POSTGRADUATE DEPARTMENT OF COMPUTER APPLICATIONS,
 GOVERNMENT ARTS COLLEGE(AUTONOMOUS), COIMBATORE 641018.

DATA STRUCTURES AND ALGORITHMS

The contents in this \mathbf{E} material are from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed
"Fundamentals of Data Structures in C",
Computer Science Press, 1992.

UNIT 3

FACULTY

Dr.R.A.ROSELINE M.Sc.M.Phil.,Ph.D,

 Associate Professor and Head,Postgraduate Department of Computer Applications,
Government Arts College(Autonomous),
Coimbatore 641018.

Nature Lover's View Of A Tree

Computer Scientist's View

思
 Linear Lists And Trees

- Linear lists are useful for serially ordered data.
- $\left(\mathrm{e}_{0}, \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}-1}\right)$
- Days of week.
- Months in a year.
- Students in this class.
- Trees are useful for hierarchically ordered data.
- Employees of a corporation.
- President, vice presidents, managers, and so on.

Hierarchical Data And Trees 窍

- The element at the top of the hierarchy is the root.
- Elements next in the hierarchy are the children of the root.
- Elements next in the hierarchy are the grandchildren of the root, and so on.
- Elements that have no children are leaves.

Example Tree

- A tree t is a finite nonempty set of elements.
- One of these elements is called the root.
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.

坛 Subtrees

丽
 Leaves

Parent, Grandparent, Siblings, Ancestors, Descendants

Levels

Caution

- Some texts start level numbers at 0 rather than at 1 .
- Root is at level 0 .
- Its children are at level 1.
- The grand children of the root are at level 2.
- And so on.
- We shall number levels with the root at level 1.
height $=$ depth $=$ number of levels

Node Degree $=$ Number Of Children

Tree Degree $=$ Max Node Degree

Binary Tree

- Finite (possibly empty) collection of elements.
- A nonempty binary tree has a root element.
- The remaining elements (if any) are partitioned into two binary trees.
- These are called the left and right subtrees of the binary tree.

Differences Between A Tree \& A Binary Tree

- No node in a binary tree may have a degree more than 2 , whereas there is no limit on the degree of a node in a tree.
- A binary tree may be empty; a tree cannot be empty.

Differences Between A Tree \& A Binary Tree

- The subtrees of a binary tree are ordered; those of a tree are not ordered.

- Are different when viewed as binary trees.
- Are the same when viewed as trees.

Arithmetic Expressions

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}+\mathrm{d})+\mathrm{e}-\mathrm{f} / \mathrm{g} * \mathrm{~h}+3.25$
- Expressions comprise three kinds of entities.
- Operators (+, -, /, *).
- Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d), etc.).
- Delimiters ((,)).

Operator Degree

- Number of operands that the operator requires.
- Binary operator requires two operands.
- $a+b$
- c / d
- e-f
- Unary operator requires one operand.
- + g
- - h

Infix Form

- Normal way to write an expression.
- Binary operators come in between their left and right operands.
- a*b
- $\mathrm{a}+\mathrm{b} * \mathrm{c}$
- $a^{*} \mathrm{~b} / \mathrm{c}$
- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}+\mathrm{d})+\mathrm{e}-\mathrm{f} / \mathrm{g} * \mathrm{~h}+3.25$

Operator Priorities

- How do you figure out the operands of an operator?
- $\mathrm{a}+\mathrm{b}$ * c
- $\mathrm{a} * \mathrm{~b}+\mathrm{c} / \mathrm{d}$
- This is done by assigning operator priorities.
- priority(*) = priority(/) > priority(+) = priority(-)
- When an operand lies between two operators, the operand associates with the operator that has higher priority.

