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Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Cooperating Processes

 Interprocess Communication

 Communication in Client-Server Systems



Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost 
interchangeably.

 Process – a program in execution; process execution 
must progress in sequential fashion.

 A process includes:

 program counter 

 stack

 data section



Process State

 As a process executes, it changes state

 new:  The process is being created.

 running:  Instructions are being executed.

 waiting:  The process is waiting for some event to occur.

 ready:  The process is waiting to be assigned to a 

process.

 terminated:  The process has finished execution.



Diagram of Process State



Process Control Block (PCB)

 Information associated with each process.

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information



Process Control Block (PCB)



CPU Switch From Process to 

Process



Process Scheduling Queues

 Job queue – set of all processes in the system.

 Ready queue – set of all processes residing in main 

memory, ready and waiting to execute.

 Device queues – set of processes waiting for an I/O 

device.

 Process migration between the various queues.



Ready Queue And Various 

I/O Device Queues



Representation of Process 

Scheduling



Schedulers

 Long-term scheduler (or job scheduler) – selects which 

processes should be brought into the ready queue.

 Short-term scheduler (or CPU scheduler) – selects 

which process should be executed next and allocates 

CPU.



Addition of Medium Term 

Scheduling



Schedulers (Cont.)

 Short-term scheduler is invoked very frequently 

(milliseconds)  (must be fast).

 Long-term scheduler is invoked very infrequently 

(seconds, minutes)  (may be slow).

 The long-term scheduler controls the degree of 

multiprogramming.

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than 

computations, many short CPU bursts.

 CPU-bound process – spends more time doing 

computations; few very long CPU bursts.



Context Switch

 When CPU switches to another process, the system 

must save the state of the old process and load the 

saved state for the new process.

 Context-switch time is overhead; the system does no 

useful work while switching.

 Time dependent on hardware support.



Process Creation

 Parent process create children processes, which, in 

turn create other processes, forming a tree of 

processes.

 Resource sharing

 Parent and children share all resources.

 Children share subset of parent’s resources.

 Parent and child share no resources.

 Execution

 Parent and children execute concurrently.

 Parent waits until children terminate.



Process Creation (Cont.)

 Address space

 Child duplicate of parent.

 Child has a program loaded into it.

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’ 

memory space with a new program.



Processes Tree on a UNIX 

System



Process Termination

 Process executes last statement and asks the 
operating system to decide it (exit).

 Output data from child to parent (via wait).

 Process’ resources are deallocated by operating system.

 Parent may terminate execution of children processes 
(abort).

 Child has exceeded allocated resources.

 Task assigned to child is no longer required.

 Parent is exiting.

 Operating system does not allow child to continue if its 
parent terminates.

 Cascading termination.



Cooperating Processes

 Independent process cannot affect or be affected by 

the execution of another process.

 Cooperating process can affect or be affected by the 

execution of another process

 Advantages of process cooperation

 Information sharing 

 Computation speed-up

 Modularity

 Convenience



Producer-Consumer 

Problem

 Paradigm for cooperating processes, producer 

process produces information that is consumed by a 

consumer process.

 unbounded-buffer places no practical limit on the size of 

the buffer.

 bounded-buffer assumes that there is a fixed buffer size.



Bounded-Buffer – Shared-

Memory Solution

 Shared data

 #define BUFFER_SIZE 10

 Typedef struct {

 . . .

 } item;

 item buffer[BUFFER_SIZE];

 int in = 0;

 int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 

elements



Bounded-Buffer – Producer 

Process 

 item nextProduced;

 while (1) {

 while (((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing */

 buffer[in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 }



Bounded-Buffer – Consumer 

Process

 item nextConsumed;

 while (1) {

 while (in == out)

 ; /* do nothing */

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 }



Interprocess 

Communication (IPC)

 Mechanism for processes to communicate and to synchronize 
their actions.

 Message system – processes communicate with each other 
without resorting to shared variables.

