
OPERATING SYSTEMS

[20MCA15C]

UNIT – I

“Introduction,

Operating System Structures”

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer Applications,
Government Arts College (Autonomous), Coimbatore – 641 018.

Operating Systems [20MCA15C]

Syllabus

 UNIT I: Introduction: What is an OS - Mainframe systems - Desktop
systems - Multiprocessor systems - Distributed systems - Clustered
systems - Real-Time systems. Operating system structures: Systems
components - OS services - System calls - System Programs - Systems
structure - Virtual machines - System Design & Implementation -
System Generation.
(Chapter 1, 3)

 UNIT II: Process Management: Process concept - Process
scheduling - Operations on process - Cooperating process - Inter-
process communication. CPU scheduling: Scheduling criteria -
Scheduling algorithms - Multiple-processor Scheduling - Real-Time
Scheduling. Deadlocks: Deadlock characterization - Methods for
handling Deadlocks - Deadlocks prevention - Deadlock avoidance -
Deadlock detection - Recovery from Deadlock.
(Chapter 4, ,6, 8)

 UNIT III: Memory Management: Background -
Swapping - Contiguous memory allocation - Paging -
Segmentation - Segmentation with paging. Virtual
memory: Demand paging - Process creation - Page
replacement - Allocation of frames - Thrashing.
(Chapter 9, 10)

 UNIT IV: I/O Systems: Disk structure - Disk scheduling -
Disk management - Swap - Space management. File
systems: File concept - Access methods Directory
structure - File system structure - File system
implementation - Directory implementation - Allocation
methods - Free space management.
(Chapter 11, 12, 14)

 UNIT V: CASE STUDY: Linux: Design Principles - Kernel
modules - Process management, scheduling - Memory
management - File systems - Input & Output - Inter-process
Communication - Network structure - Security.
(Chapter 20)

 TEXT BOOKS:
1. Silberschatz, Galvin, Gagne, “Operating Systems

Concepts”, Sixth Edition, John Wiley & Sons, 2013.

 REFERENCE BOOKS:
1. Tanenbaum, “Operating systems: Design &

Implementation”, PHI, Second Edition, 1998.
2. Deital, “Operating Systems”, Pearson Education Asia,

Second Edition, 2001.
3. D. M. Dhamdhere, “System Programming and Operating

Systems”, TMH, 2000.

Introduction

 What is an Operating System?

 Mainframe Systems

 Desktop Systems

 Multiprocessor Systems

 Distributed Systems

 Clustered System

 Real-Time Systems

 Handheld Systems

 Computing Environments

What is an Operating

System?

 A program that acts as an intermediary between a

user of a computer and the computer hardware.

 Operating system goals:

 Execute user programs and make solving user problems

easier.

 Make the computer system convenient to use.

 Use the computer hardware in an efficient manner.

Computer System

Components

 Hardware – provides basic computing resources (CPU,

memory, I/O devices).

 Operating system – controls and coordinates the use

of the hardware among the various application

programs for the various users.

 Applications programs – define the ways in which the

system resources are used to solve the computing

problems of the users (compilers, database systems,

video games, business programs).

 Users (people, machines, other computers).

Abstract View of System

Components

Operating System Definitions

 Resource allocator – manages and allocates

resources.

 Control program – controls the execution of user

programs and operations of I/O devices .

 Kernel – the one program running at all times (all else

being application programs).

Mainframe Systems

 Reduce setup time by batching similar jobs

 Automatic job sequencing – automatically transfers

control from one job to another. First rudimentary

operating system.

 Resident monitor

 initial control in monitor

 control transfers to job

 when job completes control transfers pack to monitor

Memory Layout for a Simple

Batch System

Multi-programmed

Batch Systems

Several jobs are kept in
main memory at the same
time, and the CPU is
multiplexed among them.

OS Features Needed for

Multiprogramming

 I/O routine supplied by the system.

 Memory management – the system must allocate the

memory to several jobs.