Tie Breaker

- When an operand lies between two operators that have the same priority, the operand associates with the operator on the left.
- $a+b-c$
- $a^{*} b / c / d$

Delimiters

- Subexpression within delimiters is treated as a single operand, independent from the remainder of the expression.
- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}-\mathrm{f})$

Infix Expression Is Hard To Parse

- Need operator priorities, tie breaker, and delimiters.
- This makes computer evaluation more difficult than is necessary.
- Postfix and prefix expression forms do not rely on operator priorities, a tie breaker, or delimiters.
- So it is easier for a computer to evaluate expressions that are in these forms.

Postfix Form

- The postfix form of a variable or constant is the same as its infix form.
- a, b, 3.25
- The relative order of operands is the same in infix and postfix forms.
- Operators come immediately after the postfix form of their operands.
- Infix $=\mathrm{a}+\mathrm{b}$
- Postfix = ab+

Postfix Examples

- $\operatorname{Infix}=\mathrm{a}+\mathrm{b} * \mathrm{c}$
- Postfix $=\mathrm{abc}{ }^{*}+$
- $\operatorname{Infix}=\mathrm{a} * \mathrm{~b}+\mathrm{c}$
- Postfix = ab*c+
- $\operatorname{Infix}=(a+b) *(c-d) /(e+f)$
- Postfix = ab +c d - * e f + /

Unary Operators

- Replace with new symbols.
- + a => a @
- $+\mathrm{a}+\mathrm{b}=>\mathrm{a} @ \mathrm{~b}+$
- - $\mathrm{a}=>\mathrm{a}$?
- $-\mathrm{a}-\mathrm{b}=>\mathrm{a}$? b -

Postfix Evaluation

- Scan postfix expression from left to right pushing operands on to a stack.
- When an operator is encountered, pop as many operands as this operator needs; evaluate the operator; push the result on to the stack.
- This works because, in postfix, operators come immediately after their operands.

Postfix Evaluation

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
- $a b+c d-* e f+/$
stack

Postfix Evaluation

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
- $a b+c d-* e f+/$
- $\mathrm{ab}+\mathrm{cd}-* \mathrm{ef}+/$
- $\mathrm{ab}+\mathrm{cd}-* \mathrm{ef}+/$
- $a b+c d-* e f+/$
- $a b+c d-* e f+/$
- $a b+c d-* e f+/$
- $\mathrm{ab}+\mathrm{cd}-* \mathrm{ef}+$ /
d
c
$(a+b)$
stack

Postfix Evaluation

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
- $a b+c d-* e f+/$
- $a b+c d-* e f+/$
$(\mathrm{c}-\mathrm{d})$
$(a+b)$
stack

Postfix Evaluation

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
- $a b+c d-* e f+/$

Postfix Evaluation

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
- $a b+c d-* e f+/$
- $a b+c d-* e f+/$
- $a b+c d-* e f+/$
- $\mathrm{ab}+\mathrm{cd}-* \mathrm{ef}+/$
- $a b+c d-* e f+/$
- $a b+c d-* e f+/$

$$
\begin{aligned}
& (\mathrm{e}+\mathrm{f}) \\
& (\mathrm{a}+\mathrm{b})^{*}(\mathrm{c}-\mathrm{d})
\end{aligned}
$$

stack

Prefix Form

- The prefix form of a variable or constant is the same as its infix form.
- a, b, 3.25
- The relative order of operands is the same in infix and prefix forms.
- Operators come immediately before the prefix form of their operands.
- Infix $=a+b$
- Postfix = ab+
- Prefix $=+a b$

Binary Tree Form

- $a+b$

- - \mathbf{a}

Binary Tree Form

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$

Merits Of Binary Tree Form

- Left and right operands are easy to visualize.
- Code optimization algorithms work with the binary tree form of an expression.
- Simple recursive evaluation of expression.

Graphs

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- V is the vertex set.
- Vertices are also called nodes and points.
- E is the edge set.
- Each edge connects two different vertices.
- Edges are also called arcs and lines.
- Directed edge has an orientation (u,v).

Graphs

- Undirected edge has no orientation (u,v).
- Undirected graph \Rightarrow no oriented edge.
- Directed graph $=>$ every edge has an orientation.