 IPC facility provides two operations:

 send(message) – message size fixed or variable 

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)



Implementation Questions

 How are links established?

 Can a link be associated with more than two 

processes?

 How many links can there be between every pair of 

communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can 

accommodate fixed or variable?

 Is a link unidirectional or bi-directional?



Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process 

Q

 Properties of communication link

 Links are established automatically.

 A link is associated with exactly one pair of 

communicating processes.

 Between each pair there exists exactly one link.

 The link may be unidirectional, but is usually bi-

directional.



Indirect Communication

 Messages are directed and received from mailboxes 
(also referred to as ports).

 Each mailbox has a unique id.

 Processes can communicate only if they share a 
mailbox.

 Properties of communication link

 Link established only if processes share a common 
mailbox

 A link may be associated with many processes.

 Each pair of processes may share several 
communication links.

 Link may be unidirectional or bi-directional.



Indirect Communication

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from 

mailbox A



Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A.

 P1, sends; P2 and P3 receive.

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes.

 Allow only one process at a time to execute a receive 

operation.

 Allow the system to select arbitrarily the receiver.  Sender 

is notified who the receiver was.



Synchronization

 Message passing may be either blocking or non-

blocking.

 Blocking is considered synchronous

 Non-blocking is considered asynchronous

 send and receive primitives may be either blocking or 

non-blocking.



Buffering

 Queue of messages attached to the link; implemented 

in one of three ways.

 1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).

 2. Bounded capacity – finite length of n messages

Sender must wait if link full.

 3. Unbounded capacity – infinite length 

Sender never waits.



Client-Server 

Communication

 Sockets

 Remote Procedure Calls

 Remote Method Invocation (Java)



Sockets

 A socket is defined as an endpoint for communication.

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host 

161.25.19.8

 Communication consists between a pair of sockets.



Socket Communication



Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure 

calls between processes on networked systems.

 Stubs – client-side proxy for the actual procedure on 

the server.

 The client-side stub locates the server and marshalls 

the parameters.

 The server-side stub receives this message, unpacks 

the marshalled parameters, and peforms the 

procedure on the server.



Execution of RPC



Remote Method 

Invocation

Remote Method Invocation 
(RMI) is a Java mechanism 
similar to RPCs.

RMI allows a Java program 
on one machine to invoke a 
method on a remote object.



Marshalling Parameters



CPU Scheduling

 Basic Concepts

 Scheduling Criteria 

 Scheduling Algorithms

 Multiple-Processor Scheduling

 Real-Time Scheduling

 Algorithm Evaluation



Basic Concepts

 Maximum CPU utilization obtained with 

multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a 

cycle of CPU execution and I/O wait.

 CPU burst distribution



Alternating Sequence of CPU 

And I/O Bursts



Histogram of CPU-burst 

Times



CPU Scheduler

 Selects from among the processes in memory that are 
ready to execute, and allocates the CPU to one of 
them.

 CPU scheduling decisions may take place when a 
process:

 1. Switches from running to waiting state.

 2. Switches from running to ready state.

 3. Switches from waiting to ready.

 4. Terminates.

 Scheduling under 1 and 4 is nonpreemptive.

 All other scheduling is preemptive.



Dispatcher

 Dispatcher module gives control of the CPU to the 

process selected by the short-term scheduler; this 

involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to 

restart that program

 Dispatch latency – time it takes for the dispatcher to 

stop one process and start another running.



Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their 

execution per time unit

 Turnaround time – amount of time to execute a 

particular process

 Waiting time – amount of time a process has been 

waiting in the ready queue

 Response time – amount of time it takes from when a 

request was submitted until the first response is 

produced, not output  (for time-sharing environment)



Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time 

 Min waiting time 

 Min response time



First-Come, First-Served 

(FCFS) Scheduling

 Process Burst Time

 P1 24

 P2 3

 P3 3 

 Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

 Waiting time for P1  = 0; P2  = 24; P3 = 27

 Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300



FCFS Scheduling (Cont.)

