than & but greater than 0. That is, we must find § >0 such that

lf(x)—al<e  (0<[lx—al,<d),
or
lx;—a|<e  (0<[lx—al,<8). (1)
But

—~ /2 1/2
||x—a||2=[2(xn_an)2] >[(xl_al)z] =|x,—a)l,

n=1

and so |x, —a,| < ||x—a|,. If we thus choose 8§=¢, then || x — a||, < §= ¢ implies |x,—qa,]
<||x = a||, < e and (1) holds. This proves lim,_, f(x)= a,. [Note that a, = f(a) so that we
have shown lim,_,, f(x)=f(a).]

We most often apply definition 4.3A to real-valued functions—that is, when {M,;p,>
= R,. The proof of the following theorem is then an exact duplicate of the proofs of 4.1C
and 4.1D. .

4.3B. THEOREM. Let (M,p) be a metric space and let a be a point in M. Let f and g be
real-valued* functions whose domains are subsets of M. Iff lim,_ . f(x)=L and
lim (x)= N, then

x—»ag

lim[f(x)+g(x)]=L+N,

X—a

lim [ f(x)—~g(x)]=L— N,

xX—a

lim [ /(x) g(x)]= LN,

* Henceforth, whenever we use the phrase “real-valued function,” we mean a function with range in R'.
That is, the metric in the range is the absolute-value metric.
FSee footnote p. 113.
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and, if N0,

PROOF: We prove only that lim,_ ,f(x)g(x)=LN. (Compare with the second proof

of 2.7G.)
Since lim,_,g(x)= N we have, for some 8, >0,
lg(x)=N|<I  (0<p(x,a)<8)).
Thus
lg()I<IN|+1=0  (0<p(x,a)<8§)).
Now

f(x)g(x)— LN=f(x)g(x)— Lg(x)+ Lg(x)— LN
=g(x)[f(x)- L]+ L[g(x)=N],
|f(x)g(x) = LN|<|g(x)|-|f(x)— L|+|L|-|g(x)= NI
Hence if 0<p(x,a)<$,,

|/(x) g(x) = LN| < Q-|f(x) = L|+|L|-[g(x) = N|. (1)
Given € >0 there exists §, >0 such that
QIf (- LI<5  (0<p(x,a)<8y), b
and there exists §; >0 such that
ILllg(x)=NI<5  (0<p(x,a)<8;). (3)

If we let 6 =min(8,,6,,8,), then from (1), (2), and (3) it follows that
|f(x)g(x)—LN|<e (0<p(x,a)<8).
This proves lim,_, ,f(x)g(x)=LN.

43C. A sequence of points in a metric space M is a function from 7 into M. As with
sequences of real numbers, we will use the notation {a,}5_, for a sequence of points M.
For such sequences, convergence is defined as in 2.2A and 2.3A.

DEFINITION.  Let {M,p) be a metric space and let {s,}%_, be a sequence of points in M.
We say that s, approaches L (where L € M) as n approaches infinity if given € >0, there
exists N €I such that

p(s,, L)<e (n>N).

In this case we write lim =L, ors,—L as n—oo and say that {s,}5_, is convergent

in M to the point L.

n—»oosn

Cauchy sequences are defined as in 2.10A.

4.3D. DEFINITION. Let {M,p) be a metric space and let {s,}_, be a sequence of points
in M. We say that {s,}_, is a Cauchy sequence if given € >0, there exists N €I such
that

p(s8,,,8,)< e (m,n>N).
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The proof of the following theorem is identical to that of 2.10B.

4.3E. THEOREM. Let (M,p) be a metric space. If {s,}%_, is a convergent sequence of
points of M, then {s,}%_, is Cauchy.

43F. Now comes a very important point. For some metric spaces there are Cauchy
sequences which are not convergent. That is, theorem 2.10D cannot be extended to all
metric spaces.

For example, let M be the set of all points {x,y> in the Euclidean plane R? such
that x2+y2<1, with the R? metric used as metric for M. The sequence A=
{<0,n/n+1>}_, is a Cauchy sequence of points in M but there is no L € M such that 4
is convergent to L! (Draw a picture, then verify.) Hence the sequence of A points of M
does not converge in M.

Of course, the sequence 4 considered as a sequence of points in R %2 does converge to
the point <0,1> in R% But the fact remains that 4 is not a convergent sequence in M
(according to 4.3C) even though it is Cauchy.

The reader should carefully reexamine the proof of 2.10D to see where properties
special to R' are used and thus why the proof does not immediately extend to cover all
metric spaces as did the proof of 2.10B.

Exercises 4.3

1. Show that a sequence of points in any metric space cannot converge to two distinct
limits.

2. For each n€1 let Pr={x,,y,> be a point in R2 Show that {P,}_, converges to
P={x,y> in R? if and only if {x,}?., and {y,}®., converge in R' to-x and y,
respectively.

3. Let s={1/k}?.,. Find a sequence {s,}®_, of points in (> such that each s, is
distinct from s and such that {s,}%_, converges to s in 2.

4. Suppose that p and ¢ are metrics for M such that

lim x,=x in (M, p)
n—oo

if and only if
lim x,=x in (M, o).
n—oo

(That is, a sequence converges in (M, p) if and only if it converges in (M, ¢ and the
limits are the same.) We then say that p and o are equivalent.
Prove that the usual metric for R2, and the metrics 7 and o of Exercise 8 of
Section 4.2 are all equivalent to one another.
5. If p and o are metrics for M, and if there exists k> 1 such that

1
Eo(x,y)<p(x,y)<ka(x,y) (x,yeM),

prove that p and o are equivalent.

6. Show that if {s,}-; is a Cauchy sequence in a metric space {(M,p), then the
sequence of real numbers {p(s,,s,)} -, is bounded.

7. If {x,}°—, is a Cauchy sequence of points in the metric space M, and if {x,};-, has
a subsequence which converges to x € M, prove that {x,};°_, itself is convergent to
x.

8. Show that if {x,};-, is a convergent sequence in R,, then there exists N €1 such
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that xy = xy,;=xy., . (That is, a sequence in R, is convergent if and only if all
the terms of the sequence are the same from some point on.)

9. Show that every Cauchy sequence in R, is convergent.

10. Let {x,};-; and {y,}-, be convergent sequences in a metric space {M,p). Prove
that {p(x,,y,)}Z, is convergent in R'.

119 Let {x,}>-, and {y,}>_, be Cauchy sequences in a metric space (M, p). Prove that
{p(x,5¥,)} %~ is Cauchy in R

12. Explain why we do not want definition 4.3A to apply if a is not a cluster point of the
domain of f.



