
UNIT – IV

CHAPTER IX

USER-DEFINED FUNCTIONS

1

9.1 INTRODUCTION

• C function can be classified into two categories, namely

 (i) library functions

 (ii) user-defined function.

• Main() is an example of user-defined functions.

• While printf() and scanf() belong to the category of library functions.

• The main distinction between these two categories is that library functions are

not required to be written by us whereas a user- defined function has to be

developed by the user at the time of writing a program.

2

9.2 NEED FOR USER-DEFINED

FUNCTION

• main() function indicates where the
program has to begin its execution.

• While it is possible to code any program
utilizing only main function but it leads
to a lot of problem.

• Problem is that the program may
become too large and complex and as a
result the task of debugging, testing, and
maintaining becomes difficult.

• If a program is divided into functional
parts, then each part may be
independently coded and later combined
into single unit.

• These subprograms called ‘function’ are
much easier to understand, debug and
test.

• There are times when certain type of
operation or calculation is repeated at
many points throughout a program.

• So in such situation, we may repeat the

program statements wherever they are

needed.

• Another approach is to design a function

that can be called and used whenever

required.

• This saves both time and space.

• Top-down modular programming using

function have the following advantage.

1. The length of a source program can be

reduced by using function at appropriate

places.

2. It is easy to locate and isolate a faulty

function for further investigations.

3. A function may be used by many other

programs.

3

Top-down modular programming using functions

Main program

Function A Function B Function C

B1 B2

4

9.3 A MULTIPLE-FUNCTION PROGRAM
• A function is a self-contained code that

performs a particular task.

• Once a function has been designed , it can

be treated as a block-box that takes some

data from the main program and return a

value.

• Every c program can be designed using the

collection of these black boxes known as

function.

• Any function can call any other function.

• It can call itself.

• A called function can also can call another

function.

• A function can be called more than once.

• The function can be placed in any order.

• A called function can be placed either

before or after the calling function.

main()

{

function1(); call

function2(); call

function3(); call

}

function1()

{

}

function2()

{

}

function13)

{

}

R

E

T

U

R

N

5

9.4 MODULAR PROGRAMMING

• Modular programming is a strategy
applied to the design and
development of software systems.

• It is defined as organizing a large
program into small, independent
program segments called modules
that are separately named and
individually callable program units.

• These modules are carefully
integrated to become a software
system that satisfies the system
requirements.

• It is basically a “divide-and-conquer”
approach to problem solving.

• Modules are identified and designed
such that they can be organized into a
top-down hierarchical structure.

• Some characteristics of modular
programming are:

1. Each module should do only one
thing.

2. Communication between modules is
allowed only by a calling module.

3. A module can be called by one and
only one higher module.

4. No communication can take place
directly between modules that do not
have calling-called relationship.

5. All modules are designed as single-
entry, single-exit systems using
control structure.

6

9.5 ELEMENTS OF USER-DEFINED

FUNCTION

• There are three elements of user-

defined function.

1. Function Definition

2. Function Call

3. Function Declaration

• The function definition is an

independent program module that is

specially written to implement the

requirement of the function

• In order to use this function we need

to invoke it at a required place in the

program. This is known as the

function call.

• The program that calls the function is

referred to as the calling program or

calling function.

• The calling program should declare

any function that is to be used later in

the program.

• This is known as the function

declaration or function prototype.

7

9.6 DEFINITION OF FUNCTIONS

• A function definition, also known as

function implementation shall include

the following elements.

1. Function name

2. Function type

3. List of parameters

4. Local variable declarations

5. Function statements

6. A return statement

• All the six elements are grouped into

two parts, namely,

1. Function header (First three elements)

2. Function body (Second three elements)

a general format of a function definition to

implement these two parts is given below.

function_type function_name(parameter list)

{

local variable declaration;

executable statement1;

executable statement2;

………….
………….
return statement;

}

• The first line function_type

function_name(parameter list) is known as

the function header and the statements

within the opening and closing braces

constitute the function body, which is a

compound statement.

8

Function Header

• The function header consists of three

parts: The function type(also known as

return type, the function name and the

formal parameter list. Note that a

semicolon is not used at the end of the

function header.

Name and Type

• The function type specifies the type of

value that the function is expected to

return to the program calling the function.

• If the return type is not explicitly

specified, c will assume that it is an

integer type.

• If the function is not returning anything,

then we need to specify the return type as

void.

• Remember, void is one of the

fundamental data types in C.

• The function name is any valid C

identifier and therefore must follow the

same rules of formation as other variable

names in C.

• The name should be appropriate to the

task performed by the function.

Formal Parameter List

• The parameter list declares the variables

that will receive the data sent by the

calling program.

• They serve as input data to the function to

carry out the specified task.

• Since they represent actual input values,

they are often referred to as formal

parameters.

• These parameters can also be used to send

values to the calling programs.

• These parameters are also known as

arguments.

Examples

float quadratic(int a, int b, int c) { ….. }
• Remember, there is no semicolon after the

closing parenthesis.

• Declaration of parameter variables cannot

be combined.

• That is, int sum(int a,b) is illegal.

• A function need not always receive values

from the calling program.

• In such cases, functions have no formal

parameters.
9

• To indicate that the parameter list is

empty, we use the keyword void

between the parentheses as in

void printline(void)

{

…………

}

• This function neither receives any input

values nor returns back any value.

• Many compilers accept an empty set of

parentheses, without specifying

anything as in

void printline()

• But, it is a good programming style to

use void to indicate a null parameter list.

Function Body

• The function body contains the

declarations and statement necessary for

performing the required task.

• The body enclosed in braces, contains three
parts, in the order given below:

1. Local declarations that specify the variables
needed by the function.

2. Function statements that perform the task of the

function.

