UNIT II

World Time Zones and Elapsed Travel Times

In this unit, you will learn about the 24 -hour clock and its importance in planning travel itineraries. You will learn to understand the importance of world time zones when planning itineraries and how to calculate time differences around the world. You will read several examples that illustrate how to calculate time differences and elapsed travel times between countries. Finally, you will learn about the International Date Line and how it affects time differences.

Examining the 24-Hour Time Clock

The conventional time clock expresses time as a function of 12 -hour intervals with corresponding a.m. and p.m. designations. Although this method of telling time is used commonly throughout the world, it has significant shortcomings, particularly when applied to travel itineraries.

As a result, the travel industry uses a 24 -hour time clock to eliminate confusion over a.m. and p.m. distinctions and to facilitate easier calculation of elapsed travel times, which we will explore in the following Units.

24-Hour Clock System vs. the 12-Hour System

World Time Zones

In 1884, the world's major nations agreed to create a series of standardised time zones. The world is now divided into 24 time zones, beginning with the prime meridian in Greenwich, England. The prime meridian is an imaginary line running through Greenwich that connects the north and south poles.

The time at Greenwich and all other countries in this zone is called Greenwich Mean Time (GMT) and is also referred to as Universal Time Coordinated (UTC)

Time Zones of the World
The time in all other zones can be expressed by referring to Greenwich Mean Time or Universal Time Coordinated. The sign + (for plus) and - (for minus) are used in this context having the following application:

- GMT $+1($ or UTC +1$)=1$ hour ahead of GMT/UTC
- GMT - 1 (or UTC -1) $=1$ hour behind of GMT/UTC Up to GMT/UTC +12 and GMT/UTC - 12.

This diagram illustrates a scale of hours relative to GMT/UTC.

Scale of Hours

Each of the blocks represents one hour. When trying to work out the difference between two points on the scale, count the number of hours between them. This theoretical system has had to be adapted, in certain cases, in order to maintain the same local time with national boundaries or groups of islands.

Such local time, fixed by law, is called Standard Clock Time or Standard Time. Certain countries modify their standard time during the summer by advancing one hour (or a fraction of an hour in some areas). This temporary change is called Daylight Saving Time (DST).

Time charts are published in all major Airline Guides. Reproduced on the next two pages is the complete OAG International Time Calculator. It lists all countries, with an indication against each country of its standard time in relation to GMT/UTC.

In countries where Daylight Saving Time applies during certain periods of the year, such time is specified together with the periods during which it applies.

Standard Clock Time is expressed in hours fast (+) or slow (-) of GMT/UTC. All examples and exercises in this Unit are based on these extracts.

The following examples illustrate this time system:

Example 1

What is the local time in Addis Ababa (ADD), Ethiopia when it is 12:00 hours GMT?

In Ethiopia the standard time is GMT +3 all year round. This means that the local time is 3 hours ahead of GMT. The local time in Addis Ababa is 15:00 hours when it is 12:00 hours GMT

Example 2

What is the local time in Caracas (CCS), Venezuela on 1st August when it is 12:00 hours GMT? The chart indicates that in Venezuela the standard time of GMT - 4:30 applies all year. Local time on 1st August is 4 hours behind GMT and it is therefore, 07:30 hours in Caracas when it is 12:00 hours GMT.

International time calculator

International time calculator

| | | |
| :--- | :---: | :---: | :--- |

Example 3

What is the local time in Damascus (DAM), Syria on 10th July when it is 12:00 hours GMT?

Here, it is indicated that in Syria the daylight saving time of GMT + 3 applies during the period from 1st April to 30th September. Therefore, the local time is 3 hours ahead of GMT, meaning that it is 15:00 hours in Damascus when it is 12:00 hours GMT.

Example 4

In everyday work, it is often necessary to determine time differences between two places neither of which is on GMT. For instance, what is the local time in Frankfurt (FRA), Germany when it is 15:00 hours local time in Tokyo (TYO), Japan on 20th March?

In Germany, on 20th March the local time corresponds with standard time, that is GMT +1 .
In Japan, the local time is GMT +9 .
This means that the local time in Frankfurt is 8 hours $(9$ minus $1=8)$ behind that of Tokyo and it is, therefore, necessary to subtract 8 hours from the local time in Tokyo (15:00 hours) to arrive at the local time in Frankfurt, that is, 07:00 hours on the same day.

