20MCA12C RELATIONAL DATABASE MANAGEMENT SYSTEM

UNIT IV: Relational Databases

FACULTY

Dr. K. ARTHI MCA, M.Phil., Ph.D.,

Assistant Professor,

Postgraduate Department of Computer Applications,

Government Arts College (Autonomous),

Coimbatore-641018.

Features of good relational designs

Design alternatives

- 1)larger schemas
- 2)smaller schemas

The Banking Schema

- branch = (<u>branch name</u>, branch_city, assets)
- customer = (customer_id, customer_name, customer_street, customer_city)
- loan = (<u>loan_number</u>, amount)
- account = (account number, balance)
- employee = (employee id. employee_name, telephone_number, start_date)
- dependent_name = (employee id, dname)
- account_branch = (account_number, branch_name)
- loan_branch = (<u>loan_number</u>, branch_name)
- borrower = (customer id, loan number)
- depositor = (<u>customer id, account number</u>)
- cust_banker = (customer id, employee id, type)
- works_for = (worker employee id, manager_employee_id)
- payment = (loan number, payment number, payment_date, payment_amount)
- savings_account = (account number, interest_rate)
- checking_account = (account_number, overdraft_amount)

combined schemas

bor_loan

Suppose we combine *borrower* and *loan* to get

bor_loan = (customer_id, loan_number, amount)

Result is possible repetition of information

Smaller schemas

- Suppose we had started with *bor_loan*. How would we know to split up (decompose) it into *borrower* and *loan*?
- Write a rule "if there were a schema (*loan_number, amount*), then *loan_number* would be a candidate key"
- Denote as a **functional dependency**:

 $loan_number \rightarrow amount$

- In bor_loan, because loan_number is not a candidate key, the amount of a loan may have to be repeated. This indicates the need to decompose bor_loan.
- Not all decompositions are good. Suppose we decompose *employee* into *employee1* = (*employee_id*, *employee_name*) *employee2* = (*employee_name*, *telephone_number*, *start_date*)
- The next slide shows how we lose information -- we cannot reconstruct the original employee relation -- and so, this is a lossy decomposition.

First Normal Form

- Domain is atomic if its elements are considered to be indivisible units
 - Examples of non-atomic domains:
 - Set of names, composite attributes
 - Identification numbers like CS101 that can be broken up into parts
- A relational schema R is in first normal form if the domains of all attributes of R are atomic
- Non-atomic values complicate storage and encourage redundant (repeated) storage of data
 - Example: Set of accounts stored with each customer, and set of owners stored with each account
 - We assume all relations are in first normal form

- Atomicity is actually a property of how the elements of the domain are used.
 - Example: Strings would normally be considered indivisible
 - Suppose that students are given roll numbers which are strings of the form *CS0012* or *EE1127*
 - If the first two characters are extracted to find the department, the domain of roll numbers is not atomic.
 - Doing so is a bad idea: leads to encoding of information in application program rather than in the database.

FUNCTIONAL DEPENDENCY

A *functional dependency* (FD) is a relationship between two attributes, typically between the PK and other non-key attributes within a table. For any relation R, attribute Y is functionally dependent on attribute X (usually the PK), if for every valid instance of X, that value of X uniquely determines the value of Y. This relationship is indicated by the representation below :

X -----> Y

The left side of the above FD diagram is called the *determinant*, and the right side is the *dependent*.

- Constraints on the set of legal relations.
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.
- A functional dependency is a generalization of the notion of a *key*.
 - Let *R* be a relation schema

$$\alpha \subseteq R$$
 and $\beta \subseteq R$

The functional dependency

$$\alpha \rightarrow \beta$$

holds on *R* if and only if for any legal relations r(R), whenever any two tuples t_1 and t_2 of *r* agree on the attributes α , they also agree on the attributes β . That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

- Example: Consider *r*(A, B) with the following instance of *r*.
- On this instance, $A \rightarrow B$ does **NOT** hold, but $B \rightarrow A$ does hold.