3. A return statement that returns the value
evaluated by the function.

• If a function does not return any value we can
omit the return statement.

• However note that its return type should be
specified as void.

• Again it is nice to have a return statement
even for void functions.

Return Values And Their Types

• If a function return value then it is done
through the return statement.

• While it is possible to pass to the called
function any number of values, the called
function can only return one value per call, at
the most.

• The return statement can take one of the
following forms

 return;

 or

 return(expression);

10

• The first, the ‘plain’ return does not
return any value; it acts much as the
closing brace of the function.

• When a return is encountered, the
control is immediately passed back to
the calling function.

Example

int mul (int x, int y)

{

int result;

result =x*y;

return result;

}

• It return the value of p which is the
product of the values of x and y, and
the type of return value is int.

Function Calls

• A function can be called by simply
using the function name followed by
a list of actual parameters , if any,
enclosed in parentheses.

Example

main()

{

int y;

y=mul(10,5);

printf(“%d\n”,y);

}

• When the compiler encounters a
function call, the control is transferred
to the function mul().

• This function is then executed line by
line as described and a value is
returned

• when a return statement is
encountered.

• This value is assigned to y.

11

• A function call is a postfix

expression. The operator (..)is at a

very high level of precedence.

• Therefore, when a function call is

used as a part of an expression, it will

be evaluated first, unless parentheses

are used to change the order of

precedence.

• In a function call, the function name

is the operand and the parentheses set

which contains the actual parameters

are the operator.

• The actual parameters must match the

function’s formal parameters in type,

order and number.

• Multiple actual parameters must be

separated by commas.

Note:

1. If the actual parameters are more than

the formal parameters, the extra

actual arguments will be discarded.

2. On the other hand, if the actuals are

less than the formals, the unmatched

formal arguments will be initialized to

some garbage.

3. Any mismatch in data types may also

result in some garbage values.

12

9.7 FUNCTION DECLARATION
A function declaration consists of four

parts.

• Function type

• Function name

• Parameter list

• Terminating semicolon

Syntax

Function-type function-name

(parameter list);

• The function declaration appear in the
main function.

• Here function-type indicate the type
of value that the function return.

• Function-name is name of the
function.

• Parameter list is an arguments list.

Example

void main()

{

int sum(int a,int b);

}

int sum(int a, int b)

{

int c;

c=a+b;

return(c);

}

13

Points to note

1. The parameter list must be separated by commas.

2. The parameter names do not need not to be the same in the prototype declaration
and the function definition.

3. The types must match the types of parameters in the function definition, in number
and order.

4. Use of parameter names in the declaration is optional.

5. If the function has no formal parameters then the list is written as void.

6. The return type is optional, when the functions returns int type data.

7. The return type must be void if no value is returned.

8. When the declared types do not match with the types in the function definition,
compiler will produce an error.

Example

int mul(int, int);

int mul(int a, int b); all are equally acceptable statements

mul(int a, int b);

mul (int, int);

14

Prototype : yes or no

• Prototype declarations are not
essentials.

• If a function has not been declared
before it is used, C will assume that
its details available at the time of
linking.

• Since the prototype is not available, C
will assume that the return type is an
integer and that the types of
parameters match the formal
definition.

• If these assumptions are wrong, the
linker will fail and we will have to
change the program.

Parameters Everywhere

Parameters (arguments0 are used in the
following places:

1. in declaration (prototype)

 --- formal parameters

2. in function call

 ---actual Parameters

3. in function definition

 ---formal Parameters

• The actual Parameters used in calling
statement may be simple constants,
variables or expressions.

• The formal and actual Parameters
must match exactly in type, order and
number.

• Their names do not need to match.

15

9.8 CATEGORY OF FUNCTIONS

• A function, depending on whether arguments are present or not and

whether a value is returned or not, may belong to one of the following

categories.

Category 1: Function with no arguments and no return Values.

Category 2: Function with arguments and return values.

Category 3: Function with arguments and one return values.

Category 4: Function with no arguments and return values.

Category 5: Function that return multiple values.

16

9.8.1 NO ARGUMENTS AND NO RETURN

VALUES
• When a function has no arguments, it does not receive any data from the calling

function .

• Similarly, when it does not return value, the calling function does not receive

any data from the called function.

• Ie, there is no data transfer between the calling function and the called function.

 no input

 no output

function1()

{

function2();

}

function2()

{

}

17

EXAMPLE 1
#include <stdio.h>

 void primeno();

 int main()

 {

primeno();// argument is not passed

return 0;

 }

 /* return type is void meaning

doesn't return any value*/

 void primeno()

 {

 int n, i, flag = 0;

printf("Enter a positive integer value: ");

scanf("%d",&n);

 for(i=2; i <= n; ++i)

 {

 if(n%i == 0)

 {

 flag = 1;

 }

}

 if (flag == 1)

 printf("%d is not a prime number.", n);

 else

 printf("%d is a prime number.", n);

 }

18

EXAMPLE 2
#include <stdio.h>

#include <conio.h>

void printline();

void si();

 int main()

 {

 clrscr();

 printline();

 si();

 printline();

 return 0;

 }

void printline()

{

 int i;

 for (i=0;i<=20;i++)

 printf(“%c”,’-’);
 printf(“\n”);
}

void si()

{

 int p,n,r;

 float interest;

 printf(“Enter principal, no. of years and
rate of interest\n”);

 scanf(“%d%d%d”,&p,&n,&r);
 interest=p*n*r/100.0;

 printf(“Interest =%f”,interest);
 getch();

}

19

9.8.2 Function with arguments and no return

values

• The function that takes argument but no return value.

