20MCA12C RELATIONAL DATABASE MANAGEMENT SYSTEM

UNIT IV: Relational Databases

FACULTY
Dr. K. ARTHI MCA, M.Phil,, Ph.D,,
Assistant Professor,
Postgraduate Department of Computer Applications,
Government Arts College (Autonomous),

Coimbatore-641018.

Features of good relational designs
Design alternatives
1)larger schemas

2)smaller schemas

The Banking Schema

branch = (branch _name, branch_city, assets)
customer = (customer_id, customer_name, customer_street, customer_city)
loan = (loan_number, amount)

account = (account_number, balance)

employee = (employee id. employee _name, telephone_number, start_date)

dependent_name = (employee id, dname)

account_branch = (account_number, branch_name)

loan_branch = (loan_number, branch_name)

borrower = (customer id, loan _number)

depositor = (customer_id, account_number)

cust_banker = (customer _id, employee id, type)

works_for = (worker employee id, manager_employee_id)

payment = (loan_number, payment _number, payment_date, payment_amount)

savings_account = (account_number, interest_rate)

checking_account = (account_number, overdraft_amount)

combined schemas

| crestomer_id tagn_nuacher
| J'm.lt_.ltu.u-aberl TR M | - .

23-552 L-1(KD

L-10d 10000 15-202 L-10
. . 23-521 L-10
Ioan :
Iarraner
cuslormer_id loan_nwember Arnoerl

23-R52 L-100 100

15202 L-100 IR
23-521 L-1000 10000
rar_immn

Suppose we combine borrower and loan to get
bor_loan = (customer_id, loan_number, amount)

Result is possible repetition of information

Smaller schemas

B Suppose we had started with bor_loan. How would we know to split up (decompose)
it into borrower and loan?

m Write a rule “if there were a schema (loan_number, amount), then loan_number
would be a candidate key”

B Denote as a functional dependency:
loan_number — amount

B |n bor_loan, because loan_number is not a candidate key, the amount of a loan may
have to be repeated. This indicates the need to decompose bor_loan.

B Not all decompositions are good. Suppose we decompose employee into
employeel = (employee_id, employee_name)
employee2 = (employee_name, telephone_number, start_date)

B The next slide shows how we lose information -- we cannot reconstruct the original
employee relation -- and so, this is a lossy decomposition.

A Lossy Decomposition

employee_id | employer _name |telephone_number| start_date

123-45-6789 | Kim 882-0000 1984-03-29

987-65-4321 | Kim 869-9999 1981-01-16
employee
employee_id | emplovee_name employee_name |telephone_number] start_date
123-45-6789 | Kim Kim 882-0000 1984-03-29
987-65-4321 | Kim Kim 869-9999 1981-01-16

N

r

Lemplowee_id | emplovee_name | telepione_number| start_date

123-45-6789 | Kim 882-0000 1984-03-29

123-45-6789 | Kim 869-9999 1981-01-16
987-65-4321 | Kim 882-0000 1984-03-29

987-65-4321 | Kim 869-9999 1981-01-16

First Normal Form

B Domainis atomic if its elements are considered to be indivisible units

Examples of non-atomic domains:
» Set of names, composite attributes

» Identification numbers like CS101 that can be broken up into parts

B Arelational schema Ris in first normal form if the domains of all attributes
of R are atomic

B Non-atomic values complicate storage and encourage redundant (repeated)
storage of data

Example: Set of accounts stored with each customer, and set of owners
stored with each account

We assume all relations are in first normal form

B Atomicity is actually a property of how the elements of the domain are used.

Example: Strings would normally be considered indivisible

Suppose that students are given roll numbers which are strings of the
form CS0012 or EE1127

If the first two characters are extracted to find the department, the
domain of roll numbers is not atomic.

Doing so is a bad idea: leads to encoding of information in application
program rather than in the database.

