
POSTGRADUATE DEPARTMENT OF COMPUTER

APPLICATIONS,

GOVERNMENT ARTS COLLEGE(AUTONOMOUS),

COIMBATORE 641018.

DATA STRUCTURES AND

ALGORITHMS

The contents in this E material are from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed

“Fundamentals of Data Structures in C”,

Computer Science Press, 1992.

FACULTY

Dr.R.A.ROSELINE M.Sc.M.Phil.,Ph.D,
Associate Professor and Head,

Postgraduate Department of Computer Applications,

Government Arts College(Autonomous),

Coimbatore 641018.

UNIT 3

Trees

Nature Lover’s View Of A Tree

root

branches

leaves

Computer Scientist’s View

branches

leavesroot

nodes

Linear Lists And Trees

• Linear lists are useful for serially ordered data.

 (e0, e1, e2, …, en-1)

 Days of week.

 Months in a year.

 Students in this class.

• Trees are useful for hierarchically ordered data.

 Employees of a corporation.

• President, vice presidents, managers, and so on.

Hierarchical Data And Trees

• The element at the top of the hierarchy is the

root.

• Elements next in the hierarchy are the children

of the root.

• Elements next in the hierarchy are the

grandchildren of the root, and so on.

• Elements that have no children are leaves.

great grand child of root

grand children of root

children of root

Example Tree

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

root

Definition

• A tree t is a finite nonempty set of elements.

• One of these elements is called the root.

• The remaining elements, if any, are

partitioned into trees, which are called the

subtrees of t.

Subtrees

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

root

Leaves

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

Parent, Grandparent, Siblings, Ancestors, Descendants

President

VP1 VP2 VP3

Manager2 Manager Manager

Worker Bee

Manager1

Level 4

Level 3

Level 2

Levels

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

Level 1

Caution

• Some texts start level numbers at 0 rather than

at 1.

• Root is at level 0.

• Its children are at level 1.

• The grand children of the root are at level 2.

• And so on.

• We shall number levels with the root at level 1.

height = depth = number of levels

Level 4

Level 3

Level 2

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

Level 1

Node Degree = Number Of Children
President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

3

2 1 1

0 0 1 0

0

Tree Degree = Max Node Degree

Degree of tree = 3.

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

3

2 1 1

0 0 1 0

0

Binary Tree

• Finite (possibly empty) collection of elements.

• A nonempty binary tree has a root element.

• The remaining elements (if any) are partitioned

into two binary trees.

• These are called the left and right subtrees of the

binary tree.

Differences Between A Tree & A Binary Tree

• No node in a binary tree may have a degree

more than 2, whereas there is no limit on

the degree of a node in a tree.

• A binary tree may be empty; a tree cannot

be empty.

Differences Between A Tree & A Binary Tree

• The subtrees of a binary tree are ordered;

those of a tree are not ordered.

a

b

a

b

• Are different when viewed as binary trees.

• Are the same when viewed as trees.

Arithmetic Expressions

• (a + b) * (c + d) + e – f/g*h + 3.25

• Expressions comprise three kinds of entities.

 Operators (+, -, /, *).

 Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d),

etc.).

 Delimiters ((,)).

Operator Degree

• Number of operands that the operator requires.

• Binary operator requires two operands.

 a + b

 c / d

 e - f

• Unary operator requires one operand.

 + g

 - h

Infix Form

• Normal way to write an expression.

• Binary operators come in between their left and

right operands.

 a * b

 a + b * c

 a * b / c

 (a + b) * (c + d) + e – f/g*h + 3.25

Operator Priorities

• How do you figure out the operands of an
operator?

 a + b * c

 a * b + c / d

• This is done by assigning operator priorities.

 priority(*) = priority(/) > priority(+) = priority(-)

• When an operand lies between two operators,
the operand associates with the operator that
has higher priority.

Tie Breaker

• When an operand lies between two operators

that have the same priority, the operand

associates with the operator on the left.

 a + b - c

 a * b / c / d

Delimiters

• Subexpression within delimiters is treated

as a single operand, independent from the

remainder of the expression.

 (a + b) * (c – d) / (e – f)

Infix Expression Is Hard To Parse

• Need operator priorities, tie breaker, and
delimiters.

• This makes computer evaluation more
difficult than is necessary.

