
COMPUTER NETWORKS- (20MCA23C)

UNIT-V

‘TRANSPORT LAYER’

FACULTY:

DR. R. A. ROSELINE, M.SC., M.PHIL., PH.D.,
ASSOCIATE PROFESSOR AND HEAD,

POST GRADUATE AND RESEARCH DEPARTMENT OF COMPUTER

APPLICATIONS,

GOVERNMENT ARTS COLLEGE (AUTONOMOUS), COIMBATORE – 641 018.

TRANSPORT LAYER

 Services

 Elements of transport protocol

 Simple transport protocol

 UDP

 Remote Procedure Call (see Distributed Systems)

 TCP

LAYER OVERVIEW

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical e
nd

-e
nd

 transp
ort

LAYER OVERVIEW

Host 1

Network layer

Application layer

Transport entity

Host 2

Network layer

Application layer

Transport entityTPDU

Transport

addresses

Network

addresses

SERVICES

 To upper layer

 efficient, reliable, cost-effective service

 2 kinds

 Connection oriented

 Connectionless

SERVICES

 needed from network layer

 packet transport between hosts

 relationship network <> transport

 Hosts <> processes

 Transport service

 independent network

more reliable

 Network

 run by carrier

 part of communication subnet for WANs

SIMPLE SERVICE: PRIMITIVES

 Simple primitives:

 connect

 send

 receive

 disconnect

 How to handle incoming connection request in server process?

 Wait for connection request from client!

 listen

SIMPLE SERVICE: PRIMITIVES

listen Wait till a process wants a

connection

connect Try to setup a connection

send Send data packet

receive Wait for arrival of data packet

disconnect Calling side breaks up the

connection

No TPDU

Connection Request

TPDU

Data TPDU

No TPDU

Disconnect TPDU

SIMPLE SERVICE: STATE DIAGRAM

SIMPLE SERVICE: STATE DIAGRAM

SIMPLE SERVICE: STATE DIAGRAM

BERKELEY SERVICE PRIMITIVES

 Used in Berkeley UNIX for TCP

 Addressing primitives:

 Server primitives:

 Client primitives:

socket

bind

listen

accept

send + receive

close

connect

send + receive

close

BERKELEY SERVICE PRIMITIVES

socket create new communication end point

bind attach a local address to a socket

listen announce willingness to accept connections; give queue size

accept block caller until a connection request arrives

connect actively attempt to establish a connection

send send some data over the connection

receive receive some data from the connection

close release the connection

TRANSPORT LAYER

 Services

 Elements of transport protocol

 Simple transport protocol

 UDP

 Remote Procedure Call (see Distributed Systems)

 TCP

ELEMENTS OF TRANSPORT PROTOCOLS (ETP)

 Transport <> Data Link

 Addressing

 Establishing a connection

 Releasing a connection

 Flow control and buffering

 Multiplexing

 Crash recovery

ETP: TRANSPORT <> DATA LINK

Explicit addressing

Connection establishment

Potential existence of storage capacity in subnet

Dynamically varying number of connections

ETP: ADDRESSING

 TSAP = transport service access point

 Internet: IP address + local port

 ATM: AAL-SAPs

 Connection scenario

 Getting TSAP addresses?

 From TSAP address to NSAP address?

ETP: ADDRESSING

 Connection scenario

ETP: ADDRESSING

 Connection scenario

 Host 2 (server)

 Time-of-day server attaches itself to TSAP 1522

 Host 1 (client)

 Connect from TSAP 1208 to TSAP 1522

 Setup network connection to host 2

 Send transport connection request

 Host 2

 Accept connection request

ETP: ADDRESSING

 Getting TSAP addresses?

 Stable TSAP addresses

 For key services

 Not for user processes

 active for a short time

 number of addresses limited

 Name servers

 to find existing servers

 map service name into TSAP address

 Initial connection protocol

ETP: ADDRESSING

 Getting TSAP addresses?

 Initial connection protocol

 to avoid many waiting servers one process server

 waits on many TSAPs

 creates requested server

ETP: ADDRESSING

 From TSAP address to NSAP address?

 hierarchical addresses

 address = <country> <network> <host> <port>

 Examples: IP address + port

 Telephone numbers (<> number portability?)

 Disadvantages:

 TSAP bound to host!

 flat address space

 Advantages:

 Independent of underlying network addresses

 TSAP address not bound to host

 Mapping to network addresses:

 Name server

 broadcast

ETP: ESTABLISHING A CONNECTION

 Problem: delayed duplicates!

 Scenario:

 Correct bank transaction

 connect

 data transfer

 disconnect

 Problem: same packets are received in same order a second time!