• The functions receives the arguments from the calling function but does not

send back any value to calling function.

 values of

 arguments

 no

 return

 value

function1()

{

function2(a);

}

function2(f)

{

}

20

EXAMPLE
#include <stdio.h>

#include <conio.h>

void printline();

void si(int,int,int);

 void main()

 {

 int p1,n1,r1;

 clrscr();

 printf(“Enter principal, no. of years
and rate of interest\n”);

 scanf(“%d%d%d”,&p1,&n1,&r1);
 printline();/*no arguments*/

 si(p1,n1,r1);/* with arguments*/

 printline();

 getch();

 }

void printline()

{

 int i;

 for (i=0;i<=20;i++)

 printf(“%c”,’-’);
 printf(“\n”);
}

void si(int p,int n,int r)

{

 float interest;

 interest=p*n*r/100.0;

 printf(“Interest =%f”,interest);
}

21

9.8.3 FUNCTION WITH ARGUMENTS AND RETURN

VALUES

• A self-contained and independent

function should behave like a black

box that receive a predefined form of

input and outputs a desired value.

Such function will have two-way data

communication.

• The called function receives the

arguments from the calling function

and send back value to calling

function.

 values

 of

 arguments

 function

 result

function1()

{

function2(a);

}

function2(f)

{

return (e);

}

22

EXAMPLE

#include <stdio.h>

#include <conio.h>

void printline();

float si(int,int,int);

 void main()

 {

 int p1,n1,r1;

 float intamt;

 clrscr();

 printf(“Enter principal, no. of years
and rate of interest\n”);

 scanf(“%d%d%d”,&p,&n,&r);
 printline();/*no arguments*/

 intamt =si(p1,n1,r1);/* with
arguments*/

 printf(“simple interest= %f”,intamt);
 printline();

 getch();

 }

void printline()

{

 int i;

 for (i=0;i<=20;i++)

 printf(“%c”,’-’);
 printf(“\n”);
}

float si(int p,int n,int r)

{

 float interest;

 interest=p*n*r/100.0;

 return(interest);

}

23

The following events occur, in order, when the above function call is executed

1. The function call transfers the control along with copies of the values of the actual

arguments to the function si where the formal parameters p, n and r are assigned

the actual values of p1,n1 and r1 respectively.

2. The function si is executed line by line until the return(interest) statement is

encounters. At this point, the float value of interest is passed back to the function

call in the main and the following indirect assignment occurs:

 Si(int p1,int n1,int r1)=interest;

3. The calling statement is executed normally and the returned value is thus assigned

to intamt, a float variable.

24

9.8.4 Function with no arguments and return

values

• The called function does

not receive any arguments

but return value to the

calling function.

Example

• getchar() function does not

receive any arguments

from the calling function

but return a value.

Example

#include <stdio.h>

#include <conio.h>

int get_no();

void main()

{

 int n;

 n=get_no();

 printf(“%d”,n);

 getch();

}

int get_no()

{

 int no;

 scanf(“%d”,&no);

 return(no);

}

25

9.8.5 Function that return multiple values

 • The mechanism of sending back information
through arguments is achieved using what are
known as the address operator (&) and
indirection operator (*).

• The arguments not only to receive
information but also to send back information
to the calling function.

• The arguments that are used to “send-out”
information are called output parameters.

Rules for pass by pointers.

1. The types of the actual and formal parameters
must be same.

2. The actual arguments must be local and
address variable.

3. The formal arguments in the function header
must be prefixed by the indirection operator.

4. In the prototype, the arguments must be
prefixed by the symbol *.

5. To access the value of an actual argument in
the called function, we must use the
corresponding formal argument prefixed with
the indirection operator.

Example

#include <stdio.h>

#include <conio.h>

void mathoperation(int ,int ,int *,int *);

void main()

{

int x=5, y=7,s,d;

clrscr();

mathoperation(x,y,&s,&d);

printf(“s=%d\t d=%d”,s,d);

}

void mathoperation(int a, int b, int *sum, int *diff)

{

*sum=a+b;

*diff=a-b;

}

26

9.9 NESTING OF FUNCTIONS

• A called function can call another
function.

• A function can call another function is
called nesting of function.

Example

 calculate the ratio a/(b-c)

float ratio(int x, int y, int z);

int diff(int x,int y);

void main()

{

int a,b,c;

clrscr();

printf(“Enter the value of a, b and c\n”);
scanf(“%d%d%d”, &a, &b, &c);

printf(“Ratio = %f”, ratio(a,b,c));

getch();

}

float ratio(int x, int y, int z)

{

if (diff(y,z))

 return(x/(y-z));

else

 return(0.0);

}

int diff(int y1,int z1)

{

if (y1 != z1)

 return (1);

else

 return(0);

}

27

9.10 RECURSION

 • When a called function in turn calls another function a process of “chaining” occurs.

Recursion is a special case of this process, where a function calls itself.

• A very simple example of recursion

 main()

 {

 printf(“this is an example of recursion”);
 main();

 }

• when executed, this program will produce an output something like this:

o/p: this is an example of recursion

 this is an example of recursion

 this is an example of recursion

 this is an example of recursion

 this is an example of

• Execution is terminated abruptly, otherwise the execution will continue indefinitely.

28

Example

/*Factorial of a given no

N!=n*(n-1)*(n-2)*…….*1 */
#include <stdio.h>

#include <conio.h>

int factorial(int no);

void main()

{

int n;

int fact;

clrscr();

printf(“Enter the value of n\n”);
scanf(“%d”,&n);

fact=factorial(n);

printf(“Factorial of %d = %d”,n,fact);
getch();

}

int factorial(int no)

{

 int f;

 if (no==1)

 return(1);

 else

 f=no*factorial(no-1);

 return (f);

}

29

9.11 PASSING ARRAYS TO FUNCTIONS

One-Dimensional Arrays

• Like the values of simple variables, it

is also possible to pass the value of an

array to a function.