Example 5

What is the local time in Rome (ROM), Italy when it is 02:00 in La Paz (LPB), Bolivia on 24th March? On that date, the local time in Italy is GMT + 1 (standard time). In Bolivia the local time is GMT - 4. This means that the local time in Italy is 5 hours $(1$ plus $4=5)$ ahead of that of Bolivia.

It is therefore necessary to add 5 hours to the local time in La Paz (02:00) to arrive at the local time in Rome, that is, 07:00 on the same day.

Example 6

What would the local time in Rome be on 15th June when it is 02:00 in La Paz?
On that date, the local time in Italy is GMT + 2, since daylight saving time applies from 31st March to 26th October.

The local time in Bolivia remains at GMT - 4 .
This means that the local time in Italy would be 6 hours (2 plus $4=6$) ahead of that of Bolivia. It is therefore necessary to add 6 hours to the local time in $\mathrm{La} \mathrm{Paz}(02: 00)$ to arrive at the local time in Rome, that is 08:00 on the same day.

In very large countries where territories spread over several time zones, such as Australia, Brazil, Canada, Greenland, Indonesia, the Russian Federation, and the USA, several different standard times have been established for application in determined areas or states. The names of these multi-time zone countries are followed in the OAG International Time Calculator by two asterisks (**).

Example In the USA the standard time is GMT - 5 in the Eastern Time Zone, whereas it is GMT - 8 in the Pacific Time Zone.

USA**	Hours $(+/-$ GMT $)$	DST $+/-$ GMT	Daylight Saving Time DST period
Eastern Time (except Indiana)	-5	-4	13Mar -06 Nov
Central Time	-6	-5	13Mar -06 Nov
Mountain Time (except Arizona)	-7	-6	13Mar -06 Nov
Mountain Time, Arizona	-7		
Pacific Time	-8	-7	13Mar -06 Nov
Alaska	-9	-8	13Mar -06 Nov
Aleutian Islands	-10	-9	13Mar -06 Nov
Hawaiian islands	-10		

The same variations generally apply with respect to the daylight saving time, if any.

North American time zones from east to west	Some major destination cities AtlanticHalifax (YHZ) Port of Spain (POS) Santo Domingo (SDQ)
Eastern	Atlanta (ATL) Boston (BOS) Detroit (DTT) Kingston (KIN) Miami (MIA) Montreal (YMQ) Nassau (NAS) New York City (NYC) Orlando (MCO) Ottawa (YOW) Toronto (YTO) Washington DC (WAS)
Central	Acapulco (ACA) Chicago (CHI) Dallas (DAL) Houston (HOU) Mexico City (MEX) New Orleans (MSY)
Mountain	Calgary (YYC) Salt Lake City (SLC)
Pacific	Los Angeles (LAX) San Diego (SAN) San Francisco (SFO) Vancouver (YVR)

Note: Airlines' schedules are always published in Local Time. The time variation from GMT/UTC of each city is specified in airline timetables.

GMT/UTC

The time difference between two points can be determined as follows:
(a) If the local time at both points is ahead of GMT (GMT +) or behind GMT (GMT -), deduct the smaller from the larger figure.
Example
GMT + 2 and GMT + 10
10 minus $2=8$ hours time difference

Figure 5.13
(b) If the local time is ahead of GMT (GMT +) at one point and behind GMT (GMT -) at the other, add both figures together.

Example
GMT + 2 and GMT - 5
2 plus $5=7$ hours time difference

Example 1

Figure 5.14
The local time in Tokyo (TYO), Japan is 18:30 hours on the 1st of March. What is the local time and date in Sydney (SYD), NS, Australia?

$$
\begin{array}{ll}
\text { TYO } & \text { GMT }+9 \\
\text { SYD New South Wales } & \text { GMT +11 (Daylight Saving } \\
& \text { Time) }
\end{array}
$$

As the local time at both points is ahead of GMT (GMT +) we deduct the smaller from the larger figure.

SYD	GMT +11
TYO	Difference:

The local time in Sydney is 2 hours ahead (+) of Tokyo. 18:30 hours +2 hours $=20: 30$ hours on the same day (1 st March).

Figure 5.15
Example 2
The local time in Buenos Aires (BUE), Argentina is 15:25 hours on 22nd May. What is the local time and date in Honolulu (HNL), Hawaiian Islands, USA?
BUE
GMT - 3
HNL Hawaiian Islands
GMT - 10 (Standard Clock Time)

As the local time at both points is behind GMT (GMT -), we deduct the smaller from the larger figure.