Recognized?

ETP: ESTABLISHING A CONNECTION

 Unsatisfactory solutions:

 throwaway TSAP addresses

 need unlimited number of addresses?

 process server solution impossible

 connection identifier

 Never reused!

 Maintain state in hosts

 Satisfactory solutions

ETP: ESTABLISHING A CONNECTION

 Satisfactory solutions

 Ensure limited packet lifetime (incl. Acks)

 Mechanisms

 prevent packets from looping + bound congestion delay

 hopcounter in each packet

 timestamp in each packet

 Basic assumption

If we wait a time T after sending a packet all traces of it

(including Acks) are gone

Maximum packet lifetime T

ETP: ESTABLISHING A CONNECTION

 Tomlinson’s method

 requires: clock in each host

 Number of bits > number of bits in sequence number

 Clock keeps running, even when a hosts crashes

 Basic idea:

2 identically numbered TPDUs are

never outstanding at the same time!

ETP: ESTABLISHING A CONNECTION

 Tomlinson’s method

 Problems to solve

 Selection of the initial sequence number for a new connection

 Wrap around of sequence numbers for an active connection

 Handle host crashes

Never reuse a sequence number x within the lifetime T for the packet with x

 Forbidden region

ETP: ESTABLISHING A CONNECTION

 Tomlinson’s method

 Initial sequence number

= lower order bits of clock

 Ensure initial sequence numbers are always OK

 forbidden region

 Wrap around

 Idle

 Resynchronize sequence numbers

ETP: ESTABLISHING A CONNECTION

 Tomlinson - forbidden region

ETP: ESTABLISHING A CONNECTION

 Tomlinson – three-way-handshake

No combination of delayed packets can cause the protocol to fail

ETP: ESTABLISHING A CONNECTION

 Tomlinson – three-way-handshake

ETP: RELEASING A CONNECTION

 2 styles:

 Asymmetric

 Connection broken when one party hangs up

 Abrupt! may result in data loss

 Symmetric

 Both parties should agree to release connection

 How to reach agreement? Two-army problem

 Solution: three-way-handshake

 Pragmatic approach

 Connection = 2 unidirectional connections

 Sender can close unidirectional connection

ETP: RELEASING A CONNECTION

 Asymmetric: data loss

ETP: RELEASING A CONNECTION

 Symmetric: two-army-problem

Simultaneous attack by blue army

Communication is unreliable

No protocol exists!!

ETP: RELEASING A CONNECTION

 Three-way-handshake + timers

 Send disconnection request

+ start timer RS to resend (at most N times)

the disconnection request

 Ack disconnection request

+ start timer RC to release connection

ETP: RELEASING A CONNECTION

RC

ETP: RELEASING A CONNECTION

RS

ETP: FLOW CONTROL AND BUFFERING

Transport Data link

connections, lines many

varying

few

fixed

(sliding) window size varying fixed

buffer management different sizes? fixed size

ETP: FLOW CONTROL AND BUFFERING

 Buffer organization

ETP: FLOW CONTROL AND BUFFERING

 Buffer management: decouple buffering from Acks

ETP: FLOW CONTROL AND BUFFERING

 Where to buffer?

 datagram network @ sender

 reliable network

+ Receiver process guarantees free buffers?

 No: for low-bandwidth bursty traffic

 @ sender

 Yes: for high-bandwidth smooth traffic

 @ receiver

ETP: FLOW CONTROL AND BUFFERING

 Window size?

 Goal:

 Allow sender to continuously send packets

 Avoid network congestion

 Approach:

 maximum window size = c * r

 network can handle c TPDUs/sec

 r = cycle time of a packet

 measure c & r and adapt window size

ETP: MULTIPLEXING

Upward: reduce number of network connections to reduce cost

Downward: increase bandwidth to avoid per connection limits

ETP: CRASH RECOVERY

 recovery from network, router crashes?

 No problem

 Datagram network: loss of packet is always handled

 Connection-oriented network: establish new connection + use state to continue service

 recovery from host crash?

 server crashes, restarts: implications for client?

 assumptions:

 no state saved at crashed server

 no simultaneous events

 NOT POSSIBLE

Recovery from a layer N crash can only be done by layer N+1 and only if the higher layer

retains enough status information.

ETP: CRASH RECOVERY

 Illustration of problem: File transfer:

 Sender: 1 bit window protocol: states S0, S1

 packet with seq number 0 transmitted; wait for ack

 Receiver: actions

 Ack packet

 Write data to disk

 Order?

