
POSTGRADUATE DEPARTMENT OF COMPUTER

APPLICATIONS,

GOVERNMENT ARTS COLLEGE(AUTONOMOUS),

COIMBATORE 641018.

DATA STRUCTURES AND

ALGORITHMS

The contents in this E material are from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed

“Fundamentals of Data Structures in C”,

Computer Science Press, 1992.

FACULTY

Dr.R.A.ROSELINE M.Sc.M.Phil.,Ph.D,

Associate Professor and Head,

Postgraduate Department of Computer Applications,

Government Arts College(Autonomous),

Coimbatore 641018.

UNIT 5

B-Trees

Motivation for B-Trees

• Index structures for large datasets cannot be stored in main

memory

• Storing it on disk requires different approach to efficiency

• Assuming that a disk spins at 3600 RPM, one revolution

occurs in 1/60 of a second, or 16.7ms

• Crudely speaking, one disk access takes about the same time

as 200,000 instructions

Motivation (cont.)

• Assume that we use an AVL tree to store about 20 million

records

• We end up with a very deep binary tree with lots of

different disk accesses; log2 20,000,000 is about 24, so this

takes about 0.2 seconds

• We know we can’t improve on the log n lower bound on

search for a binary tree

• But, the solution is to use more branches and thus reduce

the height of the tree!

– As branching increases, depth decreases

Definition of a B-tree

• A B-tree of order m is an m-way tree (i.e., a tree where each

node may have up to m children) in which:

1. the number of keys in each non-leaf node is one less than the number

of its children and these keys partition the keys in the children in the

fashion of a search tree

2. all leaves are on the same level

3. all non-leaf nodes except the root have at least m / 2 children

4. the root is either a leaf node, or it has from two to m children

5. a leaf node contains no more than m – 1 keys

• The number m should always be odd

An example B-Tree

51 6242

6 12

26

55 60 7064 9045

1 2 4 7 8 13 15 18 25

27 29 46 48 53

A B-tree of order 5

containing 26 items

Note that all the leaves are at the same level

• Suppose we start with an empty B-tree and keys arrive in the
following order:1 12 8 2 25 5 14 28 17 7 52 16 48 68
3 26 29 53 55 45

• We want to construct a B-tree of order 5

• The first four items go into the root:

• To put the fifth item in the root would violate condition 5

• Therefore, when 25 arrives, pick the middle key to make a
new root

Constructing a B-tree

1 2 8 12

Constructing a B-tree (contd.)

1 2

8

12 25

6, 14, 28 get added to the leaf nodes:

1 2

8

12 146 25 28

Constructing a B-tree (contd.)

Adding 17 to the right leaf node would over-fill it, so we take the

middle key, promote it (to the root) and split the leaf

8 17

12 14 25 281 2 6

7, 52, 16, 48 get added to the leaf nodes

8 17

12 14 25 281 2 6 16 48 527

Constructing a B-tree (contd.)

Adding 68 causes us to split the right most leaf, promoting 48 to the

root, and adding 3 causes us to split the left most leaf, promoting 3

to the root; 26, 29, 53, 55 then go into the leaves

3 8 17 48

52 53 55 6825 26 28 291 2 6 7 12 14 16

Adding 45 causes a split of 25 26 28 29

and promoting 28 to the root then causes the root to split

Constructing a B-tree (contd.)

17

3 8 28 48

1 2 6 7 12 14 16 52 53 55 6825 26 29 45

Inserting into a B-Tree

• Attempt to insert the new key into a leaf

• If this would result in that leaf becoming too big, split the leaf

into two, promoting the middle key to the leaf’s parent

• If this would result in the parent becoming too big, split the

parent into two, promoting the middle key

• This strategy might have to be repeated all the way to the top

• If necessary, the root is split in two and the middle key is

promoted to a new root, making the tree one level higher

Exercise in Inserting a B-Tree

• Insert the following keys to a 5-way B-tree:

• 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 31, 35, 56

•

Removal from a B-tree

• During insertion, the key always goes into a leaf. For deletion
we wish to remove from a leaf. There are three possible ways
we can do this:

• 1 - If the key is already in a leaf node, and removing it doesn’t
cause that leaf node to have too few keys, then simply remove
the key to be deleted.