• Postfix and prefix expression forms do not
rely on operator priorities, a tie breaker, or
delimiters.

• So it is easier for a computer to evaluate
expressions that are in these forms.

Postfix Form

• The postfix form of a variable or constant is

the same as its infix form.

 a, b, 3.25

• The relative order of operands is the same

in infix and postfix forms.

• Operators come immediately after the

postfix form of their operands.

 Infix = a + b

 Postfix = ab+

Postfix Examples

• Infix = a + b * c

 Postfix = a b c * +

• Infix = a * b + c

 Postfix = a b * c +

• Infix = (a + b) * (c – d) / (e + f)

 Postfix = a b + c d - * e f + /

Unary Operators

• Replace with new symbols.

 + a => a @

 + a + b => a @ b +

 - a => a ?

 - a-b => a ? b -

Postfix Evaluation

• Scan postfix expression from left to right
pushing operands on to a stack.

• When an operator is encountered, pop as
many operands as this operator needs;
evaluate the operator; push the result on to
the stack.

• This works because, in postfix, operators
come immediately after their operands.

Postfix Evaluation

• (a + b) * (c – d) / (e + f)

• a b + c d - * e f + /

• a b + c d - * e f + /

stack

a

• a b + c d - * e f + /

b
• a b + c d - * e f + /

Postfix Evaluation

• (a + b) * (c – d) / (e + f)

• a b + c d - * e f + /

• a b + c d - * e f + /

stack

(a + b)

• a b + c d - * e f + /

• a b + c d - * e f + /

• a b + c d - * e f + /
c

• a b + c d - * e f + /

d

• a b + c d - * e f + /

Postfix Evaluation

• (a + b) * (c – d) / (e + f)

• a b + c d - * e f + /

stack

(a + b)

• a b + c d - * e f + /

(c – d)

Postfix Evaluation

• (a + b) * (c – d) / (e + f)

• a b + c d - * e f + /

stack

(a + b)*(c – d)

• a b + c d - * e f + /

e

• a b + c d - * e f + /

• a b + c d - * e f + / f

• a b + c d - * e f + /

Postfix Evaluation

• (a + b) * (c – d) / (e + f)

• a b + c d - * e f + /

stack

(a + b)*(c – d)

• a b + c d - * e f + /

(e + f)

• a b + c d - * e f + /

• a b + c d - * e f + /

• a b + c d - * e f + /
• a b + c d - * e f + /

Prefix Form

• The prefix form of a variable or constant is
the same as its infix form.

 a, b, 3.25

• The relative order of operands is the same
in infix and prefix forms.

• Operators come immediately before the
prefix form of their operands.

 Infix = a + b

 Postfix = ab+

 Prefix = +ab

Binary Tree Form

• a + b
+

a b

• - a -

a

Binary Tree Form

• (a + b) * (c – d) / (e + f)

/

+

a b

-

c d

+

e f

*

/

Merits Of Binary Tree Form

• Left and right operands are easy to visualize.

• Code optimization algorithms work with the

binary tree form of an expression.

• Simple recursive evaluation of expression.

+

a b

-

c d

+

e f

*

/

Graphs

• G = (V,E)

• V is the vertex set.

• Vertices are also called nodes and points.

• E is the edge set.

• Each edge connects two different vertices.

• Edges are also called arcs and lines.

• Directed edge has an orientation (u,v).

u v

Graphs

• Undirected edge has no orientation (u,v).
u v

• Undirected graph => no oriented edge.

• Directed graph => every edge has an

orientation.

Undirected Graph

2
3

8
1

0

1

4
5 9 11

6
7

Directed Graph (Digraph)

2
3

8
1

0

1

4
5 9 11

6
7

Applications—Communication Network

• Vertex = city, edge = communication link.

2
3

8
1

0

1

4
5 9 11

6
7

Driving Distance/Time Map

• Vertex = city, edge weight = driving

distance/time.

2
3

8
1

0

1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

Street Map

• Some streets are one way.

2
3

8
1

0

1

4
5 9 11

6
7

Complete Undirected Graph

Has all possible edges.

n = 1 n = 2 n = 3 n = 4

Number Of Edges—Undirected Graph

• Each edge is of the form (u,v), u != v.

• Number of such pairs in an n vertex graph is

n(n-1).

• Since edge (u,v) is the same as edge (v,u),

the number of edges in a complete

undirected graph is n(n-1)/2.

