
20MCA11C OBJECT ORIENTED PROGRAMMING WITH C++

UNIT IV: Inheritance

Inheritance

Inheritance is one of the key features of Object-oriented programming in C++. It

allows us to create a new class (derived class) from an existing class (base class).

Inheritance is a mechanism for

• building class types from existing class types

• defining new class types to be a

– specialization

– augmentation of existing types

–

Define a Class Hierarchy

https://www.programiz.com/cpp-programming/object-class

Class Derivation

// C++ program to demonstrate inheritance

#include <iostream>

using namespace std;

// base class

class Animal {

 public:

 void eat() {

 cout << "I can eat!" << endl;

 }

 void sleep() {

 cout << "I can sleep!" << endl;

 }

};

// derived class

class Dog : public Animal {

 public:

 void bark() {

 cout << "I can bark! Woof woof!!" << endl;

 }

};

int main() {

 // Create object of the Dog class

 Dog dog1;

 // Calling members of the base class

 dog1.eat();

 dog1.sleep();

 // Calling member of the derived class

 dog1.bark();

 return 0;

}

C++ Multiple, Multilevel and

Hierarchical Inheritance

C++ Multilevel Inheritance

In C++ programming, not only you can derive a class from the base class but

you can also derive a class from the derived class. This form of inheritance is

known as multilevel inheritance.

class A

{

...

};

class B: public A

{

...

};

class C: public B

{

...

};

Example 1: C++ Multilevel Inheritance

#include <iostream>

using namespace std;

class A

{

 public:

 void display()

 {

 cout<<"Base class content.";

 }

};

class B : public A

{

};

class C : public B

{

};

int main()

{

 C obj;

 obj.display();

 return 0;

}

C++ Multiple Inheritance

In C++ programming, a class can be derived from more than one parents. For

example: A class Bat is derived from base classes Mammal and WingedAnimal. It makes

sense because bat is a mammal as well as a winged animal.

Multiple Inheritance in C++ Programming

#include <iostream>

using namespace std;

class Mammal {

 public:

 Mammal()

 {

 cout << "Mammals can give direct birth." << endl;

 }

};

class WingedAnimal {

 public:

 WingedAnimal()

 {

 cout << "Winged animal can flap." << endl;

 }

};

class Bat: public Mammal, public WingedAnimal {

};

int main()

{

 Bat b1;

 return 0;

}

C++ Hierarchical Inheritance

If more than one class is inherited from the base class, it's known as hierarchical

inheritance. In hierarchical inheritance, all features that are common in child classes

are included in the base class.

For example: Physics, Chemistry, Biology are derived from Science class.

Syntax of Hierarchical Inheritance

class base_class {

}

class first_derived_class: public base_class {

http://www.programtopia.net/cplusplus/docs/hierarchical-inheritance-c-programming?utm_source=programiz&utm_campaign=display
http://www.programtopia.net/cplusplus/docs/hierarchical-inheritance-c-programming?utm_source=programiz&utm_campaign=display
http://www.programtopia.net/cplusplus/docs/hierarchical-inheritance-c-programming?utm_source=programiz&utm_campaign=display

}

class second_derived_class: public base_class {

}

class third_derived_class: public base_class {

}

Pure Virtual Functions and Abstract Classes in C++

A pure virtual function (or abstract function) in C++ is a virtual function for which we don’t have

implementation, we only declare it. A pure virtual function is declared by assigning 0 in declaration.

See the following example.

// An abstract class
class Test
{
 // Data members of class
public:
 // Pure Virtual Function
 virtual void show() = 0;

 /* Other members */
};
A pure virtual function is implemented by classes which are derived from a Abstract class. Following is

a simple example to demonstrate the same.

#include<iostream>
using namespace std;

class Base
{
 int x;
public:
 virtual void fun() = 0;
 int getX() { return x; }

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/

};

// This class inherits from Base and implements fun()
class Derived: public Base
{
 int y;
public:
 void fun() { cout << "fun() called"; }
};

int main(void)
{
 Derived d;
 d.fun();
 return 0;
}

Nested Classes in C++

A nested class is a class which is declared in another enclosing class. A nested class is a member

and as such has the same access rights as any other member. The members of an enclosing class

have no special access to members of a nested class.

THANK YOU

This content is taken from the text books and reference books prescribed in the syllabus.

