
PYTHON PROGRAMMING

(20MCA21C)

UNIT - III

Strings and Lists

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer Applications,

Government Arts College (Autonomous), Coimbatore - 641 018.

STRINGS

STRINGS

Strings are amongst the most popular types in Python. We can create
them simply by enclosing characters in quotes. Python treats single
quotes the same as double quotes. Creating strings is as simple as
assigning a value to a variable. For example −

var1 = ‘MCA,GAC!’

var2 = "Python Programming"

Accessing Values in Strings.:Python does not support a character type;
these are treated as strings of length one, thus also considered a
substring.To access substrings, use the square brackets for slicing along
with the index or indices to obtain your substring. For example −

print "var1[0]: ", var1[0]

print "var2[1:5]: ", var2[1:5]

When the above code is executed, it produces the following result −

var1[0]: M

var2[0:6]: Python

Backslash Hexadecimal

notation character
Description

Escape Characters \a 0x07 Bell or alert

\b 0x08 Backspace

Following table is a list of \cx

escape or non-printable \C-x

characters that can be
\e

Control-x

Control-x

0x1b Escaperepresented with

backslash notation.
An escape character
gets interpreted; in a

\f 0x0c Formfeed

\M-\C-x Meta-Control-x

\n 0x0a Newline
single quoted as wellas
double quoted strings. Octal notation,

\nnn where n is in the

range 0.7

\r 0x0d Carriage return

\s 0x20 Space

\t 0x09 Tab

\v 0x0b Vertical tab

\x Character x

Hexadecimal

\xnn
notation, where n is

in the range 0.9, a.f,

or A.F

String Special

Operators

Operator Description Example

+ Concatenation - Adds values on a + b will give

either side of the operator HelloPython

Assume string

variable a holds
[]'Hello' and

variable b holds
[:]

Repetition - Creates new strings, a*2 will give -

concatenating multiple copies of HelloHello

the same string

Slice - Gives the character from the a[1] will give e

given index

Range Slice - Gives the characters a[1:4] will give ell'Python', then
from the given range

in Membership - Returns true if a H in a will give 1

character exists in the given string

not in Membership - Returns true if a M not in a will

character does not exist in the give 1

given string

r/R Raw String - Suppresses actual print r'\n' prints

meaning of Escape characters. The \n and print

syntax for raw strings is exactly the R'\n'prints \n

same as for normal strings with the

exception of the raw string

operator, the letter "r," which

precedes the quotation marks. The

"r" can be lowercase (r) or

uppercase (R) and must be placed

immediately preceding the first

quote mark.

% Format - Performs String formatting See at next

section

Triple Quotes

Python's triple quotes

comes to the rescue by

allowing strings to span

multiple lines, including

verbatim NEWLINEs,

TABs, and any other

special characters.The

syntax for triple quotes

consists of three

consecutive single or

double quotes.

new_str = "“”WELCOME TO

DEPT of COMPUTER

APPLICATIONS

GAC,CBE-18”””

Output

>>>print new_str

WELCOME TO

DEPT of COMPUTER

APPLICATIONS

GAC,CBE-18

Built-in String Methods

Python includes the following built-in methods to

manipulate strings

S.
No Methods with Description

endswith(suffix, beg=0, end=len(string))

1

2

capitalize()
Capitalizes first letter of string 6

center(width, fillchar)

Returns a space-padded string with the
original string centered to a total of width

columns. 7

Determines if string or a substring of string (if
starting index beg and ending index end are given)

ends with suffix; returns true if so and false
otherwise.

expandtabs(tabsize=8)
Expands tabs in string to multiple spaces; defaults to

count(str, beg= 0,end=len(string)) 8 spaces per tab if tabsize not provided.

3
Counts how many times str occurs in string orfind(str, beg=0 end=len(string))
in a substring of string if starting index beg anDetermine if str occurs in string or in a substring of8
ending index end are given.

decode(encoding='UTF-8',errors='strict')

string if starting index beg and ending index end are
given returns index if found and -1 otherwise.

4
Decodes the string using the codec registeredindex(str, beg=0, end=len(string))

Same as find(), but raises an exception if str not
for encoding. encoding defaults to the def9ult
string encoding. found.

isalnum()
encode(encoding='UTF-8',errors='strict')

5
Returns encoded string version of string; 10Returns true if string has at least 1 character and allon

characters are alphanumeric and false otherwise.error, default is to raise a ValueError unless

errors is given with 'ignore' or 'replace'.

11

isalpha()
Returns true if string has at least 1 character
and all characters are alphabetic and false

otherwise.

istitle()

16Returns true if string is properly "titlecased"
and false otherwise.

isupper()

isdigit()
12Returns true if string contains only digits and

false otherwise.

17
Returns true if string has at least one cased
character and all cased characters are in

uppercase and false otherwise.

13

islower()
Returns true if string has at least 1 cased
character and all cased characters are in

lowercase and false otherwise.

18

join(seq)

Merges (concatenates) the string
representations of elements in sequence seq
into a string, with separator string.

isnumeric()
14Returns true if a unicode string contains only

numeric characters and false otherwise.

19
len(string)
Returns the length of the string

ljust(width[, fillchar])
isspace() 20 Returns a space-padded string with the original

15 Returns true if string contains only whitespace string left-justified to a total of width columns.

characters and false otherwise.

lower() replace(old, new [, max])
21 Converts all uppercase letters in string to 26 Replaces all occurrences of old in string with

lowercase. new or at most max occurrences if max given.