• To pass a one-dimensional array to a

called function, it is sufficient to list

the name of the array, without any

subscripts, and the size of the array as

arguments.

Example

 largest(a,n);

• Will pass the whole array a to the

called function.

• The called function expecting this call

must be appropriately defined.

• The largest function header might
look like:

float largest(float array[],int size)

• The function largest is defined to take
two arguments, the array name and
the size of the array to specify the
number of elements in the array.

• The declaration of the formal
argument

array is

 float array[];

• The pair of brackets informs the
compiler that the argument array is
an array of numbers.

• It is not necessary to specify the size
of the array here.

30

#include <stdio.h>

void main()

{

float largest(float a[],int n);

float value[5]={1.1,3.7,-2.6,5.9,1.2};

printf(“Largest =%f”,largest(value,5));

}

float largest(float a[], int n)

{

int i;

float max;

max=a[0];

for(i=1;i<n; i++)

{

if (max <= a[i])

 {

 max=a[i];

 }

 }

return(max);

}

• In C, the name of the array represent the

address of its first element.

• By passing the array name, we are, in fact,

passing the address of the array to the

called function.

• The array in the called function now refers

to the same array stored in the memory.

• Therefore, any changes in the array in the

called function will be reflected in the

original array.

• Passing addresses of parameters to the

function is referred to as pass by address

(or pass by pointers)

Three rules to pass an Array to a function:

1. The function must be called by passing only

the name of the array.

2. In the function definition, the formal

parameter must be an array type; the size of

the array does not need to be specified.

3. The function prototype must show that the

argument is an array.

31

A[0] =1.1max

A[1] = 3.7-max

A[2]= -2.6

A[3]= 5.9 max

A[4]= 1.2

Two-Dimensional Arrays

• Like simple arrays, we can also pass

multi-dimensional arrays to functions.

• The approach is similar to the one we

did with one-dimensional arrays.

The rules are simple.

1. The function must be called by

passing only the array name.

2. In the function definition, we must

indicate that the array has two-

dimensions by including two sets of

brackets.

3. The size of the second dimension

must be specified.

4. The prototype declaration should be

similar to the function header.

Example

#include <stdio.h>

#include<conio.h>

float average(int x[][n],int m,int n);

void main()

{

 int m=3,n=3,i,j,a[3][3];

 float mean;

 clrscr();

 printf(“enter the array elements one by one\m”);
 for(i=0;i<m;i++)

 for(j=0;j<n;j++)

 scanf(“%d”,&a[i][j]);

 mean=average(a[][n],m,n);

 printf(“average= %f”,mean);

 getch();

}

float average(int x[][n],int m,int n)

{

 int i,j;

 float sum=0.0;

 for(i=0;i<m;i++)

 for(j=0;j<n;j++)

 sum=sum+x[i][j];

 return(sum/(m*n));

}

32

Passing Strings to Functions

The strings are treated as character arrays

in C and therefore the rules for

passing strings to function are very

similar to those for passing arrays to

the functions.

1. The string to be passed must be

declared as a formal argument of the

function when it is defined.

2. The function prototype must show

that the argument is a string.

3. A call to the function must have a

string array name without subscripts

as its actual argument.

#include <stdio.h>

void passstring (char str[]);

char s1[50];

int main()

 {

 char s[50];

printf(“Enter string: ");
gets(s);

/* passing string to a function.*/

passstring(s);

return 0;

 }

void passstring (char str[])

 {

printf(“String output: ");
puts(str);

}

33

Call by Value and Call by reference

• The technique used to pass data from
one function to another is known as
parameter passing.

Parameter passing can be done in two
ways.

1. pass by value (also known as call by
value)

2. pass by pointers (also known as call
by reference)

1. Pass by value (call by value)

In pass by value,

• The value of actual parameters are
copied to the variables in the
parameter list of the called function.

• The called function works on the
copy and not on the original values of
the actual parameters.

• This ensures that the original data in
the calling function cannot be
changed accidentally.

2. Pass by pointers (Call by reference)

• The memory addresses of the
variables rather than the copies of
values are sent to the called function.

• In this case, the called function
directly works on the data in the
calling function and the changed
value is available in the calling
function for its use.

• pass by pointers method is often used
when manipulating arrays and strings.

• This method is also used when we
require multiple values to be returned
by the called function.

34

9.12 Scope, Visibility and Lifetime of Variables
Storage classes are

1. Automatic variables

2. External variables

3. Static variables

4. Register variables

• The scope of the variable determines

over what region of the program a

variable is actually available for use

(‘active’)
• Longevity refers to the period during

which a variable retains a given value

during execution of a program

(‘alive’).
• So longevity has a direct effect on the

utility of a given variable.

• The visibility refers to the

accessibility of a variable from the

memory.

• The variables may also be

categorized, depending on the place

of their declaration, as

Internal (local) or

External(global)

• Internal (local) variables are those

which are declared within a particular

function.

• External variables are declared

outside of any function.

35

Automatic variables
• Automatic variables are declared

inside a function in which they are to
be utilized.

• They are created when the function is
called and destroyed automatically
when the function is exited.

• Automatic variables are private
variable to the function in which they
are declared .

• Automatic variables are also called as
local or internal variables.

• A variable declared inside a function
without storage class specification is,
by default.

Example

#include <stdio.h>

#include<conio.h>

void function1();

void function2();

void main()

{

int x=100;

function2();

printf(“The value of x inside main =%d”,x);

getch();

}

void function1()

{

int x=10;

printf(“The value of x inside function1() =%d”,x);

}

void function2()

{

int x=1;

function1();

printf(“The value of x inside function2() =%d”,x);

}

OUTPUT

The value of x inside function1() =10

The value of x inside function2() =1

The Value of x inside main = 100

36

External variables

• Variables that are both alive and active
throughout the program are known as
external variables.