• 2 - If the key is not in a leaf then it is guaranteed (by the
nature of a B-tree) that its predecessor or successor will be in
a leaf -- in this case we can delete the key and promote the
predecessor or successor key to the non-leaf deleted key’s
position.

Removal from a B-tree (2)

• If (1) or (2) lead to a leaf node containing less than the

minimum number of keys then we have to look at the siblings

immediately adjacent to the leaf in question:

– 3: if one of them has more than the min. number of keys then we can

promote one of its keys to the parent and take the parent key into our

lacking leaf

– 4: if neither of them has more than the min. number of keys then the

lacking leaf and one of its neighbours can be combined with their

shared parent (the opposite of promoting a key) and the new leaf will

have the correct number of keys; if this step leave the parent with too

few keys then we repeat the process up to the root itself, if required

Type #1: Simple leaf deletion

12 29 52

2 7 9 15 22 56 69 7231 43

Delete 2: Since there are enough

keys in the node, just delete it

Assuming a 5-way

B-Tree, as before...

Note when printed: this slide is animated

Type #2: Simple non-leaf deletion

12 29 52

7 9 15 22 56 69 7231 43

Delete 52

Borrow the predecessor

or (in this case) successor

56

Note when printed: this slide is animated

Type #4: Too few keys in node and

its siblings

12 29 56

7 9 15 22 69 7231 43

Delete 72

Too few keys!

Join back together

Note when printed: this slide is animated

Type #4: Too few keys in node and

its siblings

12 29

7 9 15 22 695631 43

Note when printed: this slide is animated

Type #3: Enough siblings

12 29

7 9 15 22 695631 43

Delete 22

Demote root key and

promote leaf key

Note when printed: this slide is animated

Type #3: Enough siblings

12

297 9 15

31

695643

Note when printed: this slide is animated

Exercise in Removal from a B-Tree

• Given 5-way B-tree created by these data (last exercise):

• 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 31, 35, 56

• Add these further keys: 2, 6,12

• Delete these keys: 4, 5, 7, 3, 14

Analysis of B-Trees

• The maximum number of items in a B-tree of order m and height h:

root m – 1

level 1 m(m – 1)

level 2 m2(m – 1)

. . .

level h mh(m – 1)

• So, the total number of items is

(1 + m + m2 + m3 + … + mh)(m – 1) =

[(mh+1 – 1)/ (m – 1)] (m – 1) = mh+1 – 1

• When m = 5 and h = 2 this gives 53 – 1 = 124

Reasons for using B-Trees

• When searching tables held on disc, the cost of each disc
transfer is high but doesn't depend much on the amount of
data transferred, especially if consecutive items are transferred
– If we use a B-tree of order 101, say, we can transfer each node in one

disc read operation

– A B-tree of order 101 and height 3 can hold 1014 – 1 items
(approximately 100 million) and any item can be accessed with 3 disc
reads (assuming we hold the root in memory)

• If we take m = 3, we get a 2-3 tree, in which non-leaf nodes
have two or three children (i.e., one or two keys)
– B-Trees are always balanced (since the leaves are all at the same

level), so 2-3 trees make a good type of balanced tree

Comparing Trees

• Binary trees

– Can become unbalanced and lose their good time complexity (big O)

– AVL trees are strict binary trees that overcome the balance problem

– Heaps remain balanced but only prioritise (not order) the keys

• Multi-way trees

– B-Trees can be m-way, they can have any (odd) number of children

– One B-Tree, the 2-3 (or 3-way) B-Tree, approximates a permanently

balanced binary tree, exchanging the AVL tree’s balancing operations

for insertion and (more complex) deletion operations

