
POSTGRADUATE DEPARTMENT OF COMPUTER

APPLICATIONS,

GOVERNMENT ARTS COLLEGE(AUTONOMOUS),

COIMBATORE 641018.

DATA STRUCTURES AND

ALGORITHMS

The contents in this E material are from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed

“Fundamentals of Data Structures in C”,

Computer Science Press, 1992.

FACULTY

Dr.R.A.ROSELINE M.Sc.M.Phil.,Ph.D,
Associate Professor and Head,

Postgraduate Department of Computer Applications,

Government Arts College(Autonomous),

Coimbatore 641018.

UNIT 2

Stacks

• Linear list.

• One end is called top.

• Other end is called bottom.

• Additions to and removals from the top end

only.

Stack Of Cups

• Add a cup to the stack.

bottom

top

C

A

B

D

E

F

• Remove a cup from new stack.

• A stack is a LIFO list.

bottom

top

C

A

B

D

E

Parentheses Matching

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

– Output pairs (u,v) such that the left parenthesis at

position u is matched with the right parenthesis at v.

• (2,6) (1,13) (15,19) (21,25) (27,31) (0,32) (34,38)

• (a+b))*((c+d)

– (0,4)

– right parenthesis at 5 has no matching left parenthesis

– (8,12)

– left parenthesis at 7 has no matching right parenthesis

Parentheses Matching

• scan expression from left to right

• when a left parenthesis is encountered, add its

position to the stack

• when a right parenthesis is encountered, remove

matching position from stack

Example

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

0
1
2

Example

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

0
1

(2,6) (1,13)
15

Example

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

0
1

(2,6) (1,13) (15,19)

21

Example

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

0
1

(2,6) (1,13) (15,19) (21,25)

27

Example

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

0
1

(2,6) (1,13) (15,19) (21,25)(27,31) (0,32)

• and so on

Stacks

– Standard operations:

• IsEmpty … return true iff stack is empty

• IsFull … return true iff stack has no remaining capacity

• Top … return top element of stack

• Push … add an element to the top of the stack

• Pop … delete the top element of the stack

Stacks

– Use a 1D array to represent a stack.

– Stack elements are stored in stack[0] through

stack[top].

Stacks

– stack top is at element e

– IsEmpty() => check whether top >= 0

• O(1) time

– IsFull() => check whether top == capacity – 1

• O(1) time

– Top() => If not empty return stack[top]

• O(1) time

0 1 2 3 4 5 6

a b c d e

Derive From arrayList

– Push(theElement) => if full then either error or

increase capacity and then add at stack[top+1]

– Suppose we increase capacity when full

– O(capacity) time when full; otherwise O(1)

– Pop() => if not empty, delete from stack[top]

– O(1) time

0 1 2 3 4 5 6

a b c d e

Push

void push(element item)

{/* add an item to the global stack */

if (top >= MAX_STACK_SIZE - 1)

StackFull();

/* add at stack top */

stack[++top] = item;

}

0 1 2 3 4

a b c d e

top

Pop

element pop()

{

if (top == -1)

return StackEmpty();

return stack[top--];

}

0 1 2 3 4

a b c d e

top

StackFull()

void StackFull()

{

fprintf(stderr, “Stack is full, cannot add

element.”);

exit(EXIT_FAILURE);

}

StackFull()/Dynamic Array

 Use a variable called capacity in place of

MAX_STACK_SIZE

 Initialize this variable to (say) 1

 When stack is full, double the capacity using

REALLOC

 This is called array doubling

StackFull()/Dynamic Array

void StackFull()

{

REALLOC(stack, 2*capacity*sizeof(*stack);

capacity *= 2;

}

Complexity Of Array Doubling

 Let final value of capacity be 2k

 Number of pushes is at least 2k-1+ 1

 Total time spent on array doubling is S1<=i=k2
i

 This is O(2k)

 So, although the time for an individual push is

O(capacity), the time for all n pushes remains

O(n)!

Queues

• Linear list.

• One end is called front.

• Other end is called rear.

• Additions are done at the rear only.

• Removals are made from the front only.

Bus Stop Queue

Bus

Stop

front

rear

rear rear rear rear

Bus Stop Queue

Bus

Stop

front

rear

rear rear

Bus Stop Queue

Bus

Stop

front

rear

rear

Bus Stop Queue

Bus

Stop

front

rear

rear

Revisit Of Stack Applications

• Applications in which the stack cannot be
replaced with a queue.

– Parentheses matching.

– Towers of Hanoi.

– Switchbox routing.

– Method invocation and return.

– Try-catch-throw implementation.