• They are also kown as global variables.

• Unlike local variables, global variables
can be accessed by any function in the
program.

• External variables are declared outside a
function.

Example

int no;

float l=3.2;

main()

{

}

function1()

{

}

function2()

{

}

• The variable no and l are available for use
in all the three functions.

• In case a local variable and a global
variable have the same name, the local
variable will have precedence over the
global one in the function where it is
declared.

Example

int count;

main()

{

count=10;

}

function1()

{

int count=0

}

• When the function1() references the
variable count, it will referencing its local
variable count(=0), not the global one.

37

Example program

#include <stdio.h>

#include<conio.h>

int f1(void);

int f2(void);

int f3(void);

int x;

void main()

{

x=100;

clrscr();

printf(“x=%d\n”,x);

printf(“x=%d\n”,f1());
printf(“x=%d\n”,f2());
printf(“x=%d\n”,f3());
getch();

}

f1()

{

x=x*10;

return(x);

}

f1()

{

int x;

x=10;

return(x);

}

f3()

{

x=x+10;

return(x);

}

Output

x=100

x=1000

x=10

x=1010

• Once a variable has been declared as

global, any function can use it and change

the value .

• Then subsequent functions can reference

only that new value.

Local variable

38

Global variable as parameters

• Using global variables as parameters

for passing values produces problems.

• The values of global variables which

are sent to the called function may be

changed without knowledge by the

called function.

• Functions are supposed to be

independent and isolated modules.

This character is lost, if they use

global variables.

• It is not immediately apparent to the

reader which values are being sent to

the called function.

• A function that uses global variables

suffers from reusability.

External declaration

• This tells External variables are also

known as global variables.

• These variables are defined outside

the function.

• These variables are available globally

throughout the function execution.

• The value of global variables can be

modified by the functions.

• “extern” keyword is used to declare

and define the external variables.

Scope − They are not bound by any

function. They are everywhere in the

program i.e. global.

Default value − Default initialized value

of global variables are Zero.

Lifetime − Till the end of the execution

of the program.

39

1. External variables can be declared
number of times but defined only
once.

2. “extern” keyword is used to extend
the visibility of function or variable.

3. By default the functions are visible
throughout the program, there is no
need to declare or define extern
functions. It just increase the
redundancy.

4. Variables with “extern” keyword
are only declared not defined.

5. Initialization of extern variable is
considered as the definition of the
extern variable.

#include <stdio.h>

extern int x = 32;

int b = 8;

int main()

 {

 auto int a = 28;

extern int b;

printf("The value of auto variable : %d\n", a);

 printf("The value of extern variables x and b :
%d,%d\n",x,b);

 x = 15;

 printf("The value of modified extern variable x :
%d\n",x);

 return 0;

}

Output

The value of auto variable : 28

 The value of extern variables x and b : 32,8

 The value of modified extern variable x : 15

40

Consider the program segment

main()

{

y=5;

}

int y;

f1()

{

y=y+1;

}

• As for as main is concerned ,y is not

defined.

• So, the compiler will issue an error

message.

• Unlike local variables, global variables are

initialized to zero by default.

• So the value of y in f1 is assigned to 1.

External declaration

• The above problem can be solved by

declaring the variable with the storage class

extern.

Example

main()

{

extern int y;

}

f1()

{

extern int y;

}

• The external declaration of y inside the

function informs to the compiler that y is an

integer type defined somewhere else in the

program

41

Static variables

• Static variables are initialized only once.

• The compiler persists with the variable till

the end of the program.

• Static variables can be defined inside or

outside the function.

• They are local to the block.

• The default value of static variables is

zero.

• The static variables are alive till the

execution of the program.

Syntax

 static datatype variable_name = value;

• datatype − The datatype of variable like

int, char, float etc.

• variable_name − This is the name of
variable given by user.

• value − Any value to initialize the
variable. By default, it is zero.

Example1

#include <stdio.h>

 int main()

 {

auto int a = -28;

static int b = 8;

printf("The value of auto variable : %d\n", a);

printf("The value of static variable b:%d\n",

b);

if(a!=0)

 printf("The sum of static variable and auto

variable : %d\n",(b+a));

 return 0;

 }

Output

The value of auto variable : -28

The value of static variable b : 8

The sum of static variable and auto variable : -20

42

Example 2

#include<stdio.h>

#include<conio.h>

void stat(void);

void main()

{

int i;

for (i=1;i<=3;i++)

 stat();

getch();

}

void stat(void)

{

static int x = 10;

x=x+1;

printf(“”x=%d\n”,x);

}

Output

x=11

x=12

x=13

• An external static variable is declared

outside of all functions and is

available to all the functions in that

program.

• The difference between a static

external variable and a simple

external variable is that the static

external variable is available only

within the file where it is defined

while the simple external variable can

be accessed by other files.

43

Register variables
• Register variables tell the compiler to store the

variable in CPU register instead of memory.

• Frequently used variables are kept in registers
and they have faster accessibility.

• We can never get the addresses of these
variables.

• “register” keyword is used to declare the register
variables.

• Scope − They are local to the function.

• Default value − Default initialized value is the
garbage value.

• Lifetime − Till the end of the execution of the
block in which it is defined.

Example

#include <stdio.h>

int main()

 {

 register char x = 's';

 register int a = 10;

 auto int b = 8;

printf(“The value of register variable b : %c\n",x);

printf("The sum of auto and register variable : %d",(a+b));

 return 0;

}

 Output

The value of register variable b : S

The sum of auto and register variable : 18

• Register keyword can be used with pointer
also.

• It can have address of memory location.