FUNCTIONAL DEPENDENCY

A functional dependency (FD) is a relationship between two attributes, typically between the
PK and other non-key attributes within a table. For any relation R, attribute Y is functionally
dependent on attribute X (usually the PK), if for every valid instance of X, that value of X
uniquely determines the value of Y. This relationship is indicated by the representation
below :

X >Y

The left side of the above FD diagram is called the determinant, and the right side is
the dependent.

e Constraints on the set of legal relations.

e Require that the value for a certain set of attributes determines uniquely the
value for another set of attributes.

e A functional dependency is a generalization of the notion of a key.

B Let R be arelation schema
o R and fCR
B The functional dependency

oa—f
holds on R if and only if for any legal relations r(R), whenever any two
tuples t; and t, of r agree on the attributes «, they also agree on the
attributes f. That is,

tla] =t [a] = tl[ﬂ] =1 [A]

B Example: Consider r(A,B) with the following instance of r.

® Onthis instance, A —> B does NOT hold, but B — A does hold.

K is a superkey for relation schema R if and only if K — R
Kis a candidate key for R if and only if

® K—R,and

e fornoaocK oo —R

Functional dependencies allow us to express constraints that cannot be
expressed using superkeys. Consider the schema:

bor_loan = (customer id, loan _number, amount).

We expect this functional dependency to hold:
loan_number — amount
but would not expect the following to hold:

amount — customer_name

B We use functional dependencies to:

e test relations to see if they are legal under a given set of functional
dependencies.

» If arelation ris legal under a set F of functional dependencies, we say
that r satisfies F.

® specify constraints on the set of legal relations

» We say that F holds on R if all legal relations on R satisfy the set of
functional dependencies F.

B Note: A specific instance of a relation schema may satisfy a functional
dependency even if the functional dependency does not hold on all legal
instances.

® For example, a specific instance of loan may, by chance, satisfy
amount — customer_name.

A functional dependency is trivial if it is satisfied by all instances of a relation
Example:
» customer_name, loan_number — customer_name
» customer_name — customer_name

In general, a — Bis trivial if Sc a

Boyce-Codd Normal Form

Arelation schema R is in BCNF with respect to a set F of
functional dependencies if for all functional dependencies in F* of
the form

o—>f

where o ¢ R and f < R, at least one of the following holds:

B o — fistrivial (i.e., fca)
B o is asuperkey for R

Example schema not in BCNF:

bor_loan = (customer_id, loan_number, amount)

because loan_number — amount holds on bor_loan but loan_number is
not a superkey

Decomposing a Schema into BCNF

®m Suppose we have a schema R and a non-trivial dependency a — /3 causes a
violation of BCNF.

We decompose R into:
® (aup)
® (R-(p-a))
B |n our example,
® o =loan_number
® [f=amount
and bor_loan is replaced by
® (o Up)=(loan_number, amount)

® (R-(p-a))=(customer_id, loan_number)

BCNF and Dependency Preservation

B Constraints, including functional dependencies, are costly to check in
practice unless they pertain to only one relation

m [fitis sufficient to test only those dependencies on each individual relation
of a decomposition in order to ensure that all functional dependencies hold,
then that decomposition is dependency preserving.

B Because it is not always possible to achieve both BCNF and dependency
preservation, we consider a weaker normal form, known as third normal
form.

Third Normal Form

B Arelation schema R is in third normal form (3NF) if for all:
o — fin F*
at least one of the following holds:
® o — fistrivial (i.e., f e a)
® (is asuperkey for R
e Each attribute A in f— « is contained in a candidate key for R.
(NOTE: each attribute may be in a different candidate key)

B |[f arelationis in BCNF it is in 3NF (since in BCNF one of the first two
conditions above must hold).

B Third condition is a minimal relaxation of BCNF to ensure dependency
preservation (will see why later).

Functional-Dependency Theory

B consider the formal theory that tells us which functional dependencies are
implied logically by a given set of functional dependencies.