 CPU scheduling – the system must choose among

several jobs ready to run.

 Allocation of devices.

Time-Sharing Systems–

Interactive Computing

 The CPU is multiplexed among several jobs that are

kept in memory and on disk (the CPU is allocated to a

job only if the job is in memory).

 A job swapped in and out of memory to the disk.

 On-line communication between the user and the

system is provided; when the operating system finishes

the execution of one command, it seeks the next

“control statement” from the user’s keyboard.

 On-line system must be available for users to access

data and code.

Desktop Systems

 Personal computers – computer system dedicated to a

single user.

 I/O devices – keyboards, mice, display screens, small

printers.

 User convenience and responsiveness.

 Can adopt technology developed for larger operating

system’ often individuals have sole use of computer

and do not need advanced CPU utilization of

protection features.

 May run several different types of operating systems

(Windows, MacOS, UNIX, Linux)

Parallel Systems

 Multiprocessor systems with more than on CPU in close
communication.

 Tightly coupled system – processors share memory
and a clock; communication usually takes place
through the shared memory.

 Advantages of parallel system:

 Increased throughput

 Economical

 Increased reliability

 graceful degradation

 fail-soft systems

Parallel Systems (Cont.)

 Symmetric multiprocessing (SMP)

 Each processor runs and identical copy of the operating

system.

 Many processes can run at once without performance

deterioration.

 Most modern operating systems support SMP

 Asymmetric multiprocessing

 Each processor is assigned a specific task; master

processor schedules and allocated work to slave

processors.

 More common in extremely large systems

Symmetric Multiprocessing

Architecture

Distributed Systems

 Distribute the computation among several physical

processors.

 Loosely coupled system – each processor has its own

local memory; processors communicate with one

another through various communications lines, such as

high-speed buses or telephone lines.

 Advantages of distributed systems.

 Resources Sharing

 Computation speed up – load sharing

 Reliability

 Communications

Distributed Systems (cont)

 Requires networking infrastructure.

 Local area networks (LAN) or Wide area networks

(WAN)

 May be either client-server or peer-to-peer systems.

General Structure of Client-

Server

Clustered Systems

 Clustering allows two or more systems to share

storage.

 Provides high reliability.

 Asymmetric clustering: one server runs the application

while other servers standby.

 Symmetric clustering: all N hosts are running the

application.

Real-Time Systems

 Often used as a control device in a dedicated

application such as controlling scientific experiments,

medical imaging systems, industrial control systems,

and some display systems.

 Well-defined fixed-time constraints.

 Real-Time systems may be either hard or soft real-time.

Real-Time Systems (Cont.)

 Hard real-time:

 Secondary storage limited or absent, data stored in short

term memory, or read-only memory (ROM)

 Conflicts with time-sharing systems, not supported by

general-purpose operating systems.

 Soft real-time

 Limited utility in industrial control of robotics

 Useful in applications (multimedia, virtual reality)

requiring advanced operating-system features.

Handheld Systems

 Personal Digital Assistants (PDAs)

 Cellular telephones

 Issues:

 Limited memory

 Slow processors

 Small display screens.

Migration of Operating-System

Concepts and Features

Computing Environments

 Traditional computing

 Web-Based Computing

 Embedded Computing

Operating-System Structures

 System Components

 Operating System Services

 System Calls

 System Programs

 System Structure

 Virtual Machines

 System Design and Implementation

 System Generation

Common System

Components

 Process Management

 Main Memory Management

 File Management

 I/O System Management

 Secondary Management

 Networking

 Protection System

 Command-Interpreter System

Process Management

 A process is a program in execution. A process needs

certain resources, including CPU time, memory, files,

and I/O devices, to accomplish its task.

 The operating system is responsible for the following

activities in connection with process management.

 Process creation and deletion.

 process suspension and resumption.

 Provision of mechanisms for:

 process synchronization

 process communication

Main-Memory Management

 Memory is a large array of words or bytes, each with
its own address. It is a repository of quickly accessible
data shared by the CPU and I/O devices.

