

20MCA11C OBJECT ORIENTED PROGRAMMING WITH C++

UNIT I: Principles of Object Oriented Programming

UNIT I: Principles of Object Oriented Programming: Software Crisis - Software

Evolution - Procedure Oriented Programming - Object Oriented Programming Paradigm -

Basic concepts and benefits of OOP - Object Oriented Language - Application of OOP -

Structure of C++ - Applications of C++ - Tokens, Expressions and Control Structures -

Operators in C++ - Manipulators.

UNIT II: Functions in C++: Function Prototyping - Call by reference - Return by

reference - Inline functions - Default, const arguments - Function Overloading - Friend and

Virtual Functions. Classes and Objects: - Member functions - Nesting of member

functions - Private member functions - Memory Allocation for Objects - Static Data

Members - Static Member functions - Array of Objects - Objects as function arguments -

Friendly functions - Returning objects - const member functions - Pointer to members.

UNIT III: Constructors: Parameterized Constructors - Multiple Constructors in a class -

Constructors with default arguments - Dynamic initialization of objects - Copy and

Dynamic Constructors - Destructors. Operator Overloading: Overloading unary and

binary operators - Overloading binary operators using friend functions- Overloading the

extraction and the insertion operators.

UNIT IV: Inheritance: Defining derived classes - Single Inheritance - Making a private

member inheritable - Multiple inheritance - Hierarchical inheritance - Hybrid inheritance -

Virtual base classes - Abstract classes - Constructors in derived classes - Member classes -

Nesting of classes.

UNIT V: Streams: String I/O - Character I/O - Object I/O - I/O with multiple objects -

File pointers - Disk I/O with member functions. Exception handling - Templates -

Redirection - Command line arguments.

TEXT BOOKS:

1.E.Balagurusamy, “Object Oriented Programming With C++”, 6
th
 Edition, Galgotia,

Publications Pvt. Ltd., 2000.

REFERENCE BOOKS:

1.Herbert Schildt, C++: The Complete Reference, McGraw Hill Inc., 1997.

2.Stanley B. Lippman, Inside the C++ Object Model, Addison Wesley, 1996

software crisis

Basic concepts and benefits of OOP

Abstraction: The process of picking out i.e. abstracting similar characteristics of procedures and

objects.

Class: It means categorizing objects. However, a class defines all the common traits of the

numerous objects that fall under it.

Encapsulation: It is defined as wrapping the data under a single, consolidated unit. In Object

Oriented Programming, it is defined as binding data with a function that manipulates it.

Inheritance: Inheritance is defined as the ability of one class to derive its characteristics from

another class.

Interface: Interface comprises the languages and the codes used by various applications to

communicate with each other.

Object: Object is a self-contained entity. It consists of data as well as procedures.

Polymorphism: It refers to a programming language’s ability to process objects uniquely

according to their data type and class.

1. Simplicity: software objects model real world objects, so the complexity is reduced and the

program structure is very clear;

2. Modularity: each object forms a separate entity whose internal workings are decoupled from

other parts of the system;

3. Modifiability: it is easy to make minor changes in the data representation or the procedures in

an OO program.

4. Extensibility: adding new features or responding to changing operating environments can be

solved by introducing a few new objects and modifying some existing ones;

5. Maintainability: objects can be maintained separately, making locating and fixing problems

easier;

6. Re-usability: objects can be reused in different programs

structure of a c++ program

https://elysiumschool.weebly.com/
https://elysiumschool.weebly.com/
https://elysiumschool.weebly.com/

Variables

A variable is the storage location in memory that is stored by its value. A variable is identified or

denoted by a variable name. The variable name is a sequence of one or more letters, digits or

underscore, for example: character _

Rules for defining variable name:

 A variable name can have one or more letters or digits or underscore for example

character.

.

 White space, punctuation symbols or other characters are not permitted to denote variable

name. .

 A variable name must begin with a letter.

.

 Variable names cannot be keywords or any reserved words of the C++ programming

language.

.

 C++ is a case-sensitive language. Variable names written in capital letters differ from

variable names with the same name but written in small letters. For example, the variable

name EXFORSYS differs from the variable name exforsys.

A variable is the storage location in memory that is stored by variable value. The amount of

memory allocated or occupied by each variable differs as per the data stored. The amount of

memory used to store a single character is different from that of storing a single integer. A

variable must be declared for the specific data type.

Data Types

Below is a list of the most commonly used Data Types in C++ programming language:

 short int

 int

 long int

 float

 double

 long double

 char

 bool

short int : This data type is used to represent short integer.

int: This data type is used to represent integer.

long int: This data type is used to represent long integer.

float: This data type is used to represent floating point number.

double: This data type is used to represent double precision floating point number.

long double: This data type is used to represent double precision floating point number.

char: This data type is used to represent a single character.

bool: This data type is used to represent boolean value. It can take one of two values: True or

False.

Using variable names and data type, we shall now learn how to declare variables.

Declaring Variables:

In order for a variable to be used in C++ programming language, the variable must first be

declared. The syntax for declaring variable names is

data type variable name;

The date type can be int or float or any of the data types listed above. A variable name is given

based on the rules for defining variable name (refer above rules).

Example:

int a;

This declares a variable name a of type int.

If there exists more than one variable of the same type, such variables can be represented by

separating variable names using comma.

For instance

int x,y,z

This declares 3 variables x, y and z all of data type int.

The data type using integers (int, short int, long int) are further assigned a value of signed or

unsigned. Signed integers signify positive and negative number value. Unsigned integers signify

only positive numbers or zero.

For example it is declared as

unsigned short int a;

signed int z;

By default, unspecified integers signify a signed integer.

For example:

int a;

is declared a signed integer

It is possible to initialize values to variables:

data type variable name = value;

Example:

int a=0;

int b=5;

Constants

Constants have fixed value. Constants, like variables, contain data type. Integer constants are

represented as decimal notation, octal notation, and hexadecimal notation. Decimal notation is

represented with a number. Octal notation is represented with the number preceded by a zero

character. A hexadecimal number is preceded with the characters 0x.

Example

80 represent decimal

0115 represent octal

0x167 represent hexadecimal

By default, the integer constant is represented with a number.

The unsigned integer constant is represented with an appended character u. The long integer

constant is represented with character l.

Example:

78 represent int

85u present unsigned int

78l represent long

Floating point constants are numbers with decimal point and/or exponent.

Example

2.1567

4.02e24

These examples are valid floating point constants.

Floating point constants can be represented with f for floating and l for double precision floating

point numbers.

THANK YOU

This content is taken from the text books and reference books prescribed in the syllabus.