 Suppose that the processes arrive in the order

 P2 , P3 , P1 .

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time:   (6 + 0 + 3)/3 = 3

 Much better than previous case.

 Convoy effect short process behind long process

P1P3P2

63 300



Shortest-Job-First (SJR) 

Scheduling

 Associate with each process the length of its next CPU 

burst.  Use these lengths to schedule the process with 

the shortest time.

 Two schemes: 

 nonpreemptive – once CPU given to the process it 

cannot be preempted until completes its CPU burst.

 preemptive – if a new process arrives with CPU burst 

length less than remaining time of current executing 

process, preempt.  This scheme is know as the 

Shortest-Remaining-Time-First (SRTF).

 SJF is optimal – gives minimum average waiting time 

for a given set of processes.



Example of Non-Preemptive 

SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

 SJF (non-preemptive)

 Average waiting time = (0 + 6 + 3 + 7)/4 - 4

P1 P3 P2

73 160

P4

8 12



Example of Preemptive SJF

 Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

 SJF (preemptive)

 Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16



Determining Length of Next 

CPU Burst

 Can only estimate the length.

 Can be done by using the length of previous CPU 

bursts, using exponential averaging.
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Prediction of the Length of 

the Next CPU Burst



Examples of Exponential 

Averaging

  =0

 n+1 = n

 Recent history does not count.

  =1

 n+1 = tn

 Only the actual last CPU burst counts.

 If we expand the formula, we get:

 n+1 =  tn+(1 - )  tn -1 + …

 +(1 -  )j  tn -1 + …

 +(1 -  )n=1 tn 0

 Since both  and (1 - ) are less than or equal to 1, each 
successive term has less weight than its predecessor.



Priority Scheduling

 A priority number (integer) is associated with each 
process

 The CPU is allocated to the process with the highest 
priority (smallest integer  highest priority).

 Preemptive

 nonpreemptive

 SJF is a priority scheduling where priority is the 
predicted next CPU burst time.

 Problem  Starvation – low priority processes may 
never execute.

 Solution  Aging – as time progresses increase the 
priority of the process.



Round Robin (RR)

 Each process gets a small unit of CPU time (time 
quantum), usually 10-100 milliseconds.  After this time 
has elapsed, the process is preempted and added to 
the end of the ready queue.

 If there are n processes in the ready queue and the 
time quantum is q, then each process gets 1/n of the 
CPU time in chunks of at most q time units at once.  No 
process waits more than (n-1)q time units.

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch, 
otherwise overhead is too high.



Example of RR with Time 

Quantum = 20

 Process Burst Time

 P1 53

 P2 17

 P3 68

 P4 24

 The Gantt chart is: 

 Typically, higher average turnaround than SJF, but better 
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162



Time Quantum and Context 

Switch Time



Turnaround Time Varies With 

The Time Quantum



Multilevel Queue

 Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm, 
foreground – RR
background – FCFS

 Scheduling must be done between the queues.

 Fixed priority scheduling; (i.e., serve all from foreground 
then from background).  Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU 
time which it can schedule amongst its processes; i.e., 
80% to foreground in RR

 20% to background in FCFS 



Multilevel Queue Scheduling



Multilevel Feedback Queue

 A process can move between the various queues; 

aging can be implemented this way.

 Multilevel-feedback-queue scheduler defined by the 

following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will 

enter when that process needs service



Example of Multilevel 

Feedback Queue

 Three queues: 

 Q0 – time quantum 8 milliseconds

 Q1 – time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it 

gains CPU, job receives 8 milliseconds.  If it does not 

finish in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 

additional milliseconds.  If it still does not complete, it is 

preempted and moved to queue Q2.



Multilevel Feedback Queues



Multiple-Processor 

Scheduling

 CPU scheduling more complex when multiple CPUs 

are available.

 Homogeneous processors within a multiprocessor.