 Main memory is a volatile storage device. It loses its
contents in the case of system failure.

 The operating system is responsible for the following
activities in connections with memory management:

 Keep track of which parts of memory are currently being
used and by whom.

 Decide which processes to load when memory space
becomes available.

 Allocate and deallocate memory space as needed.

File Management

 A file is a collection of related information defined by

its creator. Commonly, files represent programs (both

source and object forms) and data.

 The operating system is responsible for the following

activities in connections with file management:

 File creation and deletion.

 Directory creation and deletion.

 Support of primitives for manipulating files and

directories.

 Mapping files onto secondary storage.

 File backup on stable (nonvolatile) storage media.

I/O System Management

 The I/O system consists of:

 A buffer-caching system

 A general device-driver interface

 Drivers for specific hardware devices

Secondary-Storage

Management

 Since main memory (primary storage) is volatile and
too small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to back up main memory.

 Most modern computer systems use disks as the
principle on-line storage medium, for both programs
and data.

 The operating system is responsible for the following
activities in connection with disk management:

 Free space management

 Storage allocation

 Disk scheduling

Networking (Distributed

Systems)

 A distributed system is a collection processors that do not
share memory or a clock. Each processor has its own
local memory.

 The processors in the system are connected through a
communication network.

 Communication takes place using a protocol.

 A distributed system provides user access to various
system resources.

 Access to a shared resource allows:

 Computation speed-up

 Increased data availability

 Enhanced reliability

Protection System

 Protection refers to a mechanism for controlling

access by programs, processes, or users to both

system and user resources.

 The protection mechanism must:

 distinguish between authorized and unauthorized usage.

 specify the controls to be imposed.

 provide a means of enforcement.

Command-Interpreter

System

 Many commands are given to the operating system

by control statements which deal with:

 process creation and management

 I/O handling

 secondary-storage management

 main-memory management

 file-system access

 protection

 networking

Command-Interpreter

System (Cont.)

 The program that reads and interprets control

statements is called variously:

 command-line interpreter

 shell (in UNIX)



 Its function is to get and execute the next command

statement.

Operating System Services

 Program execution – system capability to load a program
into memory and to run it.

 I/O operations – since user programs cannot execute I/O
operations directly, the operating system must provide
some means to perform I/O.

 File-system manipulation – program capability to read,
write, create, and delete files.

 Communications – exchange of information between
processes executing either on the same computer or on
different systems tied together by a network.
Implemented via shared memory or message passing.

 Error detection – ensure correct computing by detecting
errors in the CPU and memory hardware, in I/O devices,
or in user programs.

Additional Operating System

Functions

 Additional functions exist not for helping the user, but

rather for ensuring efficient system operations.

 Resource allocation – allocating resources to multiple

users or multiple jobs running at the same time.

 Accounting – keep track of and record which users use

how much and what kinds of computer resources for

account billing or for accumulating usage statistics.

 Protection – ensuring that all access to system resources

is controlled.

System Calls

 System calls provide the interface between a running
program and the operating system.

 Generally available as assembly-language instructions.

 Languages defined to replace assembly language for
systems programming allow system calls to be made directly
(e.g., C, C++)

 Three general methods are used to pass parameters
between a running program and the operating system.

 Pass parameters in registers.

 Store the parameters in a table in memory, and the table
address is passed as a parameter in a register.

 Push (store) the parameters onto the stack by the program,
and pop off the stack by operating system.

Passing of Parameters As A

Table

Types of System Calls

 Process control

 File management

 Device management

 Information maintenance

 Communications

MS-DOS Execution

UNIX Running Multiple

Programs

Communication Models

System Programs

 System programs provide a convenient environment for
program development and execution. The can be
divided into:

 File manipulation

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

 Application programs

 Most users’ view of the operation system is defined by
system programs, not the actual system calls.