• Number of edges in an undirected graph is

<= n(n-1)/2.

Number Of Edges—Directed Graph

• Each edge is of the form (u,v), u != v.

• Number of such pairs in an n vertex graph is

n(n-1).

• Since edge (u,v) is not the same as edge

(v,u), the number of edges in a complete

directed graph is n(n-1).

• Number of edges in a directed graph is <=

n(n-1).

Vertex Degree

Number of edges incident to vertex.

degree(2) = 2, degree(5) = 3, degree(3) = 1

2
3

8
1

0

1

4
5 9 11

6
7

Sum Of Vertex Degrees

Sum of degrees = 2e (e is number of edges)

8
1

0
9 11

In-Degree Of A Vertex

in-degree is number of incoming edges

indegree(2) = 1, indegree(8) = 0

2
3

8
1

0

1

4
5 9 11

6
7

Out-Degree Of A Vertex

out-degree is number of outbound edges

outdegree(2) = 1, outdegree(8) = 2

2
3

8
1

0

1

4
5 9 11

6
7

Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of

some vertex and 1 to the out-degree of some

other vertex

sum of in-degrees = sum of out-degrees = e,

where e is the number of edges in the

digraph

Graph Operations And

Representation

Sample Graph Problems

• Path problems.

• Connectedness problems.

• Spanning tree problems.

Path Finding

Path between 1 and 8.

2
3

8
1

0

1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

Path length is 20.

Another Path Between 1 and 8

2
3

8
1

0

1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

Path length is 28.

Example Of No Path

No path between 2 and 9.

2
3

8
1

0

1

4
5 9 11

6
7

Connected Graph

• Undirected graph.

• There is a path between every pair of

vertices.

Example Of Not Connected

2
3

8
1

0

1

4
5 9 11

6
7

Connected Graph Example

2
3

8
1

0

1

4
5 9 11

6
7

Connected Components

2
3

8
1

0

1

4
5 9 11

6
7

Connected Component

• A maximal subgraph that is connected.

 Cannot add vertices and edges from original

graph and retain connectedness.

• A connected graph has exactly 1

component.

Not A Component

2
3

8
1

0

1

4
5 9 11

6
7

Communication Network

Each edge is a link that can be constructed (i.e., a
feasible link).

2
3

8
1

0

1

4
5 9 11

6
7

Communication Network Problems

• Is the network connected?

 Can we communicate between every pair of

cities?

• Find the components.

• Want to construct smallest number of

feasible links so that resulting network is

connected.

Cycles And Connectedness

2
3

8
1

0

1

4
5 9 11

6
7

Removal of an edge that is on a cycle does not affect
connectedness.

Cycles And Connectedness

2
3

8
1

0

1

4
5 9 11

6
7

Connected subgraph with all vertices and minimum
number of edges has no cycles.

Tree

• Connected graph that has no cycles.

• n vertex connected graph with n-1 edges.

Spanning Tree

• Subgraph that includes all vertices of the

original graph.

• Subgraph is a tree.

 If original graph has n vertices, the spanning

tree has n vertices and n-1 edges.

Minimum Cost Spanning Tree

• Tree cost is sum of edge weights/costs.

2
3

8
1

0

1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

8
2

A Spanning Tree

Spanning tree cost = 51.

2
3

8
1

0

1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

8
2

Minimum Cost Spanning Tree

Spanning tree cost = 41.

2
3

8
1

0

1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

8
2

A Wireless Broadcast Tree

Source = 1, weights = needed power.

Cost = 4 + 8 + 5 + 6 + 7 + 8 + 3 = 41.

2
3

8
1

0

1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

8
2

Graph Representation

• Adjacency Matrix

• Adjacency Lists

 Linked Adjacency Lists

 Array Adjacency Lists

Adjacency Matrix

• 0/1 n x n matrix, where n = # of vertices

• A(i,j) = 1 iff (i,j) is an edge

2
3

1

4
5

1 2 3 4 5

1

2

3

4

5

0 1 0 1 0

1 0 0 0 1

0 0 0 0 1

1 0 0 0 1

0 1 1 1 0

Adjacency Matrix Properties

2
3

1

4
5

1 2 3 4 5

1

2

3

4

5

0 1 0 1 0

1 0 0 0 1

0 0 0 0 1

1 0 0 0 1

0 1 1 1 0

•Diagonal entries are zero.