ETP: CRASH RECOVERY

 Illustration of problem: File transfer

TRANSPORT LAYER

 Services

 Elements of transport protocol

 Simple transport protocol

 UDP

 Remote Procedure Call (see Distributed Systems)

 TCP

SIMPLE TRANSPORT PROTOCOL

 Service primitives:

 connum = LISTEN (local)

 Caller is willing to accept connection

 Blocked till request received

 connum = CONNECT (local, remote)

 Tries to establish connection

 Returns identifier (nonnegative number)

 status = SEND (connum, buffer, bytes)

 Transmits a buffer

 Errors returned in status

 status = RECEIVE (connum, buffer, bytes)

 Indicates caller’s desire to get data

 status = DISCONNECT (connum)

 Terminates connection

SIMPLE TRANSPORT PROTOCOL

 Transport entity

 Uses a connection-oriented reliable network

 Programmed as a library package

 Network interface

 ToNet(…)

 FromNet(…)

 Parameters:

 Connection identifier (connum = VC)

 Q bit: 1 = control packet

 M bit: 1 = more data packets to come

 Packet type

 Pointer to data

 Number of bytes of data

SIMPLE TRANSPORT PROTOCOL

 Transport entity: packet types

Network packet Meaning

Call request Sent to establish a connection

Call accepted Response to Call Request

Clear Request Sent to release connection

Clear confirmation Response to Clear request

Data Used to transport data

Credit Control packet to manage window

SIMPLE TRANSPORT PROTOCOL

 Transport entity: state of a connection

State Meaning

Idle Connection not established

Waiting CONNECT done; Call Request sent

Queued Call Request arrived; no LISTEN yet

Established

Sending Waiting for permission to send a

packet

Receiving RECEIVE has been done

Disconnecting DISCONNECT done locally

SIMPLE TRANSPORT PROTOCOL

 Transport entity: code

 See fig 6-20, p. 514 – 517

 To read and study at home!

 Questions?

 Is it acceptable not to use a transport header?

 How easy would it be to use another network protocol?

EXAMPLE TRANSPORT ENTITY (1)

EXAMPLE TRANSPORT ENTITY (2)

EXAMPLE TRANSPORT ENTITY (3)

EXAMPLE TRANSPORT ENTITY (4)

EXAMPLE TRANSPORT ENTITY (5)

EXAMPLE TRANSPORT ENTITY (6)

EXAMPLE TRANSPORT ENTITY (7)

EXAMPLE TRANSPORT ENTITY (8)

TRANSPORT LAYER

 Services

 Elements of transport protocol

 Simple transport protocol

 UDP

 Remote Procedure Call (see Distributed Systems)

 TCP

UDP

 User Data Protocol

 Datagram service between processes

 No connection overhead

 UDP header:

 Ports = identification of end points

UDP

 Some characteristics

 Supports broadcasting, multicasting

(not in TCP)

 Packet oriented

(TCP gives byte stream)

 Simple protocol

 Why needed above IP?

TRANSPORT LAYER

 Services

 Elements of transport protocol

 Simple transport protocol

 UDP

 Remote Procedure Call (see Distributed Systems)

 TCP

TCP SERVICE MODEL

 point-to-point

 one sender, one receiver

 reliable, in-order byte stream

 no message/packet boundaries

 pipelined & flow controlled

 window size set by TCP congestion and flow control algorithms

 connection-oriented

 handshaking to get at initial state

 full duplex data

 bi-directional data flow in same connection

TCP SERVICE MODEL

 …

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

TCP PROTOCOL

 Three-way handshake to set up connections

 Every byte has its own 32-bit sequence number

 Wrap around

 32-bit Acks; window size in bytes

 Segment = unit of data exchange

 20-byte header + options + data

 Limits for size

 64Kbyte

 MTU, agreed upon for each direction

 Data from consecutive writes may be accumulated in a single segment

 Fragmentation possible

 Sliding window protocol

TCP HEADER

TCP HEADER

 source & destination ports (16 bit)

 sequence number (32 bit)

 Acknowledgement number (32 bit)

 Header length (4 bits) in 32-bit words

 6 flags (1 bit)

 window size (16 bit): number of bytes the sender is allowed to send starting at

byte acknowledged

 checksum (16 bit)

 urgent pointer (16 bit) : byte position of urgent data

TCP HEADER

 Flags:

 URG: urgent pointer in use

 ACK: valid Acknowledgement number

 PSH: receiver should deliver data without delay to user

 RST: reset connection

 SYN: used when establishing connections

 FIN: used to release connection

 Options:

 Maximum payload a host is willing to receive

 Scale factor window size

 Use selective repeat instead of go back n

TCP CONNECTION MANAGEMENT

 Three-way handshake

 Initial sequence number: clock based

 No reboot after crash for T (maximum packet lifetime=120 sec)

 Wrap around?