MS-DOS System Structure

 MS-DOS – written to provide the most functionality in

the least space

 not divided into modules

 Although MS-DOS has some structure, its interfaces and

levels of functionality are not well separated

MS-DOS Layer Structure

UNIX System Structure

 UNIX – limited by hardware functionality, the original

UNIX operating system had limited structuring. The

UNIX OS consists of two separable parts.

 Systems programs

 The kernel

 Consists of everything below the system-call interface and
above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level.

UNIX System Structure

(the users)

shells and commands
compilers and interpreters

system libraries

system-call interface to the kernel

signal terminal
handling

character I/O system
terminal drivers

file system
swapping block I/O

System
disk and space tape

drivers

CPU scheduling
page replacement

demand paging
virtual memory

Kernel interface to the future

terminal controllers
terminals

device controllers
disk and tapes

memory controllers
physical memory

Layered Approach

 The operating system is divided into a number of layers

(levels), each built on top of lower layers. The bottom

layer (layer 0), is the hardware; the highest (layer N) is

the user interface.

 With modularity, layers are selected such that each

uses functions (operations) and services of only lower-

level layers.

An Operating System Layer

OS/2 Layer Structure

Microkernel System Structure

 Moves as much from the kernel into “user” space.

 Communication takes place between user modules

using message passing.

 Benefits:

 - easier to extend a microkernel

 - easier to port the operating system to new

architectures

 - more reliable (less code is running in kernel mode)

 - more secure

Windows NT Client-Server

Structure

Virtual Machines

 A virtual machine takes the layered approach to its

logical conclusion. It treats hardware and the

operating system kernel as though they were all

hardware.

 A virtual machine provides an interface identical to

the underlying bare hardware.

 The operating system creates the illusion of multiple

processes, each executing on its own processor with

its own (virtual) memory.

Virtual Machines (Cont.)

 The resources of the physical computer are shared to

create the virtual machines.

 CPU scheduling can create the appearance that users

have their own processor.

 Spooling and a file system can provide virtual card

readers and virtual line printers.

 A normal user time-sharing terminal serves as the virtual

machine operator’s console.

System Models

Advantages/Disadvantages

of Virtual Machines

 The virtual-machine concept provides complete
protection of system resources since each virtual
machine is isolated from all other virtual machines.
This isolation, however, permits no direct sharing of
resources.

 A virtual-machine system is a perfect vehicle for
operating-systems research and development.
System development is done on the virtual machine,
instead of on a physical machine and so does not
disrupt normal system operation.

 The virtual machine concept is difficult to implement
due to the effort required to provide an exact
duplicate to the underlying machine.

Java Virtual Machine

 Compiled Java programs are platform-neutral

bytecodes executed by a Java Virtual Machine

(JVM).

 JVM consists of

 class loader

 class verifier

 runtime interpreter

 Just-In-Time (JIT) compilers increase performance

Java Virtual Machine

System Design Goals

 User goals – operating system should be convenient to

use, easy to learn, reliable, safe, and fast.

 System goals – operating system should be easy to

design, implement, and maintain, as well as flexible,

reliable, error-free, and efficient.

Mechanisms and Policies

 Mechanisms determine how to do something, policies

decide what will be done.

 The separation of policy from mechanism is a very

important principle, it allows maximum flexibility if

policy decisions are to be changed later.

System Implementation

 Traditionally written in assembly language, operating

systems can now be written in higher-level languages.

 Code written in a high-level language:

 can be written faster.

 is more compact.

 is easier to understand and debug.

 An operating system is far easier to port (move to

some other hardware) if it is written in a high-level

language.

System Generation (SYSGEN)

 Operating systems are designed to run on any of a

class of machines; the system must be configured for

each specific computer site.

 SYSGEN program obtains information concerning the

specific configuration of the hardware system.

 Booting – starting a computer by loading the kernel.

 Bootstrap program – code stored in ROM that is able to

locate the kernel, load it into memory, and start its

execution.

Thank you
The content in this Material are from the Textbooks

and Reference books given in the Syllabus