Undirected Graph

Directed Graph (Digraph)

Applications-Communication Network

- Vertex $=$ city, edge $=$ communication link.

Driving Distance/Time Map

- Vertex = city, edge weight = driving distance/time.

Street Map

- Some streets are one way.

Complete Undirected Graph

Has all possible edges.

Number Of Edges-Undirected Graph

- Each edge is of the form (u,v), u != v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u, v) is the same as edge (v, u), the number of edges in a complete undirected graph is $n(n-1) / 2$.
- Number of edges in an undirected graph is $<=n(n-1) / 2$.

Number Of Edges-Directed Graph

- Each edge is of the form $(\mathrm{u}, \mathrm{v}), \mathrm{u}!=\mathrm{v}$.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u, v) is not the same as edge (v, u), the number of edges in a complete directed graph is $n(n-1)$.
- Number of edges in a directed graph is <= $\mathrm{n}(\mathrm{n}-1)$.

Vertex Degree

Number of edges incident to vertex. degree $(2)=2, \operatorname{degree}(5)=3, \operatorname{degree}(3)=1$

Sum Of Vertex Degrees

Sum of degrees $=2 \mathrm{e}(\mathrm{e}$ is number of edges $)$

In-Degree Of A Vertex

in-degree is number of incoming edges indegree $(2)=1$, indegree $(8)=0$

Out-Degree Of A Vertex

out-degree is number of outbound edges
outdegree $(2)=1$, outdegree $(8)=2$

Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex
sum of in-degrees $=$ sum of out-degrees $=e$, where e is the number of edges in the digraph

Graph Operations And Representation

Sample Graph Problems

- Path problems.
- Connectedness problems.
- Spanning tree problems.

Path Finding

Path between 1 and 8 .

Path length is 20 .

Another Path Between 1 and 8

Path length is 28 .

Example Of No Path

No path between 2 and 9 .

Connected Graph

- Undirected graph.
- There is a path between every pair of vertices.

Example Of Not Connected

Connected Graph Example

Connected Components

Connected Component

- A maximal subgraph that is connected.
- Cannot add vertices and edges from original graph and retain connectedness.
- A connected graph has exactly 1 component.

Not A Component

Communication Network

Each edge is a link that can be constructed (i.e., a feasible link).

Communication Network Problems

- Is the network connected?
- Can we communicate between every pair of cities?
- Find the components.
- Want to construct smallest number of feasible links so that resulting network is connected.

Cycles And Connectedness

Removal of an edge that is on a cycle does not affect connectedness.

Cycles And Connectedness

Connected subgraph with all vertices and minimum number of edges has no cycles.

Tree

- Connected graph that has no cycles.
- n vertex connected graph with $\mathrm{n}-1$ edges.

Spanning Tree

- Subgraph that includes all vertices of the original graph.
- Subgraph is a tree.
- If original graph has n vertices, the spanning tree has n vertices and $\mathrm{n}-1$ edges.

Minimum Cost Spanning Tree

- Tree cost is sum of edge weights/costs.

A Spanning Tree

Spanning tree cost $=51$.

Minimum Cost Spanning Tree

Spanning tree cost $=41$.

A Wireless Broadcast Tree

Source $=1$, weights $=$ needed power.
Cost $=4+8+5+6+7+8+3=41$.

Graph Representation

- Adjacency Matrix
- Adjacency Lists
- Linked Adjacency Lists
- Array Adjacency Lists

Adjacency Matrix

- $0 / 1 \mathrm{n} x \mathrm{n}$ matrix, where $\mathrm{n}=\#$ of vertices
- $A(i, j)=1$ iff (i, j) is an edge

Adjacency Matrix Properties

-Diagonal entries are zero.
-Adjacency matrix of an undirected graph is symmetric.

Adjacency Matrix (Digraph)

-Diagonal entries are zero.
-Adjacency matrix of a digraph need not be symmetric.

Adjacency Matrix

- n^{2} bits of space
- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
- (n-1)n/2 bits
- $\mathrm{O}(\mathrm{n})$ time to find vertex degree and/or vertices adjacent to a given vertex.