B Then develop algorithms to generate lossless decompositions into BCNF and
3NF

B Then develop algorithms to test if a decomposition is dependency-
preserving

Lossless-join Decomposition

B Forthe case of R = (R,, R,), we require that for all possible relations
ron schemaR

r=TIlg, (r) The(r)
® Adecomposition of R into R, and R, is lossless join if and only if at
least one of the following dependencies is in F*:
® R,NR,—R,

® R,NR,—R,

Dependency Preservation

B |let F, be the set of dependencies F * that include only attributes in R,
» A decomposition is dependency preserving, if
(FiL o R OF)T =F"

» If it is not, then checking updates for violation of functional
dependencies may require computing joins, which is expensive.

Testing for Dependency Preservation

B To check if a dependency . — B is preserved in a decomposition of R into Ry, R,,
..., R,, we apply the following test (with attribute closure done with respect to F)

® result=o
while (changes to result) do
for each R, in the decomposition
t=(result " R)" " R;
result = result Ut

e [f result contains all attributes in 3, then the functional dependency
o — [is preserved.

B We apply the test on all dependencies in F to check if a decomposition is
dependency preserving

B This procedure takes polynomial time, instead of the exponential time required
to compute Ffand (F, U F,u ..U F)*

BCNF Decomposition Algorithm

result :=={R};
done := false;
compute F*;
while (not done) do
if (there is a schema R; in result that is not in BCNF)
then begin
let o — £ be a nontrivial functional dependency that holds on R,
such that o — R;is notin F™,
andan f =J;
result := (result —R;) (R;—) (a, B);
end
else done := true;

Note: each R;is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition

m R=(A B C)

F={A—B
B — C}
Key = {A}

B Risnotin BCNF (B — Cbut Bis not superkey)
B Decomposition

e R =(B ()

® R,=(AB)

Third Normal Form

B There are some situations where
® BCNF is not dependency preserving, and
e efficient checking for FD violation on updates is important

m Solution: define a weaker normal form, called Third Normal
Form (3NF)

® Allows some redundancy (with resultant problems; we will see
examples later)

® But functional dependencies can be checked on individual
relations without computing a join.

® There is always a lossless-join, dependency-preserving
decomposition into 3NF.

3NF Decomposition Algorithm

Let F. be a canonical cover for F;

i:=0;

for each functional dependency oo — fin F. do
if none of the schemas R, 1 <j </ contains « f

then begin
=i +1;
R :==op
end

if none of the schemas Rj, 1 <j <ijcontains a candidate key for R
then begin
i=i+1;
R; := any candidate key for R;
end
return (R, R,, ..., R}

Above algorithm ensures:
each relation schema R; is in 3NF

decomposition is dependency preserving and lossless-join

Multivalued Dependencies (MVDs)

Let R be a relation schema andleta c Rand B < R. The
multivalued dependency

a—>—> 3

holds on R if in any legal relation r(R), for all pairs for tuples t, and
t, in r such that t;[a] = t, [a], there exist tuples t; and t, in r such
that:

tl[a] =i, [a] = ty [a] = t, [ad]

t5[B] = t,[B]
t[R =Pl = t,[R —PI
t, [B] = 6[B]

t,[R —PBl= t,[R =PI

Fourth Normal Form

A relation schema R is in 4NF with respect to a set D of functional and
multivalued dependencies if for all multivalued dependencies in D* of the form
o —»— [3, where o < R and 3 < R, at least one of the following hold:

® o —— Pistrivial (e, caoravw 3 =R)
® « is a superkey for schema R

If a relation is in 4NF it is in BCNF

4NF Decomposition Algorithm

result: = {R};
done := false;
compute D*;

Let D, denote the restriction of D* to R;

while (not done)
if (there is a schema R, in result that is not in 4NF) then
begin

let @ -— [3 be a nontrivial multivalued dependency that holds
on R, such that oo — R; is not in D;, and a\p=0;
result := (result - R) v (R;- B) W (a, B);
end
else done:= true;

Note: each R; is in 4NF, and decomposition is lossless-join

THANK YOU

This content is taken from the text books and reference books prescribed in the syllabus.