•Adjacency matrix of an undirected graph is

symmetric.

A(i,j) = A(j,i) for all i and j.

Adjacency Matrix (Digraph)

2
3

1

4
5

1 2 3 4 5

1

2

3

4

5

0 0 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 0 1

0 1 1 0 0

•Diagonal entries are zero.

•Adjacency matrix of a digraph need not be

symmetric.

Adjacency Matrix

• n2 bits of space

• For an undirected graph, may store only

lower or upper triangle (exclude diagonal).

 (n-1)n/2 bits

• O(n) time to find vertex degree and/or

vertices adjacent to a given vertex.

Adjacency Lists

• Adjacency list for vertex i is a linear list of
vertices adjacent from vertex i.

• An array of n adjacency lists.

2
3

1

4
5

aList[1] = (2,4)

aList[2] = (1,5)

aList[3] = (5)

aList[4] = (5,1)

aList[5] = (2,4,3)

Linked Adjacency Lists

• Each adjacency list is a chain.

2
3

1

4
5

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5
5 1
2 4 3

Array Length = n

of chain nodes = 2e (undirected graph)

of chain nodes = e (digraph)

Array Adjacency Lists

• Each adjacency list is an array list.

2
3

1

4
5

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5
5 1
2 4 3

Array Length = n

of list elements = 2e (undirected graph)

of list elements = e (digraph)

Weighted Graphs

• Cost adjacency matrix.

 C(i,j) = cost of edge (i,j)

• Adjacency lists => each list element is a

pair (adjacent vertex, edge weight)

Graph Search Methods

• A vertex u is reachable from vertex v iff there is a

path from v to u.

2
3

8

10

1

4
5

9

11
6

7

Graph Search Methods

• A search method starts at a given vertex v and

visits/labels/marks every vertex that is reachable

from v.

2
3

8

10

1

4
5

9

11
6

7

Graph Search Methods

• Many graph problems solved using a search

method.

 Path from one vertex to another.

 Is the graph connected?

 Find a spanning tree.

 Etc.

• Commonly used search methods:

 Depth-first search.

 Breadth-first search.

Depth-First Search

dfs(v)

{

Label vertex v as reached.

for (each unreached vertex u

adjacenct from v)

dfs(u);

}

Depth-First Search Example

Start search at vertex 1.

2
3

8

10

1

4
5

9

11
6

7

Label vertex 1 and do a depth first search

from either 2 or 4.

1

2

Suppose that vertex 2 is selected.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

Label vertex 2 and do a depth first search

from either 3, 5, or 6.

1

22

5

Suppose that vertex 5 is selected.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

Label vertex 5 and do a depth first search

from either 3, 7, or 9.

1

22

55
9

Suppose that vertex 9 is selected.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

Label vertex 9 and do a depth first search

from either 6 or 8.

1

22

55
99

8

Suppose that vertex 8 is selected.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

Label vertex 8 and return to vertex 9.

1

22

55
99

88

From vertex 9 do a DFS(6).

6

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

Label vertex 6 and do a depth first search from either
4 or 7.

66

4

Suppose that vertex 4 is selected.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

Label vertex 4 and return to 6.

66

44

From vertex 6 do a dfs(7).

7

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

Label vertex 7 and return to 6.

66

44

77

Return to 9.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

Return to 5.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

Do a dfs(3).

3

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

Label 3 and return to 5.

33

Return to 2.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

33

Return to 1.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

33

Return to invoking method.

Depth-First Search Property

• All vertices reachable from the start vertex

(including the start vertex) are visited.

Path From Vertex v To Vertex u

• Start a depth-first search at vertex v.

• Terminate when vertex u is visited or when

dfs ends (whichever occurs first).

• Time

 O(n2) when adjacency matrix used

 O(n+e) when adjacency lists used (e is number

of edges)

Is The Graph Connected?

• Start a depth-first search at any vertex of the

graph.

• Graph is connected iff all n vertices get

visited.

• Time

 O(n2) when adjacency matrix used

 O(n+e) when adjacency lists used (e is number

of edges)

Connected Components

• Start a depth-first search at any as yet

unvisited vertex of the graph.

• Newly visited vertices (plus edges between

them) define a component.