22
lstrip()

Removes all leading whitespace in string.
27

rfind(str, beg=0,end=len(string))

Same as find(), but search backwards in string.

maketrans() rindex(str, beg=0, end=len(string))
23 Returns a translation table to be used in 28 Same as index(), but search backwards in

translate function. string.

max(str)

24Returns the max alphabetical character from
the string str.

min(str)
25Returns the min alphabetical character from

the string str.

29

30

rjust(width,[, fillchar])

Returns a space-padded string with the original
string right-justified to a total of width

columns.

rstrip()

Removes all trailing whitespace of string.

31

32

split(str="", num=string.count(str))
Splits string according to delimiter str (space if
not provided) and returns list of substrings;

split into at most num substrings if given.

splitlines(num=string.count('\n'))
Splits string at all (or num) NEWLINEs and
returns a list of each line with NEWLINEs

removed.

36

37

title()
Returns "titlecased" version of string, that is,
all words begin with uppercase and the rest

are lowercase.

translate(table, deletechars="")
Translates string according to translation table
str(256 chars), removing those in the del

string.

startswith(str, beg=0,end=len(string)) upper()

Determines if string or a substring of string (if 38 Converts lowercase letters in string to

33 starting index beg and ending index end are uppercase.

34

given) starts with substring str; returns true if
so and false otherwise.

strip([chars]) 39
Performs both lstrip() and rstrip() on string.

zfill (width)
Returns original string leftpadded with zeros to
a total of width characters; intended for

numbers, zfill() retains any sign given (less one

35
swapcase() zero).

Inverts case for all letters in string. isdecimal()
40Returns true if a unicode string contains only

decimal characters and false otherwise.

String Slicing in Python

Python slicing is about obtaining a sub-string from the given string by

slicing it respectively from start to end.

Python slicing can be done in two ways.

•slice() Constructor

•Extending Indexing

slice() Constructor

The slice() constructor creates a slice object representing the set of indices

specified by range(start, stop, step).

Syntax:

•slice(stop)

•slice(start, stop, step)

Parameters:
start: Starting index where the slicing of object starts.

stop: Ending index where the slicing of object stops.

step: It is an optional argument that determines the increment between each

index for slicing.

Return Type: Returns a sliced object containing elements in the given range

only.

Python program to demonstrate
String slicing

String =‘MCA GACCBE'
Using slice constructor
s1 = slice(3)
s2 = slice(1, 5, 2)
s3 = slice(-1, -5, -2)
print("String slicing")
print(String[s1])
print(String[s2])
print(String[s3])
output

String slicing

MCA

C

EC

0 1 2 3 4 5 6 7 8 9

M C A G A C C B E

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

LISTS

LISTS

List is a data type that is mutable.

Mutability is the ability for certain types of data to be

changed without entirely recreating it. This is important

for Python to run programs both quickly and efficiently.

Many types in Python are immutable. Integers,
floats, strings, and (as you'll learn later in this course)

tuples are all immutable.

Once one of these objects is created, it can't be

modified, unless you reassign the object to a new

value.

Create a List in Python

Lets see how to create a list in Python. To create a list

all you have to do is to place the items inside a square

bracket [] separated by comma ,.

list of floats

numlist = [10.2, 99.9,12.0]

list of int, float and strings

mylist = [10.17, 78, “PYTHON", 100,]

an empty list

nlist = []

List Operations

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: 1 2 3 Iteration

print x,

Index in Lists

A list of numbers
numbers = [1, 2, 3, 100, 200, 300]
print(numbers[0])
print(numbers[5])
Output
1
300

Negative Index to access the list items from

the end

Python allows you to use negative indexes. The

idea behind this to allow you to

access the list elements starting from the end.

For example an index of -1 would access the

last element of the list, -2 second last, -3 third

last and so on.

3.1 Example of Negative indexes in Python

a list of strings

my_list = [“GACɑ, “CBEɑ, “MCAɑ]

print(my_list[-1])

print(my_list[-3])

Output:

MCA

GAC

Built in List Functions

Sr. Function with Description

No

1 cmp(list1, list2)Compares elements of both lists.

2 len(list)Gives the total length of the list.

3 max(list)Returns item from the list with max value.

4 min(list)Returns item from the list with min value.

5 list(seq)Converts a tuple into list.

LIST METHODS

S.No Methods with Description

1 list.append(obj)Appends object obj to list

2 list.count(obj)Returns count of how many times obj occurs in list

3 list.extend(seq)Appends the contents of seq to list

4 list.index(obj)Returns the lowest index in list that obj appears

5 list.insert(index, obj)Inserts object obj into list at offset index

6 list.pop(obj=list[-1])Removes and returns last object or obj from list

7 list.remove(obj)Removes object obj from list

8 list.reverse()Reverses objects of list in place

9 list.sort([func])Sorts objects of list, use compare func if given

Deleting Elements from Lists

Deleting elements using remove(), pop() and clear() methods
remove(item): Removes specified item from list.
pop(index): Removes the element from the given index.
pop(): Removes the last element.
clear(): Removes all the elements from the list.
list of char
ch_list = ['A', ‘E', ‘I', ‘O', ‘U']
Deleting the element with value 'B
'ch_list.remove(‘O')

print(ch_list)

ch_list.pop(1)

print(ch_list)

Deleting all the elements
ch_list.clear()

print(ch_list)

Thank you
The Content in this Material are from the Textbooks and

Reference books given in the Syllabus