 Connection identification

 Pair of ports of end points

 Connection release

 Both sides are closed separately

 No response to FIN: release after 2*T

 Both sides closed: wait for time 2 * T

TCP CONNECTION MANAGEMENT

TCP CONNECTION MANAGEMENT

State Description

Closed No connection is active or pending

Listen The server is waiting for an incoming call

SYN rcvd A connection request has arrived; wait for ACK

SYN sent The application has started to open a connection

Established The normal data transfer state

FIN wait 1 The application has said it is finished

FIN wait 2 The other side has agreed to release

Timed wait Wait for all packets to die off

Closing Both sides have tried to close simultaneously

Close wait The other side has initiated a release

Last Ack Wait for all packets to die off

TCP TRANSMISSION POLICY

 Window size decoupled from Acks (ex. next slides)

 Window = 0 no packets except for

 Urgent data

 1 byte segment to send Ack & window size

 Incoming user data may be buffered

 May improve performance: less segments to send

 Ways to improve performance:

 Delay acks and window updates for 500 msec

 Nagle’s algorithm

 Silly window syndrome

TCP TRANSMISSION POLICY

TCP TRANSMISSION POLICY

 Telnet scenario: interactive editor reacting on each keystroke: One character typed

 21 byte segment or 41 byte IP packet

 (packet received) 20 byte segment with Ack

 (editor has read byte) 20 byte segment with window update

 (editor has processed byte; sends echo) 21 byte segment

 (client gets echo) 20 byte segment with Ack

 Solutions:

 delay acks + window updates for 500 msec

 Nagle’s algorithm:

 Receive one byte from user; send it in segment

 Buffer all other chars till Ack for first char arrives

 Send other chars in a single segment

 Disable algorithm for X-windows applications (do not delay sending of mouse
movements)

TCP TRANSMISSION POLICY

 Silly window syndrome

 Problem:

 Sender transmits data in large blocks

 Receiver reads data 1 byte at a time

 Scenario: next slide

 Solution:

 Do not send window update for 1 byte

 Wait for window update till

 Receiver can accept MTU

 Buffer is half empty

TCP TRANSMISSION POLICY

TCP TRANSMISSION POLICY

 General approach:

 Sender should not send small segments

 Nagle: buffer data in TCP send buffer

 Receiver should not ask for small segments

 Silly window: do window updates in large units

PRINCIPLES OF CONGESTION

CONTROL

Congestion:

 informally: “too many sources sending too much data too fast for network to

handle”

 different from flow control!

= end-to-end issue!

 manifestations:

 lost packets (buffer overflow at routers)

 long delays (queue-ing in router buffers)

 a top-10 problem!

CAUSES/COSTS OF CONGESTION:

SCENARIO

 two senders, two receivers

 one router, infinite buffers

 no retransmission

 large delays

when congested

 maximum

achievable

throughput

APPROACHES TOWARDS CONGESTION

CONTROL

 end-to-end congestion control:

 no explicit feedback from

network

 congestion inferred from end-

system observed loss, delay

 approach taken by TCP

 Network-assisted congestion

control:

 routers provide feedback to end

systems

 single bit indicating

congestion (SNA, ATM)

 explicit rate sender should

send at

Two broad approaches towards congestion control:

TCP CONGESTION CONTROL

 How to detect congestion?

 Timeout caused by packet loss: reasons

 Transmission errors

 Packed discarded at congested router

: Rare

Packet loss

Hydraulic example illustrating two limitations

for sender!

for wired networks

TCP CONGESTION CONTROL

TCP CONGESTION CONTROL

 How to detect congestion?

 Timeout caused by packet loss: reasons

 Transmission errors

 Packed discarded at congested router

: Rare

Packet loss congestion

Approach: 2 windows for sender

Receiver window

Congestion window

Minimum of

TCP CONGESTION CONTROL

 end-end control (no network assistance)

 transmission rate limited by congestion window size, Congwin, over segments:

 w segments, each with MSS bytes sent in one RTT:

throughput = w * MSS
RTT Bytes/sec

Congwin

TCP CONGESTION CONTROL:

 “probing” for usable

bandwidth:

 ideally: transmit as fast as
possible (Congwin as large as

possible) without loss

 increase Congwin until loss

(congestion)

 loss: decrease Congwin, then

begin probing (increasing) again

 two “phases”

 slow start

 congestion avoidance

 important variables:

 Congwin

 threshold: defines

threshold between two

phases:

 slow start phase

 congestion control phase

TCP SLOW START

 exponential increase (per RTT)

in window size (not so slow!)