 Load sharing 

 Asymmetric multiprocessing – only one processor 

accesses the system data structures, alleviating the 

need for data sharing.



Real-Time Scheduling

 Hard real-time systems – required to complete a 

critical task within a guaranteed amount of time.

 Soft real-time computing – requires that critical 

processes receive priority over less fortunate ones.



Dispatch Latency



Algorithm Evaluation

 Deterministic modeling – takes a particular 

predetermined workload and defines the performance 

of each algorithm  for that workload.

 Queueing models

 Implementation



Evaluation of CPU 

Schedulers by Simulation



Solaris 2 Scheduling



Windows 2000 Priorities



Deadlocks

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection 

 Recovery from Deadlock 

 Combined Approach to Deadlock Handling



The Deadlock Problem

 A set of blocked processes each holding a resource and 
waiting to acquire a resource held by another process in 
the set.

 Example 

 System has 2 tape drives.

 P1 and P2 each hold one tape drive and each needs another 
one.

 Example 

 semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B)

 wait (B); wait(A)



Bridge Crossing 

Example

Traffic only in one direction.

Each section of a bridge 
can be viewed as a 
resource.

If a deadlock occurs, it can 
be resolved if one car 
backs up (preempt 
resources and rollback).

Several cars may have to 
be backed up if a deadlock 
occurs.

Starvation is possible.



System Model

 Resource types R1, R2, . . ., Rm

 CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

 request 

 use 

 release



Deadlock Characterization

 Deadlock can arise if four conditions hold simultaneously.

 Mutual exclusion:  only one process at a time can use a 
resource.

 Hold and wait:  a process holding at least one resource is 
waiting to acquire additional resources held by other 
processes.

 No preemption:  a resource can be released only voluntarily 
by the process holding it, after that process has completed 
its task.

 Circular wait:  there exists a set {P0, P1, …, P0} of waiting 
processes such that P0 is waiting for a resource that is held 
by P1, P1 is waiting for a resource that is held by 

 P2, …, Pn–1 is waiting for a resource that is held by 
Pn, and P0 is waiting for a resource that is held by P0.



Resource-Allocation Graph

 A set of vertices V and a set of edges E.

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the processes 

in the system.

 R = {R1, R2, …, Rm}, the set consisting of all resource types 

in the system.

 request edge – directed edge P1 → Rj

 assignment edge – directed edge Rj → Pi



Resource-Allocation Graph 

(Cont.)

 Process

Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Rj

Pi

Pi
Rj



Example of a Resource 

Allocation Graph



Resource Allocation Graph 

With A Deadlock



Resource Allocation Graph With 

A Cycle But No Deadlock



Basic Facts

 If graph contains no cycles  no deadlock.

 If graph contains a cycle 

 if only one instance per resource type, then deadlock.

 if several instances per resource type, possibility of 

deadlock.



Methods for Handling 

Deadlocks

 Ensure that the system will never enter a deadlock 

state.

 Allow the system to enter a deadlock state and then 

recover.

 Ignore the problem and pretend that deadlocks never 

occur in the system; used by most operating systems, 

including UNIX.



Deadlock Prevention

 Restrain the ways request can be made.

 Mutual Exclusion – not required for sharable resources; 

must hold for nonsharable resources.

 Hold and Wait – must guarantee that whenever a 

process requests a resource, it does not hold any other 

resources.

 Require process to request and be allocated all its 

resources before it begins execution, or allow process to 

request resources only when the process has none.

 Low resource utilization; starvation possible.



Deadlock Prevention (Cont.)

 No Preemption –

 If a process that is holding some resources requests 

another resource that cannot be immediately allocated 

to it, then all resources currently being held are released.

 Preempted resources are added to the list of resources 

for which the process is waiting.

 Process will be restarted only when it can regain its old 

resources, as well as the new ones that it is requesting.

 Circular Wait – impose a total ordering of all resource 

types, and require that each process requests 

resources in an increasing order of enumeration.



