
20MCA11C OBJECT ORIENTED PROGRAMMING WITH C++

UNIT III: Constructors

constructors

A constructor is a member function of a class which initializes objects of a class. In

C++, Constructor is automatically called when object(instance of class) create. It is special

member function of the class

 has the same name as the class,

 does not have a return type, and

 is public

C++ Default Constructor

A constructor with no parameters is known as a default constructor.

 Destructors

– Special member function

– Same name as class

 Preceded with tilde (~)

– No arguments

– No return value

– Cannot be overloaded

– Before system reclaims object’s memory

 Reuse memory for new objects

Mainly used to de-allocate dynamic memory locations

Introduction to Operator Overloading in C++

a1 = a2 + a3;

The above operation is valid, as you know if a1, a2 and a3 are instances of in-built Data Types. But what if those are,
say objects of a Class; is the operation valid?

Yes, it is, if you overload the ‘+’ Operator in the class, to which a1, a2 and a3 belong.

Operator overloading is used to give special meaning to the commonly used operators (such as +, -, * etc.) with
respect to a class. By overloading operators, we can control or define how an operator should operate on data with
respect to a class.

Operators are overloaded in c++ by creating operator functions either as a member or a s a Friend Function of a
class. Since creating member operator functions are easier, we’ll be using that method in this article.

As I said operator functions are declared using the following general form:

 ret-type operator#(arg-list);

and then defining it as a normal member function.

Here, ret-type is commonly the name of the class itself as the operations would commonly return data (object) of that
class type.

is replaced by any valid operator such as +, -, *, /, ++, -- etc.

Now that you have understood the theory, let’s have a look at an example program:

 // Example program to illustrate

 // operator overloading

 #include <iostream.h>

 class myclass

 {

 int sub1, sub2;

 public:

 // default constructor

 myclass(){}

 // main constructor

 myclass(int x, int y){sub1=x;sub2=y;}

 // notice the declaration

 myclass operator +(myclass);

 void show(){cout<<sub1<<endl<<sub2;}

 };

 // returns data of type myclass

http://learning-computer-programming.blogspot.com/2007/05/c-data-types-in-detail.html
http://learning-computer-programming.blogspot.com/2007/06/introduction-to-classes-in-c.html
http://learning-computer-programming.blogspot.com/2007/06/operators-in-c-part-i.html

 myclass myclass::operator +(myclass ob)

 {

 myclass temp;

 // add the data of the object

 // that generated the call

 // with the data of the object

 // passed to it and store in temp

 temp.sub1=sub1 + ob.sub1;

 temp.sub2=sub2 + ob.sub2;

 return temp;

 }

 void main()

 {

 myclass ob1(10,90);

 myclass ob2(90,10);

 // this is valid

 ob1=ob1+ob2;

 ob1.show();

 }

At this stage many of you might be wondering why the operator function is taking only one argument when it’s
operating on two objects (i.e. it’s a binary operator).

To understand this, first have a look at this line of code:

 ob1 = ob1 + ob2;

Now assume that ‘operator+’ function is just a regular function which is called as below when the respective operator
(‘+’ in this case) is encountered with respect to the objects of its class.

 ob1 = ob1.operator+(ob2);

THANK YOU

This content is taken from the text books and reference books prescribed in the syllabus.