Adjacency Lists

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.
- An array of n adjacency lists.
aList[1] $=(2,4)$

a 1 ist $[2]=(1,5)$
aList[3] = (5)
aList $[4]=(5,1)$
a List551 $=(2,4,3)$

Linked Adjacency Lists

- Each adjacency list is a chain.

Array Length $=n$
\# of chain nodes = 2e (undirected graph)
\# of chain nodes $=$ e (digraph $)$

Array Adjacency Lists

- Each adjacency list is an array list.

Array Length $=n$
\# of list elements = 2 e (undirected graph)
\# of list elements = e (digraph)

Weighted Graphs

- Cost adjacency matrix.
- $\mathrm{C}(\mathrm{i}, \mathrm{j})=$ cost of edge (i, j)
- Adjacency lists => each list element is a pair (adjacent vertex, edge weight)

Graph Search Methods

- A vertex u is reachable from vertex v iff there is a path from v to u .

Graph Search Methods

- A search method starts at a given vertex v and visits/labels/marks every vertex that is reachable from v .

Graph Search Methods

- Many graph problems solved using a search method.
- Path from one vertex to another.
- Is the graph connected?
- Find a spanning tree.
- Etc.
- Commonly used search methods:
- Depth-first search.
- Breadth-first search.

Depth-First Search

dfs(v)
\{
Label vertex vas reached.
for (each unreached vertex u adjacenct from v) dfs(u);
\}

Depth-First Search Example

Start search at vertex 1 . Label vertex 1 and do a depth first search from either 2 or 4 .
Suppose that vertex 2 is selected.

Label vertex 2 and do a depth first search from either 3,5 , or 6 .

Suppose that vertex 5 is selected.

Depth-First Search Example

Label vertex 5 and do a depth first search from either 3,7 , or 9 .
Suppose that vertex is selected.

Depth-First Search Example

Label vertex 9 and do a depth first search from either 6 or 8 .
Suppose that vertex 8 is selected.

Depth-First Search Example

Label vertex 8 and return to vertex 9 .
From vertex 9 do a DFS(6).

Depth-First Search Example

Label vertex 6 and do a depth first search from either 4 or 7 .

Suppose that vertex 4 is selected.

Label vertex 4 and return to 6 .
From vertex 6 do a dfs(7).

Depth-First Search Example

Label vertex 7 and return to 6 . Return to 9.

Depth-First Search Example

Return to 5 .

Depth-First Search Example

Do a

Depth-First Search Example

Label 3 and return to 5 .
Return to 2.

Return to 1.

Depth-First Search Example

Return to invoking method.

Depth-First Search Property

- All vertices reachable from the start vertex (including the start vertex) are visited.

Path From Vertex v To Vertex u

- Start a depth-first search at vertex v.
- Terminate when vertex u is visited or when dfs ends (whichever occurs first).
- Time
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ when adjacency matrix used
- $\mathrm{O}(\mathrm{n}+\mathrm{e}$) when adjacency lists used (e is number of edges)

Is The Graph Connected?

- Start a depth-first search at any vertex of the graph.
- Graph is connected iff all n vertices get visited.
- Time
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ when adjacency matrix used
- $\mathrm{O}(\mathrm{n}+\mathrm{e}$) when adjacency lists used (e is number of edges)

Connected Components

- Start a depth-first search at any as yet unvisited vertex of the graph.
- Newly visited vertices (plus edges between them) define a component.
- Repeat until all vertices are visited.

Connected Components

Time Complexity

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ when adjacency matrix used
- $\mathrm{O}(\mathrm{n}+\mathrm{e})$ when adjacency lists used (e is number of edges)

Spanning Tree

Depth-first search from vertex 1.
Depth-first spanning tree.