 loss event: timeout (Tahoe TCP)

and/or three duplicate ACKs

(Reno TCP)

initialize: Congwin = 1

for (each segment ACKed)

Congwin++

until (loss event OR

CongWin > threshold)

Slow start algorithm
Host A

R
T

T

Host B

time

TCP CONGESTION AVOIDANCE

/* slowstart is over */

/* Congwin > threshold */

Until (loss event) {

every w segments ACKed:

Congwin++

}

threshold = Congwin/2

Congwin = 1

perform slowstart

Congestion avoidance

1

1: TCP Reno skips slowstart (fast
recovery) after three duplicate ACKs

TCP CONGESTION CONTROL

TCP TIMER MANAGEMENT

 How long should the timeout interval be?

 Data link: expected delay predictable

 Transport: different environment; impact of

 Host

 Network (routers, lines)

unpredictable

 Consequences

 Too small: unnecessary retransmissions

 Too large: poor performance

 Solution: adjust timeout interval based on continuous measurements of network

performance

TCP TIMER MANAGEMENT

Data link layer Transport layer

TCP TIMER MANAGEMENT

 Algorithm of Jacobson:

 RTT = best current estimate of the round-trip time

 D = mean deviation (cheap estimator of the standard variance)

 4?

 Less than 1% of all packets come in more than 4 standard deviations late

 Easy to compute

Timeout = RTT + 4 * D

TCP TIMER MANAGEMENT

 Algorithm of Jacobson:

 RTT = RTT + (1 -) M = 7/8

M = last measurement of round-trip time

 D = D + (1 -) RTT - M

 Karn’s algorithm: how handle retransmitted segments?

 Do not update RTT for retransmitted segments

 Double timeout

Timeout = RTT + 4 * D

TCP TIMER MANAGEMENT

 Other timers:

 Persistence timer

 Problem: lost window update packet when window is 0

 Sender transmits probe; receivers replies with window size

 Keep alive timer

 Check whether other side is still alive if connection is idle for a long time

 No response: close connection

 Timed wait

 Make sure all packets are died off when connection is closed

 = 2 T

WIRELESS TCP & UDP

 Transport protocols

 Independent of underlying network layer

 BUT: carefully optimized for wired networks

 Assumption:

 Packet loss caused by congestion

 Invalid for wireless networks: always loss of packets

 Congestion algorithm:

 Timeout (= congestion) slowdown

 Solution for wireless networks:

 Retransmit asap

Wireless: Lower throughput – same loss NO solution

WIRELESS TCP

 Heterogeneous networks

 Solutions?

 Retransmissions can cause congestion in wired network

WIRELESS TCP

WIRELESS TCP

 Solutions for heterogeneous networks

 Snooping agent at base station

 Cashes segments for mobile host

 Retransmits segment if ack is missing

 Removes duplicate acks

 Generates selective repeat requests for segments originating at mobile host

Snooping agent

Congestion algorithm may be invoked

WIRELESS UDP

 UDP = datagram service loss permitted

no problems?

 Programs using UDP expect it to be

highly reliable

 Wireless UDP: far from perfect!!!

 Implications for programs recovering from lost UDP messages

TRANSACTIONAL TCP

 How to implement RPC?

 On top of UDP?

 Yes if

 Request and reply fit in a single packet

 Operations are idempotent

 Otherwise

 Reimplementation of reliability

 On top of TCP?

TRANSACTIONAL TCP

How to implement RPC?

 On top of UDP?

 Yes if

 Request and reply fit in a single packet

 Operations are idempotent

 Otherwise

 Reimplementation of reliability

 On top of TCP?

 Unattractive because of connection set up

 Solution: transactional TCP

TRANSACTIONAL TCP

How to implement RPC?

 On top of UDP?

 Problems withreliability

 On top of TCP?

 Overhead of connection set up

 Solution: transactional TCP

 Allow data transfer during setup

 Immediate close of stream

APPLICATION LAYER

 The three concepts

 Service model

 Protocol

 Interface

 Network application is more than
application level protocols

 Client site

 Server site

 Application level protocol

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

CLIENT/SERVER PARADIGM

 Client

 Initiates contact with server (speak first)

 Typically request service from server

 Question: identify who is/implements client in

 Web?

 Email?

 Server

 Provides requested service to clients

 Question: identify who is/implements the
server counterpart in

 Web?

 Email?

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

request

reply

WHICH TRANSPORT SERVICE DOES APPLICATION NEED?