• Application in which the stack may be
replaced with a queue.

– Rat in a maze.

• Results in finding shortest path to exit.

Wire Routing

Lee’s Wire Router

start pin

end pin

Label all reachable squares 1 unit from start.

Lee’s Wire Router

start pin

end pin

Label all reachable unlabeled squares 2 units from start.

11

Lee’s Wire Router

start pin

end pin

Label all reachable unlabeled squares 3 units from start.

11
2

22

2
2

Lee’s Wire Router

start pin

end pin

Label all reachable unlabeled squares 4 units from start.

11
2

22

2
2

3

33

3

Lee’s Wire Router

start pin

end pin

Label all reachable unlabeled squares 5 units from start.

11
2

22

2
2

3

33

3
4

4
4

4

4

Lee’s Wire Router

start pin

end pin

Label all reachable unlabeled squares 6 units from start.

11
2

22

2
2

3

33

3
4

4
4

4

4
5

5

5 5
5

5

Lee’s Wire Router

start pin

end pin

End pin reached. Traceback.

11
2

22

2
2

3

33

3
4

4
4

4

4
5

5

5 5
5

5
6

6
6

66
6

66

Lee’s Wire Router

start pin

end pin

4

End pin reached. Traceback.

11
2

22

2
2

3

33

3
4

4
4

4

4
5

5

5 5
5

5
6

6
6

66
6

66

3 5
2
1

Queue Operations

– IsFullQ … return true iff queue is full

– IsEmptyQ … return true iff queue is empty

– AddQ … add an element at the rear of the queue

– DeleteQ … delete and return the front element of the

queue

Queue in an Array

– Use a 1D array to represent a queue.

– Suppose queue elements are stored with the front

element in queue[0], the next in queue[1], and so on.

Queue in an Array

 DeleteQ() => delete queue[0]

– O(queue size) time

 AddQ(x) => if there is capacity, add at right end

– O(1) time

0 1 2 3 4 5 6

a b c d e

O(1) AddQ and DeleteQ

– to perform each opertion in O(1) time (excluding

array doubling), we use a circular representation.

Circular Array

• Use a 1D array queue.

queue[]

• Circular view of array.

[0]

[1]

[2] [3]

[4]

[5]

Circular Array

• Possible configuration with 3 elements.

[0]

[1]

[2] [3]

[4]

[5]

A B

C

Circular Array

• Another possible configuration with 3 elements.

[0]

[1]

[2] [3]

[4]

[5]
AB

C

Circular Array

• Use integer variables front and rear.

– front is one position counterclockwise from

first element

– rear gives position of last element

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front
rear

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear

Add An Element

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front
rear

• Move rear one clockwise.

Add An Element

• Move rear one clockwise.

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front

rear

• Then put into queue[rear].

D

Delete An Element

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front
rear

• Move front one clockwise.

Delete An Element

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front

rear

• Move front one clockwise.

• Then extract from queue[front].

Moving rear Clockwise

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front rear

• rear++;

if (rear = = capacity) rear = 0;

• rear = (rear + 1) % capacity;

Empty That Queue

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear

Empty That Queue

[0]

[1]

[2] [3]

[4]

[5]
B

C

front

rear

Empty That Queue

[0]

[1]

[2] [3]

[4]

[5]

C

front

rear

Empty That Queue

• When a series of removes causes the queue to
become empty, front = rear.

• When a queue is constructed, it is empty.

• So initialize front = rear = 0.

[0]

[1]

[2] [3]

[4]

[5]
front

rear

A Full Tank Please

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear

A Full Tank Please

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear
D

A Full Tank Please

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear

D E

A Full Tank Please

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear

D E

F

• When a series of adds causes the queue to become full, front = rear.

• So we cannot distinguish between a full queue and an empty queue!

Ouch!!!!!
• Remedies.

– Don’t let the queue get full.

• When the addition of an element will cause the queue to be

full, increase array size.

• This is what the text does.

– Define a boolean variable lastOperationIsAddQ.

• Following each AddQ set this variable to true.

• Following each DeleteQ set to false.

• Queue is empty iff (front == rear) && !lastOperationIsAddQ

• Queue is full iff (front == rear) && lastOperationIsAddQ

Ouch!!!!!
• Remedies (continued).

– Define an integer variable size.

• Following each AddQ do size++.

• Following each DeleteQ do size--.

• Queue is empty iff (size == 0)

• Queue is full iff (size == arrayLength)

– Performance is slightly better when first strategy is

used.

Priority Queues

Two kinds of priority queues:

• Min priority queue.

• Max priority queue.