Spanning Tree

- Start a depth-first search at any vertex of the graph.
- If graph is connected, the n-1 edges used to get to unvisited vertices define a spanning tree (depth-first spanning tree).
- Time
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ when adjacency matrix used
- $\mathrm{O}(\mathrm{n}+\mathrm{e}$) when adjacency lists used (e is number of edges)

Breadth-First Search

- Visit start vertex and put into a FIFO queue.
- Repeatedly remove a vertex from the queue, visit its unvisited adjacent vertices, put newly visited vertices into the queue.

Breadth-First Search Example

Start search at vertex 1.

Breadth-First Search Example

FIFO Queue

Visit/mark/label start vertex and put in a FIFO queue.

Breadth-First Search Example

Remove 1 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 1 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 2 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 2 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 4 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 4 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 5 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 5 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 3 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 3 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 6 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 6 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Remove 9 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 9 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 7 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 7 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 8 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Queue is empty. Search terminates.

Time Complexity

- Each visited vertex is put on (and so removed from) the queue exactly once.
- When a vertex is removed from the queue, we examine its adjacent vertices.
- $\mathrm{O}(\mathrm{n})$ if adjacency matrix used
- O(vertex degree) if adjacency lists used
- Total time
- $\mathrm{O}(\mathrm{mn})$, where m is number of vertices in the component that is searched (adjacency matrix)

Time Complexity

- $\mathrm{O}(\mathrm{n}+$ sum of component vertex degrees) (adj. lists)
$=\mathrm{O}(\mathrm{n}+$ number of edges in component $)$

Breadth-First Search Properties

- Same complexity as dfs.
- Same properties with respect to path finding, connected components, and spanning trees.
- Edges used to reach unlabeled vertices define a depth-first spanning tree when the graph is connected.
- There are problems for which bfs is better than dfs and vice versa.

Disjoint Sets

- Given a set $\{1,2, \ldots, n\}$ of n elements.
- Initially each element is in a different set.
- $\{1\},\{2\}, \ldots,\{n\}$
- An intermixed sequence of union and find operations is performed.
- A union operation combines two sets into one.
- Each of the n elements is in exactly one set at any time.
- A find operation identifies the set that contains a particular element.

Using Arrays And Chains

- Best time complexity using arrays and chains is $\mathrm{O}(\mathrm{n}+\mathrm{u} \log \mathrm{u}+\mathrm{f})$, where u and f are, respectively, the number of union and find operations that are done.
- Using a tree (not a binary tree) to represent a set, the time complexity becomes almost $\mathrm{O}(\mathrm{n}+\mathrm{f})$ (assuming at least $\mathrm{n} / 2$ union operations).

A Set As A Tree

- $\mathrm{S}=\{2,4,5,9,11,13,30\}$
- Some possible tree representations:

Result Of A Find Operation

- find(i) is to identify the set that contains element i.
- In most applications of the union-find problem, the user does not provide set identifiers.
- The requirement is that find(i) and find(j) return the same value iff elements i and j are in the same set.

find(i) will return the element that is in the tree root.

Strategy For find(i)

- Start at the node that represents element i and climb up the tree until the root is reached.
- Return the element in the root.
- To climb the tree, each node must have a parent pointer.

Trees With Parent Pointers

Possible Node Structure

- Use nodes that have two fields: element and parent.
- Use an array table[] such that table[i] is a pointer to the node whose element is i.
- To do a find(i) operation, start at the node given by table[i] and follow parent fields until a node whose parent field is null is reached.
- Return element in this root node.

Example

(Only some table entries are shown.)

Better Representation

- Use an integer array parent[] such that parent[i] is the element that is the parent of element i.

Union Operation

- union(i,j)
- i and j are the roots of two different trees, $\mathrm{i}!=\mathrm{j}$.
- To unite the trees, make one tree a subtree of the other.
- parent[j] = i

Union Example

- union $(7,13)$

The Union Function

void simpleUnion(int i , int j)
$\{$ parent $[i]=j ;\}$

Time Complexity Of simpleUnion?