• Repeat until all vertices are visited.

Connected Components

2
3

8

10

1

4
5

9

11
6

7

Time Complexity

O(n2) when adjacency matrix used

O(n+e) when adjacency lists used (e

is number of edges)

Spanning Tree

Depth-first search from vertex 1.

Depth-first spanning tree.

2
3

8
1

4
5

9

6
7

1

22

55
99

88

66

44

77

33

Spanning Tree

• Start a depth-first search at any vertex of the
graph.

• If graph is connected, the n-1 edges used to
get to unvisited vertices define a spanning
tree (depth-first spanning tree).

• Time

 O(n2) when adjacency matrix used

 O(n+e) when adjacency lists used (e is number
of edges)

Breadth-First Search

• Visit start vertex and put into a FIFO queue.

• Repeatedly remove a vertex from the queue, visit

its unvisited adjacent vertices, put newly visited

vertices into the queue.

Breadth-First Search Example

Start search at vertex 1.

2
3

8

10

1

4
5

9

11
6

7

Breadth-First Search Example

Visit/mark/label start vertex and put in a FIFO queue.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue

1

Breadth-First Search Example

Remove 1 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue

1

Breadth-First Search Example

Remove 1 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

2

4

4

Breadth-First Search Example

Remove 2 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

2

4

4

Breadth-First Search Example

Remove 2 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4

4

5

5
3

3

6

6

Breadth-First Search Example

Remove 4 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4

4

5

5
3

3

6

6

Breadth-First Search Example

Remove 4 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

5
3

3

6

6

Breadth-First Search Example

Remove 5 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

5
3

3

6

6

Breadth-First Search Example

Remove 5 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

3

6

6

9

9

7

7

Breadth-First Search Example

Remove 3 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

3

6

6

9

9

7

7

Breadth-First Search Example

Remove 3 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

6

9

9

7

7

Breadth-First Search Example

Remove 6 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

6

9

9

7

7

Breadth-First Search Example

Remove 6 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

9

7

7

Breadth-First Search Example

Remove 9 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

9

7

7

Breadth-First Search Example

Remove 9 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

78 8

Breadth-First Search Example

Remove 7 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

78 8

Breadth-First Search Example

Remove 7 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

8 8

Breadth-First Search Example

Remove 8 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

8 8

Breadth-First Search Example

Queue is empty. Search terminates.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

8

Time Complexity

• Each visited vertex is put on (and so
removed from) the queue exactly once.

• When a vertex is removed from the queue,
we examine its adjacent vertices.

 O(n) if adjacency matrix used

 O(vertex degree) if adjacency lists used

• Total time

 O(mn), where m is number of vertices in the
component that is searched (adjacency matrix)

Time Complexity

 O(n + sum of component vertex degrees) (adj.

lists)

= O(n + number of edges in component)

Breadth-First Search Properties

• Same complexity as dfs.

• Same properties with respect to path finding,

connected components, and spanning trees.

• Edges used to reach unlabeled vertices define a

depth-first spanning tree when the graph is

connected.

• There are problems for which bfs is better than dfs

and vice versa.

Disjoint Sets

• Given a set {1, 2, …, n} of n elements.

• Initially each element is in a different set.

 {1}, {2}, …, {n}

• An intermixed sequence of union and find
operations is performed.

• A union operation combines two sets into one.

 Each of the n elements is in exactly one set at any
time.

• A find operation identifies the set that contains
a particular element.

Using Arrays And Chains

• Best time complexity using arrays and chains is

O(n + u log u + f), where u and f are,

respectively, the number of union and find

operations that are done.

• Using a tree (not a binary tree) to represent a

set, the time complexity becomes almost

O(n + f) (assuming at least n/2 union

operations).

A Set As A Tree

• S = {2, 4, 5, 9, 11, 13, 30}

• Some possible tree representations:

4

2 9 11 30 5 13

4

2

9
30

5

13

11

11

4

2

9

30

5

13

Result Of A Find Operation

• find(i) is to identify the set that contains element i.

• In most applications of the union-find problem, the

user does not provide set identifiers.

• The requirement is that find(i) and find(j) return

the same value iff elements i and j are in the same

set.

4

2 9 11 30 5 13

find(i) will return the element that is in the tree root.

Strategy For find(i)

• Start at the node that represents element i and
climb up the tree until the root is reached.