HNL	GMT -10 BUE
	GMT -3 7 hours

The local time in Honolulu is 7 hours behind (-) Buenos Aires. 15:25 hours -7 hours $=08: 25$ hours on the same day (22nd May).

Example 3

The local time in Madrid (MAD), Spain is 05:00 hours on 30 November. What is the local time and date in Vancouver (YVR), BC, Canada?
MAD
GMT + 1
YVR Pacific Time
GMT-8

As the local time is ahead of GMT (GMT +) at one point and behind GMT (GMT -) at the other, we add both figures together.
MAD
YVR
GMT + 1
GMT - 8
Difference:
9 hours

The local time in Vancouver is 9 hours behind (-) Madrid.
05:00 hours -9 hours $=20: 00$ hours on the previous day (November 29th).

Example 4

The local time in Santiago (SCL), Chile is 20:25 hours on 15th February. What is the local time and date in Karachi (KHI), Pakistan?

```
SCL GMT - 3 (Daylight Saving Time)
KHI
GMT + 5
```

As the local time is ahead of GMT (GMT +) at one point and behind GMT (GMT -) at the other, we add both figures together.

SCL	
KHI	GMT -3
	Difference:
8 hours	

The local time in Karac is 8 hours ahead of (+) Santiago. 20:25 hours +8 hours $=04: 25$ hours on the next day (16th February).

International Date Line

Crossing the International Date Line makes the calculation of time differences between countries more complicated, because travelers either gain or lose a day during the process.

When a customer crosses the International Date Line travelling west, the day changes to the following day-Wednesday would immediately become Thursday.

Travelling the opposite direction has the opposite effect. So a customer crossing the International Date Line travelling east gains a day-in other words, Thursday becomes Wednesday.

It should be noted that the time of day (except at midnight) means nothing.
A customer could cross the date line at 15:00 or 02:00 and it has no effect on time of day. The only difference is the date-the hour remains the same.

The International Date Line is an imaginary north-south line through the Pacific Ocean, east and west of which the date differs (east being one day earlier).

Figure 5.19-International Date Line

> THE INTERNATIONAL DATE LINE MUST BE CONSIDERED AS A WALL WHICH CANNOT BE CROSSED WHEN CALCULATING TIME DIFFERENCES.
> ALL CALCULATION MUST ALWAYS BE DONE BY USING THE GMT/UTC TIME ZONE AS THE REFERENCE.

The following example should help clarify matters.
If your customers depart on Tuesday morning and travel from Honolulu to Tokyo, they would arrive after a nine-hour flight. But it would be Wednesday in Tokyo because they crossed the International Date Line.

Conversely, if they leave from Tokyo on Sunday morning and return to Honolulu, they will arrive on Saturday because now they crossed the date line travelling west to east.

However, if customers depart later in the day and cross the date line, matters can be trickier.

For example if customers leave Honolulu at 23:00 for Tokyo on Thursday it becomes Friday one hour after departure from Honolulu (23:00, Thursday plus one hour flying time $=$ midnight which changes Thursday to Friday), and they have not even crossed the date line yet.

Later on the flight, on Friday, they cross the date line and instantaneously it becomes Saturday! So the customers who left Honolulu midweek (Thursday) arrive Tokyo on the weekend (Saturday) after a 9-hour flight.

These types of time change considerations are particularly important to the business traveler who must do business during normal business hours.

Although these types of calculations can be complicated, most airline schedules give arrival times that are already adjusted for time-zone crossings and gained or lost days. Also a travel agent's computerized reservation system (GDS) will list the elapsed flying times of scheduled flights as do many online flight schedules displayed on the Internet.

Read the following examples.
They will give you a better understanding of calculating time differences involving the International Date Line.

Example 1

The distance between Nadi (NAN), Fiji and Apia (APW), Samoa is only $1,225 \mathrm{~km}$, but when it is Monday in Nadi, it is Sunday in Apia. The time difference between these two islands is 23 hours.

NAN	GMT +12
APW	Difference:
	$\frac{\text { GMT }-11}{23 \text { hours }}$

The local time in Nadi is 23 hours ahead of Apia.