- $\mathrm{O}(1)$

The Find Function

int simpleFind(int i)
\{
while (parent[i] >=0)
$\mathrm{i}=$ parent[i]; // move up the tree
return i;

Time Complexity of simpleFind()

- Tree height may equal number of elements in tree.
- union(2,1), union(3,2), union(4,3), union(5,4)...

So complexity is $\mathrm{O}(\mathrm{u})$.

u Unions and f Find Operations

- $\mathrm{O}(\mathrm{u}+\mathrm{uf})=\mathrm{O}(\mathrm{uf})$
- Time to initialize parent[i] $=0$ for all i is O(n).
- Total time is $\mathrm{O}(\mathrm{n}+\mathrm{uf})$.
- Worse than using a chain!
- Back to the drawing board.

Smart Union Strategies

- union $(7,13)$
- Which tree should become a subtree of the other?

Height Rule

- Make tree with smaller height a subtree of the other tree.
- Break ties arbitrarily.

Weight Rule

- Make tree with fewer number of elements a subtree of the other tree.
- Break ties arbitrarily.

1) union $(7,13)$

Implementation

- Root of each tree must record either its height or the number of elements in the tree.
- When a union is done using the height rule, the height increases only when two trees of equal height are united.
- When the weight rule is used, the weight of the new tree is the sum of the weights of the trees that are united.

Height Of A Tree

- Suppose we start with single element trees and perform unions using either the height or the weight rule.
- The height of a tree with p elements is at most floor $\left(\log _{2} \mathrm{p}\right)+1$.
- Proof is by induction on p . See text.

Sprucing Up The Find Method

$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$, and g are subtrees

- find(1)
- Do additional work to make future finds easier.

Path Compaction

- Make all nodes on find path point to tree root.
- find(1)

Path Splitting

- Nodes on find path point to former grandparent.
- find(1)

Makes only one pass up the tree.

Path Halving

- Parent pointer in every other node on find path is changed to former grandparent.
- find(1)

Time Complexity

- Ackermann's function.
- $A(i, j)=2^{j}, i=1$ and $j>=1$
- $A(i, j)=A(i-1,2), i>=2$ and $j=1$
- $A(i, j)=A(i-1, A(i, j-1)), i, j>=2$
- Inverse of Ackermann's function.
- $\alpha(\mathrm{p}, \mathrm{q})=\min \left\{\mathrm{z}>=1 \mid \mathrm{A}(\mathrm{z}, \mathrm{p} / \mathrm{q})>\log _{2} \mathrm{q}\right\}, \mathrm{p}>=\mathrm{q}>=1$

Time Complexity

- Ackermann's function grows very rapidly as i and j are increased.

$$
\text { - } \mathrm{A}(2,4)=2^{65,536}
$$

- The inverse function grows very slowly.
- $\alpha(\mathrm{p}, \mathrm{q})<5$ until $\mathrm{q}=2^{\mathrm{A}(4,1)}$
- $\mathrm{A}(4,1)=\mathrm{A}(2,16) \ggg>\mathrm{A}(2,4)$
- In the analysis of the union-find problem, q is the number, n, of elements; $p=n+f$; and $u>=n / 2$.
- For all practical purposes, $\alpha(\mathrm{p}, \mathrm{q})<5$.

Time Complexity

Lemma 5.6 [Tarjan and Van Leeuwen]
Let $T(f, u)$ be the maximum time required to process any intermixed sequence of f finds and u unions. Assume that $u>=n / 2$.
$\mathrm{k}_{1} *\left(\mathrm{n}+\mathrm{f}^{*} \alpha(\mathrm{f}+\mathrm{n}, \mathrm{n})\right)<=\mathrm{T}(\mathrm{f}, \mathrm{u})<=\mathrm{k}_{2}{ }^{*}(\mathrm{n}+\mathrm{f} * \alpha(\mathrm{f}+\mathrm{n}, \mathrm{n}))$
where k_{1} and k_{2} are constants.

These bounds apply when we start with singleton sets and use either the weight or height rule for unions and any one of the path compression methods for a find.