- PARAMETERS

 Data Loss

 Loss-tolerant applications, e.g. audio/video

 other app such as file transfer, telnet requires 100% reliable transmission

 Bandwidth

 Bandwidth-sensitive applications, such as multimedia, require a maximum amount of
bandwidth

 Elastic applications: can use whatever bandwidth available

 Timing

 Some apps such as internet telephone requires “low delay” to be effective

TRANSPORT SERVICE REQUIRED BY COMMON

APPLICATIONS

Application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

financial apps

Data loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

loss-tolerant

no loss

Bandwidth

elastic

elastic

elastic

audio: 5Kb-1Mb

video:10Kb-5Mb

same as above

few Kbps up

elastic

Time Sensitive

no

no

no

yes, 100’s msec

yes, few secs

yes, 100’s msec

yes and no

INTERNET APPS AND THEIR TRANSPORT LAYER

PROTOCOLS

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

remote file server

Internet telephony

Application

layer protocol

smtp [RFC 821]

telnet [RFC 854]

http [RFC 2068]

ftp [RFC 959]

proprietary

(e.g. RealNetworks)

NFS

Proprietary (private)

(e.g., Vocaltec)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

TCP or UDP

typically UDP

DNS – DOMAIN NAME SYSTEM

Name: panda.ece.utk.edu

IP: 160.36.30.108

DNS: MAPPING NAME TO ADDRESS

 Name: panda.ece.utk.edu is used by human

 IP address: a 32-bit numerical value used by machine

 DNS

 A distributed database, implemented by a hierarchy of name servers

 Application level protocols used by hosts, routers and name servers

 Internet intelligence is on the edge

DNS NAME SPACE

biz, info, name, pro

aero, coop, museum
ICANN

http://www.icann.org/

DNS – WHY NOT CENTRIC?

 Single point of failure

 Traffic volume

 Distant name server means slow response

 Scalability

 History: ARPANET begins with a single hosts.txt.

DNS – HIERARCHICAL VIEW

 Local DNS server

 Authoritative DNS server

 Root DNS server

•

DNS: WHERE ARE ROOT SERVERS?

•

DNS: AN EXAMPLE

 Case: Root server knows

authoritative DNS server

requesting host
panda.ece.utk.edu

worf.mcnc.org

root name
server

local name server
dns.ece.utk.edu

1

2
3

4

5

6

Authoritative DNS server
dns.mcnc.org

DNS: AN EXAMPLE

 Case: Root server doesn’t

know immediate

authoritative DNS server,

but know the

intermediate one

requesting host
panda.ece.utk.edu

people.anr.mcnc.org

root name
server

local name server
dns.ece.utk.edu

1

2
3

6

7

8

Intermediate server
dns.mcnc.org

Authoritative server
dns.anr.mcnc.org

5

4

DNS: ITERATED QUERY

 Root server replies with

the name of intermediate

server

 Iterated query vs.

recursive query

requesting host
panda.ece.utk.edu

people.anr.mcnc.org

root name
server

local name server
dns.ece.utk.edu

1

2

3

8

Intermediate server
dns.mcnc.org

Authoritative server
dns.anr.mcnc.org

6

5

4

7

Iterated
query

DNS CACHING

 Once (any) server learns new mapping, it caches it

 The cache will expire after some time

 Update/notify mechanism is defined by IETF RFC 2136

DNS SERVER AND SERVICE

 Running on top of UDP

 Port number: 53

 Frequently used by other applications such as SMTP, FTP, HTTP

 Important services

 Host aliasing

 Mail server aliasing

 Load distribution (DNS rotation)

 User utilities: dig, http://www.netliner.com/dig.html

 More DNS information: see DNS NET http://www.dns.net/dnsrd/docs/

http://www.netliner.com/dig.html

*DNS RESOURCE RECORD

DNS: distributed database storing resource records (RR)

RR format: (domain_name, ttl, class, type, value)

*DNS: MESSAGE FORMAT

DNS protocol : query and reply messages, both with same message format

message header

• identification: 16 bit # for query, reply

to query uses same #

• flags:

• query or reply

• recursion desired

• recursion available

• reply is authoritative

*DNS PROTOCOL MESSAGE

Name, type fields
for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

ELECTRONIC MAIL

Three major components:

 user agents

 mail servers

 simple mail transfer

protocol: smtp

User Agent

 “mail reader”

 composing, editing, reading

mail messages

 e.g., Eudora, Outlook, elm,

Netscape Messenger

 outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

ELECTRONIC MAIL: MAIL SERVER

 mailbox contains incoming messages (yet to be read) for user

 message queue of outgoing (to be sent) mail messages

 Common Mail Server:

 Sendmail

 MS Exchange

SMTP: RFC 821

 Use TCP for reliable transfer, use port number 25

 Message must be 7-bit ASCII

[hqi@aicip hqi]$ telnet panda.ece.utk.edu 25

Trying 160.36.30.108...