Min Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:

 empty

 size

 insert an element into the priority queue (push)

 get element with min priority (top)

 remove element with min priority (pop)

Max Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:

 empty

 size

 insert an element into the priority queue (push)

 get element with max priority (top)

 remove element with max priority (pop)

Complexity Of Operations

Use a heap or a leftist tree (both are defined

later).

empty, size, and top => O(1) time

insert (push) and remove (pop) => O(log n)

time where n is the size of the priority

queue

Applications

Sorting

• use element key as priority

• insert elements to be sorted into a priority queue

• remove/pop elements in priority order

 if a min priority queue is used, elements are extracted

in ascending order of priority (or key)

 if a max priority queue is used, elements are extracted

in descending order of priority (or key)

Sorting Example

Sort five elements whose keys are 6, 8, 2, 4, 1

using a max priority queue.

 Insert the five elements into a max priority queue.

 Do five remove max operations placing removed

elements into the sorted array from right to left.

After Inserting Into Max Priority Queue

Sorted Array

68

2

4

1
Max Priority

Queue

After First Remove Max Operation

Sorted Array

6

2

4

1

8

Max Priority

Queue

After Second Remove Max Operation

Sorted Array

2

4

1

86

Max Priority

Queue

After Third Remove Max Operation

Sorted Array

21

864

Max Priority

Queue

After Fourth Remove Max Operation

Sorted Array

1

8642

Max Priority

Queue

After Fifth Remove Max Operation

Sorted Array

86421

Max Priority

Queue

Linked Lists

• list elements are stored, in memory,

in an arbitrary order

• explicit information (called a link)

is used to go from one element to

the next

Memory Layout

a b c d e

c a e d b

A linked representation uses an arbitrary layout.

Layout of L = (a,b,c,d,e) using an array representation.

Linked Representation

pointer (or link) in e is NULL

c a e d b

use a variable first to get to the first

element a

first

Normal Way To Draw A Linked List

link or pointer field of node

data field of node

a b c d e

NULL

first

Chain

•A chain is a linked list in which each node

represents one element.

• There is a link or pointer from one element to

the next.

• The last node has a NULL (or 0) pointer.

a b c d e

NULL

first

Node Representation

typedef struct listNode *listPointer;

typedef struct {

char data;

listPointer link;

} listNode;

link

data

get(0)

desiredNode = first; // gets you to first node

return desiredNode->data;

a b c d e

NULL

first

get(1)

desiredNode = first->link; // gets you to second node

return desiredNode->data;

a b c d e

NULL

first

get(2)

desiredNode = first->link->link; // gets you to third node

return desiredNode->data;

a b c d e

NULL

first

get(5)

desiredNode = first->link->link->link->link->link;

// desiredNode = NULL

return desiredNode->data; // NULL.element

a b c d e

NULL

first

Delete An Element

delete(0)

a b c d e

NULL

first

deleteNode = first;

first = first->link;

free(deleteNode);

a b d e

NULL

first

c

delete(2)

first get to node just before node to be removed

c
c

beforeNode = first->link;

b

beforeNode

delete(2)

save pointer to node that will be deleted

deleteNode = beforeNode->link;

beforeNode

a b c d e

null

first

delete(2)

now change pointer in beforeNode

beforeNode->link = beforeNode->link->link;

free(deleteNode);

beforeNode

a b c d e

null

first

insert(0,’f’)

a b c d e

NULL

first

f

newNode

Step 1: get a node, set its data and link fields

MALLOC(newNode, sizeof(*newNode));

newNode->data = ‘f’;

newNode->link = NULL;

insert(0,’f’)

a b c d e

NULL

first

f

newNode

Step 2: update first

first = newNode;

insert(3,’f’)

• first find node whose index is 2

a b c d e

NULL

first

f

newNode

beforeNode

c

• next create a new node and set its data and link fields

• finally link beforeNode to newNode

insert(3,’f’)

beforeNode = first->link->link;

MALLOC(newNode, sizeof(*newNode));

newNode->data = ‘f’;

newNode->link = beforeNode->link;

beforeNode->link = newNode;

a b c d e

NULL

first

f

newNode

beforeNode

c

Chain With Header Node

a b c d e

NULL

headerNode

Empty Chain With Header Node

headerNode

NULL

Circular List

a b c d e

firstNode

Doubly Linked List

a b c d e

NULL

firstNode

NULL

lastNode

Doubly Linked Circular List

a b c d e

firstNode

Doubly Linked Circular List With Header Node

a b c e

headerNode

d

Empty Doubly Linked Circular List With Header Node

headerNode