• It will not create any error.

Example

#include<stdio.h>

int main()

 {

 int i = 10;

 register int *a = &i;

 printf("The value of pointer : %d", *a);

 getch();

 return 0;

}

Output

The value of pointer : 10

44

Storage class Where declared Visibility lifetime

None Before all functions in a file

(may be initialized)

Entire file plus other files

where variable is declared

with extern

Entire program

(global)

Extern Before all functions in a file

(cannot be initialized) extern

and the file where originally

declared as global

Entire file plus other files

where variable is declared

global

Static Before all functions in a file Only in that file global

None or auto Inside a function (or a block) Only in that function or a

block

Until end of

function or block

register Inside a function (or a block)

Only in that function or a

block

Until end of

function or block

Static Inside a function Only in that function global

45

UNIT – IV

CHAPTER X

STRUCTURES AND UNIONS

46

10.1 INTRODUCTION

• Arrays can be used to represent a

group of data items that are belongs to

the same type.

• Arrays are used to store large set of

data and manipulate them.

• disadvantage of arrays is that all the

elements stored in an array are to be

of the same data type.

• If we need to use a collection of

different data type items it is not

possible using an array.

• When we require using a collection of

different data items of different data

types we can use a structure.

• Structure is a method of packing

data of different types.

• A structure is a convenient method of

handling a group of related data items

of different data types.

47

10.2 Array vs structures

1. An array is a collection of related data elements of same

type. Structure can have elements of different types.

2. An array is derived data type whereas Structure is user-

defined one.

3. Any array behaves like a built-in data type. All we have

to do is to declare an array variable and use it. But in the

case of a Structure, first, we have to design and declare

a data structure before the variables of that type are

declared and used.

48

10.3 DEFINING A STRUCTURE

Syntax

struct tag_name

{

data type member1;

data type member2;

…

…

};

Note

1. The template is terminated with a
semicolon.

2. While the entire definition is considered as
a statement, each member is declared
independently for its name and type in a
separate statement inside the template.

3. The tag name can be used to declare
structure variables of its type, later in the
program.

struct book_bank

{

char title[20];

char author[15];

int pages;

float price;

};

• Create a structure Book_bank to store book
details.

• The keyword struct declares a structure to
holds the details of four fields namely title,
author, pages and price.

• These are members or elements of the
structures.

• Each member may belong to different or
same data type.

• The tag name can be used to define objects
that have the tag names structure.

• The structure we just declared is not a
variable by itself but a template for the
structure.

49

10.4 DECLARING STRUCTURE

VARIABLE

To access structure item, we require to

create

structure variable (object).

• A structure variable declaration is

similar to the declaration of variables

of any other data types.

It includes the following elements:

1. The keyword struct.

2. The structure tag name.

3. List of variable names separated by

names.

4. A terminating semicolon.

Syntax

 struct structure_name variable_name;

We can declare structure variables using

the tag name any where in the

program.

Example

struct lib_books book1,book2,book3;

• Declares book1,book2,book3 as

variables of type struct lib_books

each declaration has four elements of

the structure lib_books.

• Structures do not occupy any memory

until it is associated with the structure

variable such as book1.

50

We can also combine both template

declaration and variables declaration

in one statement.

Example

struct lib_books

{

char title[20];

char author[15];

int pages;

float price;

} book1,book2,book3;

The use of tag name is optional.

Example

struct

{

…

…

…

} book1, book2, book3 ;

• Declares book1, book2, book3 as

structure variables representing 3

books but does not include a tag name

for use in the declaration.

• This approach is not recommended

for the two reasons.

1. Without tag name, we cannot use it

for future declarations.

2. Normally, structure definitions appear

at the beginning of the program file,

before any variables or functions are

defined. They may also appear before

the main, along with macro

definitions, such as #define. In such

cases, the definition is global and can

be used by other functions as well.

51

10.5 Type-Defined Structures

Syntax

typedef struct

{

type member1;

type member2;

}type name;

• The type-name represents structure definition associated with it and therefore, can

be used to declare structure variables as

type-name variable1,variable2,…………….;
Note

1. The name type-name is the type definition name ,not a variable.

2. We cannot define a variable with typedef declaration.

52

10.6 ACCESSING STRUCTURE MEMBERS

 • The link between a member and a

variable is established using the

member selection operator ‘.’ which

is known as dot operator or period

operator.

Example

book1.price

• is the variable representing the price

of book1 and can be treated like any

other ordinary variable.

• we can assign variables to the

members of book1

strcpy(book1.title,”basic”);
strcpy(book1.author,”Balagurusamy”);
book1.pages=250;

book1.price=285.0;

Or We can use scanf statement to assign

values like

scanf(“%s”,book1.title);

scanf(“%d”,&book1.pages);

53

Example program

#include<stdio.h>

#include<conio.h>

struct student

{

char name[20];

int num;

int mark;

};

void main()

{

struct student s1,s2;

clrscr();

printf("Enter the name of student1:");

scanf("%s",s1.name);

printf("Enter the roll number of
student1:");

scanf("%d",&s1.num);

printf("Enter the marks of student1:");

scanf(“%d",&s1.mark);
printf("Enter the name of student2:");

scanf("%s",s2.name);

printf("Enter the roll number of

student2:");

scanf("%d",&s2.num);

printf("Enter the marks of student2:");

scanf(“%d",&s2.mark);
printf(“Students Details\n");

printf(“Student 1 details\n”);
printf("%s\n",s1.name);

printf("%d\n",s1.num);

printf(“%d\n",s1.mark);

printf(“Student 2 details\n”);
printf("%s\n",s2.name);

printf("%d\n",s2.num);

printf(“%d",s2.mark);
getch();

}

54

10.7 STRUCTURE INITIALIZATION

• A structure variable can be initialized
at compile time.