- K is a superkey for relation schema R if and only if $K \rightarrow R$
- *K* is a candidate key for *R* if and only if
 - $K \rightarrow R$, and
 - for no $\alpha \subset K$, $\alpha \to R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

bor_loan = (<u>customer id, loan number</u>, amount).

We expect this functional dependency to hold:

 $loan_number \rightarrow amount$

but would not expect the following to hold:

 $amount \rightarrow customer_name$

- We use functional dependencies to:
 - test relations to see if they are legal under a given set of functional dependencies.
 - ▶ If a relation *r* is legal under a set *F* of functional dependencies, we say that *r* satisfies *F*.
 - specify constraints on the set of legal relations
 - We say that *F* holds on *R* if all legal relations on *R* satisfy the set of functional dependencies *F*.
- Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.
 - For example, a specific instance of *loan* may, by chance, satisfy amount → customer_name.

A functional dependency is trivial if it is satisfied by all instances of a relation

Example:

- ▶ customer_name, loan_number → customer_name
- ▶ customer_name → customer_name

In general, $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F^+ of the form

$$\alpha \rightarrow \beta$$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for *R*

Example schema not in BCNF:

```
bor_loan = ( customer_id, loan_number, amount )
```

because *loan_number* → *amount* holds on *bor_loan* but *loan_number* is not a superkey

Decomposing a Schema into BCNF

Suppose we have a schema *R* and a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF.

We decompose R into:

- 📍 (α U β)
- (R-(β-α))
- In our example,
 - α = loan_number
 - β = amount

and bor_loan is replaced by

- $(\alpha \cup \beta) = (loan_number, amount)$
- (R (β α)) = (customer_id, loan_number)

BCNF and Dependency Preservation

- Constraints, including functional dependencies, are costly to check in practice unless they pertain to only one relation
- If it is sufficient to test only those dependencies on each individual relation of a decomposition in order to ensure that *all* functional dependencies hold, then that decomposition is *dependency preserving*.
- Because it is not always possible to achieve both BCNF and dependency preservation, we consider a weaker normal form, known as *third normal form*.

Third Normal Form

A relation schema *R* is in third normal form (3NF) if for all:

 $\alpha \rightarrow \beta$ in F^+

at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
- α is a superkey for *R*
- Each attribute A in $\beta \alpha$ is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

- If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold).
- Third condition is a minimal relaxation of BCNF to ensure dependency preservation (will see why later).

Functional-Dependency Theory

- consider the formal theory that tells us which functional dependencies are implied logically by a given set of functional dependencies.
- Then develop algorithms to generate lossless decompositions into BCNF and 3NF
- Then develop algorithms to test if a decomposition is dependencypreserving

Lossless-join Decomposition

For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R

$$r = \prod_{R_1} (r) \quad \prod_{R_2} (r)$$

A decomposition of R into R₁ and R₂ is lossless join if and only if at least one of the following dependencies is in F⁺:

•
$$R_1 \cap R_2 \rightarrow R_1$$

•
$$R_1 \cap R_2 \rightarrow R_2$$

Dependency Preservation

- Let F_i be the set of dependencies F⁺ that include only attributes in R_i.
 - A decomposition is dependency preserving, if

$$(F_1 \cup F_2 \cup \dots \cup F_n)^+ = F^+$$

 If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

Testing for Dependency Preservation

- To check if a dependency $\alpha \rightarrow \beta$ is preserved in a decomposition of *R* into R_1, R_2, \dots, R_n we apply the following test (with attribute closure done with respect to *F*)
 - result = α while (changes to result) do for each R_i in the decomposition $t = (result \cap R_i)^+ \cap R_i$ result = result $\cup t$
 - If *result* contains all attributes in β , then the functional dependency $\alpha \rightarrow \beta$ is preserved.
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes polynomial time, instead of the exponential time required to compute F^+ and $(F_1 \cup F_2 \cup ... \cup F_n)^+$