Deadlock Avoidance

 Requires that the system has some additional a priori 
information available.

 Simplest and most useful model requires that each 
process declare the maximum number of resources of 
each type that it may need.

 The deadlock-avoidance algorithm dynamically 
examines the resource-allocation state to ensure that 
there can never be a circular-wait condition.

 Resource-allocation state is defined by the number of 
available and allocated resources, and the maximum 
demands of the processes.



Safe State

 When a process requests an available resource, system must 
decide if immediate allocation leaves the system in a safe state.

 System is in safe state if there exists a safe sequence of all 
processes. 

 Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that 
Pi can still request can be satisfied by currently available 
resources + resources held by all the Pj, with j<I.

 If Pi resource needs are not immediately available, then Pi can 
wait until all Pj have finished.

 When Pj is finished, Pi can obtain needed resources, execute, 
return allocated resources, and terminate. 

 When Pi terminates, Pi+1 can obtain its needed resources, and so 
on. 



Basic Facts

 If a system is in safe state  no deadlocks.

 If a system is in unsafe state  possibility of deadlock.

 Avoidance  ensure that a system will never enter an 

unsafe state. 



Safe, Unsafe , Deadlock 

State 



Resource-Allocation Graph 

Algorithm

 Claim edge Pi → Rj indicated that process Pj may 

request resource Rj; represented by a dashed line.

 Claim edge converts to request edge when a process 

requests a resource.

 When a resource is released by a process, assignment 

edge reconverts to a claim edge.

 Resources must be claimed a priori in the system.



Resource-Allocation Graph 

For Deadlock Avoidance



Unsafe State In Resource-

Allocation Graph



Banker’s Algorithm

 Multiple instances.

 Each process must a priori claim maximum use.

 When a process requests a resource it may have to 

wait.  

 When a process gets all its resources it must return 

them in a finite amount of time.



Data Structures for the 

Banker’s Algorithm 

 Let n = number of processes, and m = number of 
resources types.

 Available:  Vector of length m. If available [j] = k, there 
are k instances of resource type Rj available.

 Max: n x m matrix.  If Max [i,j] = k, then process Pi may 
request at most k instances of resource type Rj.

 Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is 
currently allocated k instances of Rj.

 Need:  n x m matrix. If Need[i,j] = k, then Pi may need 
k more instances of Rj to complete its task.



Need [i,j] = Max[i,j] – Allocation [i,j].



Safety Algorithm

 1. Let Work and Finish be vectors of length m and n, 
respectively.  Initialize:

 Work = Available

 Finish [i] = false for i - 1,3, …, n.

 2. Find and i such that both: 

 (a) Finish [i] = false

 (b) Needi  Work

 If no such i exists, go to step 4.

 3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

 4. If Finish [i] == true for all i, then the system is in a safe 
state.



Resource-Request Algorithm 

for Process Pi

 Request = request vector for process Pi.  If Requesti [j] = 
k then process Pi wants k instances of resource type Rj.

 1.If Requesti  Needi go to step 2.  Otherwise, raise error 
condition, since process has exceeded its maximum claim.

 2.If Requesti  Available, go to step 3.  Otherwise Pi  must 
wait, since resources are not available.

 3.Pretend to allocate requested resources to Pi by modifying 
the state as follows:

 Available = Available = Requesti;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;;

 If safe  the resources are allocated to Pi. 

 If unsafe  Pi must wait, and the old resource-allocation state is 
restored



Example of Banker’s 

Algorithm

 5 processes P0 through P4; 3 resource types A 
(10 instances), 
B (5instances, and C (7 instances).

 Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2  

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3  



Example (Cont.)

 The content of the matrix. Need is defined to be Max –
Allocation.

 Need

 A B C

 P0 7 4 3 

 P1 1 2 2 

 P2 6 0 0 

 P3 0 1 1

 P4 4 3 1 

 The system is in a safe state since the sequence < P1, P3, 
P4, P2, P0> satisfies safety criteria. 