Example 1

main()

{

struct

{

int weight;

float height;

} student={50,170.26};

…………

…………

}

• This assigns 50 to student.weight and
170.26 to student.height.

• There is one-to-one correspondence
between the members and their
initializing values.

Example2

main()

{

struct st_record

{

int weight;

float height;

};

struct st_record student1={50,170.26};

struct st_record student2={60,180.75};

…………

…………

}

55

Example 3

struct st_record

{

int weight;

float height;

}student1={50,170.26};

main()

{

struct st_record student2={60,180.75};

…………

…………

}

• The c language does not permit the
initialization of individual structure
members within the templates.

• The initialization must done only in
the declaration of the actual variables.

• The compile-time initialization of a
structure variable must have the
following elements.

1. The keyword struct

2. The structure tag_name.

1. The name of the variable to be

declared.

2. The assignment operator =.

3. A set of values for the members of

the structure variable, separated by

commas and enclosed in braces.

4. A terminating semicolon.

Rules for initializing structures

1. We cannot initialize the individual

members inside the structure

template.

2. The order of values enclosed in

braces must match the order of

members in the structure definition.

3. It is permitted to have a partial

initialization. We can initialize only

the first few members and leave the

remaining blank. The uninitialized

members should be only at the end of

the list.

4. The uninitialized members will be

assigned default values.
56

10.8 COPYING & COMPARING STRUCTURE VARIABLES

copy
• Two variables of the same structure type can be

copied .

Example

• If student1 and student2 belong to the same
structure then

 student1=student2;

 student2= student1;

Comparision
• The following statements are not permitted in c.

 student1 == student2

 student1 != student2

• C does not permitted any logical operators on
structure variables.

• We can compare members individually.

structure class

{

int no;

char name[20];

int marks;

};

void main()

{

int x;

struct class stud1={101, “anu”,89};
struct class stud2={102, “banu”,80};
struct class stud3;

stud3=stud2;

x= ((stud3.no==stud2.no) && (stud3.marks ==

stud2.marks))?1:0;

if (x=1)

{

printf(“\n student2 and student3 same\n”);
printf(“%d%s%d”,stud3.no,stud3.name,stud3.marks)

;

}

else

{

printf(“student2 and student3 are different”);
}

}

 57

10.9 ARRAYS OF STRUCTURES

• Declaring an array of structure is same as
declaring an array of fundamental types.

• An array is a collection of elements of the
same type.

• In an array of structures, each element of an
array is of the structure type.

• An array of structure is stored inside the
memory in the same way as a multi-
dimensional array.

Syntax

struct tag_name

{

data type member1;

data type member2;

…

…

};

struct tag-name struct_array[size];

Example

struct student

{

char name[20];

int num;

int mark;

};

struct student stud[10];

58

EXAMPLE

#include<stdio.h>

#include<conio.h>

struct student

{

char name[20];

int num;

int mark;

};

struct student stud[10];

void main()

{

int i,n;

clrscr();

printf(“\n Enter the no. of students in a class:”);
scanf(“%d”, &n);
printf(“Enter the students detials one by one\n”);
for (i=0;i<n;i++)

{

printf(“Enter the reg.no of the student %d :”, i+1)
scanf(“%d”, &stud[i].num);

printf(“Enter the name of the student %d :”, i+1)
scanf(“%s”, stud[i].name);

printf(“Enter the marks of the student %d :”, i+1)
scanf(“%d”, &stud[i].mark);

}

for (i=0;i<n;i++)

{

printf(“Reg.no of the student %d : %d”,
i+1,stud[i].num);

printf(“Name of the student %d : %s”,
i+1,stud[i].name);

printf(“Marks of the student %d : %d”,
i+1,stud[i].mark);

}

getch();

}

59

10.10 ARRAYS WITHIN STRUCTURES
• C permits the use of arrays as structure

members.

Example

#include<stdio.h>

#include<conio.h>

struct student

{

char name[20];

int num;

int mark[3];

int total;

};

struct student stud[10];

void main()

{

int i,n,j;

clrscr();

printf(“\n Enter the no. of students in a class:”);
scanf(“%d”, &n);
printf(“Enter the students detials one by one\n”);
for (i=0;i<n;i++)

{

printf(“Enter the reg.no of the student %d :”, i+1)
scanf(“%d”, &stud[i].num);

printf(“Enter the name of the student %d :”, i+1)
scanf(“%s”, stud[i].name);

printf(“Enter the marks of the student %d :”, i+1)
stud[i].total=0;

for (j=0;j<3;j++)

 {

scanf(“%d”, &stud[i].mark[j]);

stud[i].total= stud[i].total+stud[i].mark[j];

 }

}

for (i=0;i<n;i++)

{

printf(“\nReg.no of the student %d : %d”,
i+1,stud[i].num);

printf(“\nName of the student %d : %s\n”,
i+1,stud[i].name);

for (j=0;j<3;j++)

 printf(“Marks of the student %d \t: %d”,
i+1,stud[i].mark[j]);

printf(“\nTotal marks of the student %d : %d”,
i+1,stud[i].total);

}

getch();

}

60

10.11 STRUCTURES WITHIN STRUCTURES

• Structure within a structure is called
nested structure.

Example

struct salary

{

char name[20];

char dept[30];

struct

{

int da;

int hra;

int cca;

}allowance;

} employee;

• The salayy structure contains a
member named allowance, which
itself is a structure with three
members.

• The members contained in the inner
structure namely da, hra and cca can
be reffered as

 employee.allowance.da;

 employee.allowance.hra;

 employee.allowance.cca;

• A inner-most member in a nested-
structure can be accessed by chaining
all the concerned structures variables
with member using dot operator.