• Return the element in the root.

• To climb the tree, each node must have a parent
pointer.

4

2

9
30

5

13

11

Trees With Parent Pointers

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

Possible Node Structure

• Use nodes that have two fields: element and

parent.

 Use an array table[] such that table[i] is a

pointer to the node whose element is i.

 To do a find(i) operation, start at the node given

by table[i] and follow parent fields until a node

whose parent field is null is reached.

 Return element in this root node.

Example

4

2

9
30

5

13

11

1

table[]
0 5 10 15

(Only some table entries are shown.)

Better Representation

• Use an integer array parent[] such that

parent[i] is the element that is the parent of

element i.

4

2

9
30

5

13

11

1

parent[]
0 5 10 15

2 9 13 13 4 5 0

Union Operation

• union(i,j)

 i and j are the roots of two different trees, i != j.

• To unite the trees, make one tree a subtree

of the other.

 parent[j] = i

Union Example

• union(7,13)

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

The Union Function

void simpleUnion(int i, int j)

{parent[i] = j;}

Time Complexity Of simpleUnion()

• O(1)

The Find Function

int simpleFind(int i)

{

while (parent[i] >= 0)

i = parent[i]; // move up the tree

return i;

}

Time Complexity of simpleFind()

• Tree height may equal number of elements in

tree.

 union(2,1), union(3,2), union(4,3), union(5,4)…

2

1

3
4

5

So complexity is O(u).

u Unions and f Find Operations

• O(u + uf) = O(uf)

• Time to initialize parent[i] = 0 for all i is

O(n).

• Total time is O(n + uf).

• Worse than using a chain!

• Back to the drawing board.

Smart Union Strategies

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

• union(7,13)

• Which tree should become a subtree of the other?

Height Rule

• Make tree with smaller height a subtree of the
other tree.

• Break ties arbitrarily.

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

union(7,13)

Weight Rule

• Make tree with fewer number of elements a subtree
of the other tree.

• Break ties arbitrarily.

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12
union(7,13)

Implementation

• Root of each tree must record either its
height or the number of elements in the tree.

• When a union is done using the height rule,
the height increases only when two trees of
equal height are united.

• When the weight rule is used, the weight of
the new tree is the sum of the weights of the
trees that are united.

Height Of A Tree

• Suppose we start with single element trees

and perform unions using either the height

or the weight rule.

• The height of a tree with p elements is at

most floor (log2p) + 1.

• Proof is by induction on p. See text.

Sprucing Up The Find Method

• find(1)

• Do additional work to make future finds easier.

121420

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f, and g are subtrees

Path Compaction
• Make all nodes on find path point to tree root.

• find(1)

121420

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f, and g are subtrees

Makes two passes up the tree.

Path Splitting
• Nodes on find path point to former grandparent.

• find(1)

121420

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f, and g are subtrees

Makes only one pass up the tree.

Path Halving
• Parent pointer in every other node on find path is changed to

former grandparent.

• find(1)

121420

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f, and g are subtrees

Changes half as many pointers.

Time Complexity

• Ackermann’s function.

 A(i,j) = 2j, i = 1 and j >= 1

 A(i,j) = A(i-1,2), i >= 2 and j = 1

 A(i,j) = A(i-1,A(i,j-1)), i, j >= 2

• Inverse of Ackermann’s function.

 a(p,q) = min{z>=1 | A(z, p/q) > log2q}, p >= q >= 1

Time Complexity

• Ackermann’s function grows very rapidly as i

and j are increased.

 A(2,4) = 265,536

• The inverse function grows very slowly.

 a(p,q) < 5 until q = 2A(4,1)

 A(4,1) = A(2,16) >>>> A(2,4)

• In the analysis of the union-find problem, q is the

number, n, of elements; p = n + f; and u >= n/2.

• For all practical purposes, a(p,q) < 5.

Time Complexity

Lemma 5.6 [Tarjan and Van Leeuwen]

Let T(f,u) be the maximum time required to process any
intermixed sequence of f finds and u unions. Assume
that u >= n/2.

k1*(n + f*a(f+n, n)) <= T(f,u) <= k2*(n + f*a(f+n, n))

where k1 and k2 are constants.

These bounds apply when we start with singleton sets and
use either the weight or height rule for unions and any
one of the path compression methods for a find.