Connected to panda.ece.utk.edu.

Escape character is '^]'.

220 panda.ece.utk.edu ESMTP Sendmail 8.11.6/8.11.6; Thu, 21 Nov 2002

09:54:04 -0500

HELO panda.ece.utk.edu

250 panda.ece.utk.edu Hello pegasus.ece.utk.edu [160.36.30.110], pleased

to meet you

MAIL FROM: <hqi@aicip.ece.utk.edu>

250 2.1.0 <hqi@aicip.ece.utk.edu>... Sender ok

RCPT TO: <hqi@panda.ece.utk.edu>

250 2.1.5 <hqi@panda.ece.utk.edu>... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

do you like ketchup?

how about pickles?

.

250 2.0.0 gALEt5U25932 Message accepted for delivery

QUIT

221 2.0.0 panda.ece.utk.edu closing connection

Connection closed by foreign host.

MAIL ACCESS PROTOCOL – FINAL DELIVERY

 SMTP: delivery/storage to receiver’s server

 Mail access protocol: retrieval from server

– POP: Post Office Protocol [RFC 1939] (port 110)

o authorization (agent <-->server) and download

o Does not maintain state across POP sessions

o Cannot manipulate emails at the server side

– IMAP: Internet Mail Access Protocol [RFC 1730]

o more features (more complex)

o manipulation of stored msgs on server

o Maintain state for the user

– HTTP: Hotmail , Yahoo! Mail, etc.

– Slow

user
agentsender’s mail server

user
agent

SMTP
SMTP

POP3,
IMAP, or

HTTP

receiver’s mail server

http

SUMMARY

 Application

 Client

 Server

 Protocol

 What type of service

 Through what interface

 Which port

 DNS

 Aliasing vs. load distribution

 “nslookup” and “dig”

 Email

 SMTP

 Mail access protocol

 POP3

 IMAP

 HTTP

WEB: TERMINOLOGY

 Web page

 Consists of “objects”

 Addressed by “url” (universal
resource locator)

 Most of web page

 One base web page

 Several referenced “objects”

 URL has two components

 A host name and a path

 http://panda.ece.utk.edu/~hqi/teac
hing.html

 Web client

 Netscape communicator

 Mozilla

 Microsoft IE browser

 Web server

 Apache

 Microsoft Internet Information

Server (IIS)

WEB: THE HTTP PROTOCOL

 Web application layer protocol: a
hyper text transfer protocol, http

 Defined by

 HTTP 1.0, RFC 1945

 HTTP 1.1, RFC 2068

 Client/Server Mode

 Client: browser asks for objects, and
display it

 Request

 Display

 Server: provide objects in response
to requests

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

WEB: HTTP OPERATION FLOW

 HTTP utilizes TCP transport services

 HTTP client initiates TCP connection
(create socket) to server, at port 80

 Server accepts this connection from
client

 HTTP messages (defined by HTTP
protocol) are exchanged between http
client and http server

 TCP connection closed

 HTTP is stateless

 Server doesn’t maintain the state

of past requests

 ‘back’?

HTTP EXAMPLE

Suppose user enters URL www.someSchool.edu/someDepartment/home.index

1a. http client initiates

TCP connection to http

server (process) at

www.someSchool.edu. Port 80

is default for http

server.

2. http client sends http request message

(containing URL) into TCP connection

socket

(plus another acknowledge

message)

1b. http server at host

www.someSchool.edu waiting for TCP

connection at port 80. “accepts”

connection, notifying client

3. http server receives request message,

forms response message containing

requested object

(someDepartment/home.index), sends

message into socket

(conta ins text,

references to 10

jpeg images)

time

HTTP EXAMPLE (CONT’D)

5. http client receives

response message

containing html file,

displays html. Parsing

html file, finds 10

referenced jpeg objects

6. Steps 1-5 repeated for each of 10

jpeg objects

4. http server closes TCP connection.

time
• Two RTT (Round-trip time)

• Slow start

• Place burden on the Web server

HTTP: PERSISTENT AND NON-PERSISTENT

CONNECTION

 Non-persistent

 HTTP 1.0

 Server parses request, responds, then closes TCP connection

 Each object requires 2 RTT

 Each object suffers slow start

 Persistent

 HTTP 1.1

 On the same TCP connection, server parses request, responds, and parses new
requests

SMTP VS. HTTP

 HTTP: Direct connection, no intermediate mail servers

 Both use persistent connection

 HTTP is a pull protocol, while SMTP is a push protocol

 SMTP: 7-bit ASCII format, message ended with a line consisting of only a period

*HTTP MESSAGE FORMAT

 two types of http messages: request, response

 http request message:

 ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0

User-agent: Mozilla/4.0

Accept: text/html,image/gif,image/jpeg

Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

*HTTP REQUEST: GENERAL FORMAT

*HTTP MESSAGE FORMAT: RESPONSE

HTTP/1.0 200 OK

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

*HTTP RESPONSE: STATUS CODE

200 OK

 request succeeded, requested object later in this message

301 Moved Permanently

 requested object moved, new location specified later in this message
(Location:)

400 Bad Request

 request message not understood by server

404 Not Found

 requested document not found on this server

505 HTTP Version Not Supported

TRY OUT HTTP (CLIENT SIDE) FOR YOURSELF

 Telnet to your favorite web site

telnet

panda.ece.utk.edu 80

open TCP connection to
panda port 80, anything
you type be sent to
panda port 80 socket

 Type in request, and look at the response

GET /~hqi/index.html HTTP/1.0

[hqi@com779 hqi]$ telnet panda.ece.utk.edu 80

Trying 160.36.30.108...

Connected to panda.ece.utk.edu.

Escape character is '^]'.

get /~hqi/index.html http/1.0

HTTP/1.1 501 Method Not Implemented

Date: Sun, 02 Sep 2001 21:03:28 GMT

Server: Apache/1.3.19 (Unix) (Red-Hat/Linux) PHP/4.0.4pl1

Allow: GET, HEAD, POST, PUT, DELETE, CONNECT,

OPTIONS, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY,

MOVE, LOCK, UNLOCK, TRACE

Connection: close

Content-Type: text/html; charset=iso-8859-1

[hqi@com779 hqi]$ telnet panda.ece.utk.edu 80

Trying 160.36.30.108...

Connected to panda.ece.utk.edu.

Escape character is '^]'.

GET /~hqi/index.html http/1.0

HTTP/1.1 200 OK

Date: Sun, 02 Sep 2001 21:05:43 GMT

Server: Apache/1.3.19 (Unix) (Red-Hat/Linux) PHP/4.0.4pl1

Last-Modified: Sat, 07 Jul 2001 15:42:14 GMT

ETag: "1f222e-df9-3b472dd6"

Accept-Ranges: bytes

Content-Length: 3577

Connection: close

Content-Type: text/html

<HTML>

……

</HTML>

Connection closed by foreign host.

ADD-ON FEATURES: AUTHENTICATION

 Purpose of authentication: control
access to document

 Means: user name and password

 User must present password on
each request, Authorization:line

 Server asks for it by giving it the
response with WWW authenticate:

client server

usual http request msg

401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization:line

usual http response msg

usual http request msg
+ Authorization:line

usual http response msg time

ADD-ON FEATURE: COOKIES

 Server sends user cookie in
response message:

 Set-cookie:

1678453

 Client presents cookie in later
request

 cookie: 1678453

 Server matches cookies with
stored information: such as
user preference, password etc

client server

usual http request msg

usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

cookie-
spectific

action

ADD-ON FEATURE: WEB CACHES OR PROXY

SERVERS

 Goal: to satisfy user request

without invoking origin server

 User makes request, the object

requested has been cached, then

proxy server will reply, else proxy

server request the object for

client and then response

client

Proxy
server

client
origin
server

origin
server

WHY WEB CACHING?

 Cache should be closer to the

clients

 Faster response

 Reduce traffic (pay less money)

 Web cache:

 Cost is low

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

FTP: FILE TRANSFER PROTOCOL

 transfer file to/from remote host

 client/server model

– client: initiates transfer (either to/from remote)

– server: remote host

 ftp: RFC 959

file transfer
FTP

server

FTP
user

interface

FTP
client

local file
system

remote file
systemuser

at host

FTP: OPERATION FLOW

 ftp client contacts ftp server at port 21,
specifying TCP as transport protocol

 two parallel TCP connections opened:

 control: exchange commands,
responses between client, server

“out of band control”

 data: file data to/from server

 ftp server maintains “state”: current
directory, earlier authentication

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

Data connection is closed

whenever it finished

transferring one file.

FTP: COMMAND AND RESPONSE

Sample commands:

 sent as ASCII text over

control channel

 USER username

 PASS password

 LIST return list of file

in current directory

 RETR filename retrieves

(gets) file

 STOR filename stores

(puts) file onto remote

host

Sample return codes

 status code and phrase

(as in http)

 331 Username OK,

password required

 125 data connection

already open; transfer

starting

 425 Can’t open data

connection

 452 Error writing file

Thank you
The content in this material are from the textbooks and reference books

given in the syllabus.