61

10.12 STRUCTURES & FUNCTIONS

There are 3 methods to transferred structure

from one function to another.

1. Pass each member of structure as an actual

argument of the function call. The actual

arguments are then treated independently

like ordinary variables. This is the most

elementary method and becomes

unmanageable and inefficient when the

structure size is large.

2. Passing of a copy of the entire structure to

the called function. Since the function is

working on a copy of the structure, any

changes to structure members within the

function are not reflected in the original

structure. Therefore the necessary for the

function to return the entire structure back

to the calling function.

3. Using pointers to pass the structure as an

argument.

• The general format of sending a copy of a

structure to the called function is

function_name(structure_variable_name);

• The called function format

data_type

function_name(struct_variable_name)

{

………….

………….

return(expression);

}

Note

1. The called function must be declared for

its type, appropriate to the data type it is

expected to return.

2. The structure variable used as the actual

argument and the corresponding formal

parameter in the called function must be of

the same struct type.

62

3. The return statement is necessary only
when the function is returning some data
back to the calling function. The
expression may be any simple variable or
structure variable or an expression using
simple variables

4. When a function returns a structure, it
must be assigned to a structure of identical
type in the calling function.

5. The called functions must be declared in
the calling function appropriately.

Example

#include<stdio.h>

#include<conio.h>

 /* structure is defined above all functions so it
is global. */

struct student

 {

 char name[20];

 int roll_no;

 int marks;

 };

void print_struct(struct student stu);

void main()

 {

struct student stu = {"George", 10, 69};

print_struct(stu);

return 0;

}

void print_struct(struct student stu)

 {

 printf("Name: %s\n", stu.name);

 printf("Roll no: %d\n", stu.roll_no);

 printf("Marks: %d\n", stu.marks);

 printf("\n");

}

63

10.13 UNIONS

• A union is a special data type available in

C that allows to store different data types

in the same memory location.

• We can define a union with many

members, but only one member can

contain a value at any given time.

• Unions provide an efficient way of using

the same memory location for multiple-

purpose.

Defining a Union

union [union tag]

 {

 member definition;

 member definition;

 ...

 member definition;

} [one or more union variables];

• The union tag is optional and each
member definition is a normal variable
definition, such as int i; or float f; or any
other valid variable definition.

• At the end of the union's definition, before
the final semicolon, you can specify one or
more union variables but it is optional.

Example

union Data

 {

 int i;

 float f;

 char str[20];

} data;

• A variable of Data type can store an
integer, a floating-point number, or a
string of characters.

64

• It means a single variable, i.e., same

memory location, can be used to store

multiple types of data.

• We can use any built-in or user defined

data types inside a union based on your

requirement.

• The memory occupied by a union will be

large enough to hold the largest member of

the union.

Example

• Data type will occupy 20 bytes of

memory space because this is the

maximum space which can be occupied by

a character string.

Accessing Union Members

• To access any member of a union, we use

the member access operator (.).

• The member access operator is coded as a

period between the union variable name

and the union member that we wish to

access.

• The keyword union to define variables of

union type.

#include <stdio.h>

#include <string.h>

 union Data

{

 int i;

 float f;

 char str[20];

};

 int main()

 {

 union Data data;

 data.i = 10;

 data.f = 220.5;

 strcpy(data.str, "C Programming");

 printf("data.i : %d\n", data.i);

 printf("data.f : %f\n", data.f);

 printf("data.str : %s\n", data.str);

 return 0;

}

Output: data.str : C Programming

65

10.14 BIT FIELDS
• A bit field is a set of adjacent bits whose

size can be from 1 to 16 bits length.

• A word can therefore be divided into a

number of bit fields.

• The name and size of bit fields are defined

using structure.

Syntax

struct tag-name

{

data-type name:bit-length;

data-type name:bit-length;

……………..

……………..

data-type name:bit-length;

};

• The data type is either signed int or

unsigned int and the bit-length is the no. of

bits used for a specified name.

• A signed bit field should have at least 2

bits(one bit for sign).

• The field name is followed by a colon.

• The bit-length is decided by the range of

value to be stored.

• The largest value that can be stored is 2n-,

where n is bit-length.

• The internal representation of bit fields is

machine dependent.

• It depends on the size of int and ordering of

bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 name n ……………………. name2 name1

66

Note

1. The first field always starts with the first

bit of the word.

2. A bit field cannot overlap integer

boundaries. Ie. The sum of lengths of all

the fields in a structure should not be

more than the size of a word. In case, it

is more, the overlapping field is

automatically forced to the beginning of

the next word.

3. There can be unnamed fields declared

with size.

4. There can be unused bits in the word.

5. We cannot take the address of a bit field

variable. This means we cannot use

scanf() function to read values into bit

fields. We can neither use pointer to

access the bit fields.

6. Bit fields cannot be arrayed.

7. Bit fields should be assigned values that

are within the range of their size.. If we

try to assign larger values, behaviour

would be unpredicted.

Example

 #include <stdio.h>

 #include <string.h>

struct

{

unsigned int age : 3;

 } Age;

int main()

 {

Age.age = 4;

printf("Sizeof(Age) : %d\n", sizeof(Age));

printf("Age.age : %d\n", Age.age);

Age.age = 7;

printf("Age.age : %d\n", Age.age);

Age.age = 8;

printf("Age.age : %d\n", Age.age);

return 0;

}

67

References

 1. E. Balagurusamy, ”Programming in ANSI C”, Seventh Edition, McGraw Hill Education India
Private Ltd, 2017.

2. https://www.tutorialspoint.com/cprogramming/

3. https://overiq.com/c-programming-101/structures-and-functions-in-c/

68

https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/
https://overiq.com/c-programming-101/structures-and-functions-in-c/