Example P1 Request (1,0,2) 

(Cont.)

 Check that Request  Available (that is, (1,0,2)  (3,3,2)  true.

 Allocation Need Available

 A B C A B C A B C 

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0 

 P2 3 0 1 6 0 0 

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1 

 Executing safety algorithm shows that sequence <P1, P3, P4, P0, 
P2> satisfies safety requirement. 

 Can request for (3,3,0) by P4 be granted?

 Can request for (0,2,0) by P0 be granted?



Deadlock Detection

 Allow system to enter deadlock state 

 Detection algorithm

 Recovery scheme



Single Instance of Each 

Resource Type

 Maintain wait-for graph

 Nodes are processes.

 Pi → Pj if Pi is waiting for Pj.

 Periodically invoke an algorithm that searches for a 

cycle in the graph.

 An algorithm to detect a cycle in a graph requires an 

order of n2 operations, where n is the number of 

vertices in the graph.



Resource-Allocation Graph 

and Wait-for Graph



Several Instances of a 

Resource Type

 Available:  A vector of length m indicates the number 

of available resources of each type.

 Allocation:  An n x m matrix defines the number of 

resources of each type currently allocated to each 

process.

 Request:  An n x m matrix indicates the current request  

of each process.  If Request [ij] = k, then process Pi is 

requesting k more instances of resource type. Rj.



Detection Algorithm

 1. Let Work and Finish be vectors of length m and n, 

respectively Initialize:

 (a) Work = Available

 (b) For i = 1,2, …, n, if Allocationi  0, then 

Finish[i] = false;otherwise, Finish[i] = true.

 2. Find an index i such that both:

 (a) Finish[i] == false

 (b) Requesti  Work

 If no such i exists, go to step 4. 



Detection Algorithm (Cont.)

 3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

 4. If Finish[i] == false, for some i, 1  i  n, then the 

system is in deadlock state. Moreover, if Finish[i] == 

false, then Pi is deadlocked.

 Algorithm requires an order of O(m x n2) operations to 

detect whether the system is in deadlocked state.



Example of Detection 

Algorithm

 Five processes P0 through P4; three resource types 
A (7 instances), B (2 instances), and C (6 instances).

 Snapshot at time T0:

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0 

 P3 2 1 1 1 0 0 

 P4 0 0 2 0 0 2

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true 
for all i. 



Example (Cont.)

 P2 requests an additional instance of type C.

 Request

 A B C

 P0 0 0 0

 P1 2 0 1

 P2 0 0 1

 P3 1 0 0 

 P4 0 0 2

 State of system?

 Can reclaim resources held by process P0, but insufficient 
resources to fulfill other processes; requests.

 Deadlock exists, consisting of processes P1,  P2, P3, and P4.



Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may 

be many cycles in the resource graph and so we 

would not be able to tell which of the many 

deadlocked processes “caused” the deadlock.



Recovery from Deadlock:  

Process Termination
 Abort all deadlocked processes.

 Abort one process at a time until the deadlock cycle is 
eliminated.

 In which order should we choose to abort?

 Priority of the process.

 How long process has computed, and how much longer to 
completion.

 Resources the process has used.

 Resources process needs to complete.

 How many processes will need to be terminated. 

 Is process interactive or batch?



Recovery from Deadlock: 

Resource Preemption

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart process for 

that state.

 Starvation – same process may always be picked as 

victim, include number of rollback in cost factor.



Combined Approach to 

Deadlock Handling

 Combine the three basic approaches

 prevention

 avoidance

 detection

 allowing the use of the optimal approach for 
each of resources in the system.

 Partition resources into hierarchically ordered classes.

 Use most appropriate technique for handling 
deadlocks within each class.



Traffic Deadlock for Exercise 

8.4



Thank you
The content in this Material are from the Textbooks 

and Reference books  given in the Syllabus