Figure 5.21
When the local time in Nadi, is 01:00 on Monday, the local time in Apia is 02:00 on the previous day, that is, Sunday.
Nadi and Apia are separated by the International Date Line. When calculating the time difference between these two cities, the International Date Line cannot be crossed. The calculation must be done using GMT/UTC.

When the date line is crossed eastbound, for example from Nadi to Apia on Monday, a day is "gained" as the arrival in Apia will take place on Sunday.

Thus aircraft crossing the International Date Line while flying eastbound over the Pacific Ocean could reach their destination on the day before their departure:
For example, the flight Air Pacific FJ 252 has an effective flying time of 2 hours 55 minutes and with a departure from Nadi (NAN), Fiji on Monday at 15:05 hours produces an arrival in Apia (APW), Samoa on Sunday at 19:00 hours.
Trans-Pacific flights leaving Japan or New Zealand in the evening arrive on the West Coast of the United States on the afternoon of the same day:
For example, flight Japan Airlines JL 064 on 21st May has an effective flying time of 9 hours 45 minutes with a departure from Tokyo (NRT), Japan on Thursday at 21:30 hours, which produces an arrival in Los Angeles (LAX), USA on Thursday at 15:15 hours.

Example 2

Although Papeete (PPT), Tahiti is not very far from Auckland (AKL), New Zealand, there is a time difference of 22 hours, in July for example:

PPT GMT - 10
AKL GMT + 12 (Standard Time)
As the local time is ahead of GMT (GMT +) at one point and behind GMT (GMT -) at the other, we add both figures together.

PPT GMT - 10
AKL GMT + 12 Difference: 22 hours

The local time in Papeete is 10:00 hours on Monday; the local time in Auckland is 08:00 hours on Tuesday.

Papeete and Auckland are separated by the International Date Line.
When calculating the time difference between two cities, the International Date Line cannot be crossed. The calculation must be done using GMT/UTC.

When the International Date Line is crossed westbound, for example from Papeete to Auckland on Monday, a day is "lost" as the arrival date in New Zealand will be on Tuesday:

The flight Air New Zealand NZ 005 on 17th July (effective flying time 5 hours 45 minutes) departs from Papeete (PPT), Tahiti on Tuesday at 02:30 hours and arrives in Auckland (AKL), New Zealand on Wednesday at 06:15 hours.

The fact that a flight arrives at its destination on the day before or after is highlighted in airline timetables by means of a special sign printed next to the time of arrival at destination.

The transport time is the number of hours and minutes from the time of departure at the airport of origin until the time of arrival at the airport of final destination. This includes eventual transit and/or transfer times.

In airline timetables, departure and arrival times are always expressed in local time.
Time differences must, therefore, always be taken into account when calculating the total transport time.

Example 1

Flight AF 033 leaves Paris at 12:30 on Tuesday, 12th December and arrives in Montreal at 13:55 on the same day.

What is the total transport time?
Montreal is situated in the Eastern Time zone of Canada.
The calculation should be made as follows:

- First Step: Ascertain the local time applicable at departure and arrival cities. PAR = GMT + $1($ Standard Clock Time) YMQ $=$ GMT $-5($ Standard Clock Time)
- Second Step: Convert arrival and departure times to GMT. To convert departure and arrival times to GMT:
- Deduct the number of hours from the local time when it is ahead of GMT (+)
- Add the number of hours to the local time when it is behind GMT (-) PAR 12:30 TUE at GMT $+1=$ 11:30 GMT Tuesday YMQ 13:55 TUE at GMT $-5=18: 55$ GMT Tuesday
- Third Step: Now that a common denominator has been found, namely GMT, calculate the difference between the departure and arrival times.

The result will give the total transport time, that is,
7 hours 25 minutes.

Example 2

What is the total transport time for a journey leaving Lusaka (Zambia) at 0910 on Friday, 6th January, and arriving in Hong Kong on Saturday, 7th January, at 1450? This trip includes several connections.

The method of calculation used in the first example can also be applied to this one, as follows:

- First Step: Determine the local time at departure and arrival points:
$\mathrm{LUN}=\mathrm{GMT}+2 \mathrm{HKG}=\mathrm{GMT}+8$
- Second Step: Convert departure and arrival times to GMT:

LUN 09:10 FRI $=$ 07:10 GMT Friday HKG 14:50 SAT $=06: 50$ GMT Saturday

- Third Step: Calculate the difference: From 07:10 GMT FRI To 06:50 GMT SAT

Total transport time: 23 hours 40 minutes