BCNF Decomposition Algorithm

```
result := {R };

done := false;

compute F^+;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \rightarrow \beta be a nontrivial functional dependency that holds on R_i

such that \alpha \rightarrow R_j is not in F^+,

and \alpha \cap \beta = \emptyset;

result := (result - R_j) \cup (R_j - \beta) \cup (\alpha, \beta);

end

else done := true;
```

Note: each R_i is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition

- R = (A, B, C) $F = \{A \rightarrow B$ $B \rightarrow C\}$ Key = $\{A\}$
- **R** is not in BCNF ($B \rightarrow C$ but *B* is not superkey)
- Decomposition
 - $R_1 = (B, C)$
 - $R_2 = (A, B)$

Third Normal Form

- There are some situations where
 - BCNF is not dependency preserving, and
 - efficient checking for FD violation on updates is important
- Solution: define a weaker normal form, called Third
 Normal Form (3NF)
 - Allows some redundancy (with resultant problems; we will see examples later)
 - But functional dependencies can be checked on individual relations without computing a join.
 - There is always a lossless-join, dependency-preserving decomposition into 3NF.

3NF Decomposition Algorithm

Let F_c be a canonical cover for F; i := 0; for each functional dependency $\alpha \rightarrow \beta$ in F_c do if none of the schemas R_j , $1 \le j \le i$ contains $\alpha \beta$ then begin i := i + 1; $R_i := \alpha \beta$ end if none of the schemas R_j , $1 \le j \le i$ contains a candidate key for Rthen begin i := i + 1; $R_i :=$ any candidate key for R; end return $(R_1, R_2, ..., R_j)$

Above algorithm ensures:

each relation schema R_i is in 3NF

decomposition is dependency preserving and lossless-join

Multivalued Dependencies (MVDs)

Let *R* be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The *multivalued dependency*

$$\alpha \rightarrow \rightarrow \beta$$

holds on *R* if in any legal relation r(R), for all pairs for tuples t_1 and t_2 in *r* such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in *r* such that:

 $\begin{aligned} t_{1}[\alpha] &= t_{2}[\alpha] = t_{3}[\alpha] = t_{4}[\alpha] \\ t_{3}[\beta] &= t_{1}[\beta] \\ t_{3}[R - \beta] &= t_{2}[R - \beta] \\ t_{4}[\beta] &= t_{2}[\beta] \\ t_{4}[R - \beta] &= t_{1}[R - \beta] \end{aligned}$

Fourth Normal Form

- A relation schema *R* is in 4NF with respect to a set *D* of functional and multivalued dependencies if for all multivalued dependencies in D^+ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following hold:
 - $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)
 - α is a superkey for schema R
- If a relation is in 4NF it is in BCNF

4NF Decomposition Algorithm

```
\begin{aligned} \textit{result:} &= \{R\};\\ \textit{done} := \textit{false};\\ \textit{compute D}^{+};\\ \textit{Let D}_i \textit{ denote the restriction of D}^{+} \textit{ to R}_i\\ \textit{while (not done)}\\ \textit{if (there is a schema R_i in \textit{result that is not in 4NF) then}\\ \textit{begin}\\ &\quad \textit{let } \alpha \rightarrow \beta \textit{ be a nontrivial multivalued dependency that holds}\\ &\quad \textit{on } R_i \textit{ such that } \alpha \rightarrow R_i \textit{ is not in } D_i, \textit{ and } \alpha \cap \beta = \phi;\\ &\quad \textit{result := } (\textit{result - R}_i) \cup (R_i - \beta) \cup (\alpha, \beta);\\ &\quad \textit{end}\\ &\quad \textit{else done:= true;} \end{aligned}
```

 \rightarrow

Note: each R_i is in 4NF, and decomposition is lossless-join

THANK YOU

This content is taken from the text books and reference books prescribed in the syllabus.