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Unit IV Topic

4.1 Branching Process (one dimension only)
4.2 Generating Functions

4.3 Properties of Generating Functions

4.4 Concept of Weiner Process

4.5 Weiner Process as a limit of random walk.

4.1 Branching Process (one dimension only)

In real life situations, it sometimes happens that although a suitable Markov
Chain can be formed, it may be difficult to define transition probabilities.

Branching Processes are example of Markov chains. For example, consider the
organisms that produce offspring. Suppose an organism at the end of its lifetime

produces a random number ‘ £ of offspring with probability distribution,

Pr{t=k}=po Kk =0,1,2, . (1)

where pc>0and Y5y pk=L.

Let us assume that all the offspring act independently of each other and at the
end of their lifetime, individually have progeny in accordance with the probability
distribution given in ().

The process {X,} where X, is the population size at the n™ generation, is a
Markov Chain. Then the process {X,} is called Discrete Time Branching Process.

The only knowledge regarding the distribution of X1, Xno, ....... ) CTR. Xn ,
N< N<nNg ... < ny, is the last known population count, since the number of the
offspring is a function merely of the present population size. The transition matrix is
given by

Pi=Pr{Xn1=j/ Xn=1}

= Pr{ &+ &+ ...... +&=]} (2)
where &’s follow independent probability distribution given in (1).

In the n™™ generation, the ‘i’ individuals independently give rise to number of

offspring {& « ; k =1, 2, .... i} and hence the cumulative number produced is &+ &+

Then the Generating Function (GF) of &+ &+ ... + & is [o@s)].
Hence, Pjjis the j™ coefficient in the power series expansion of /o(s)]'.

Consider another example of Electron Multipliers. An electronic multiplier is a
device amplifies a weak current of electron. A series of plates are set in the path of
electrons by source. Each electron, as it strikes the 1% plate, generates a random number
of new electrons, which in turn strike the next plate and produce more electrons etc.,
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Let Xo be the number electrons initially emitted, X; be the number electrons
emitted on the 1% plate by the impact due to the X, initial electrons; in general X, be
the number electrons emitted on the n' plate due to the electrons emanating from the
(n-1)" plate.

The sequence of random variables {X;,1=0, 1, 2, ...., n} constitutes a branching
process.

4.2 Generating Function

The Generating Functions are extremely useful in the study of branching processes.

We will develop some relations for the probability generating functions
fthe | . Assum-+ fir<st that the imitial population con=ist= of one individoal
e . assume \ I. Clearly we can write for every a2 = O, 1. 2

N_ . b N -
where Z_(r = 1) are independently identically distributed random variables
with distnibution
Pr{z. — k! —p, . k=—0.1.2..... %pazl-

Es

W e introduce the probability generating function

ofs) = f_ Past

=nd
o (s) = _i_ PriX, — k}s*, for »—0,1.2, .
Manifestiv. -
Cals)=3=s and @, (s) = ofs)-
Further.
De—:i{s) = > PriX__, = Kkis*

=3 3 PriX.., =kX,—j} Pr{X, — jls*

=3 # 3 PriX.—j} - Pr{g, + -~ £, — &)

=3 PrfX_—=j}- 3 Prfs, + oot s YA 3]
Since , (r = 1. 2. ___j) are independent, identically distributed random

varnables with common probability generating function ©(s). the su=

: = === — £, bhas the probability generating function [©(s)}’. Thus,

(AT

O, 18) =

PriX, = jile(s)]) -

M
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—

But the righl-hund side 1s just the generating function @, (+) evaluated at
(s)- Thus. .
i o0 (8) = @05 (2.2)

Jterating this relation we obtain

Pns 1 (8) = @u(@(9) = 0, (0(0(5)) = @, (@2(5)
Py - :(‘r":(h"(!‘”) 0 2@ 3(5)).

It follows. by induction. that for anyv k=0.1,....n
P+ ,[-“) = Qp-r(Pr+ l(s)}‘
In particular. with k= n— 1.

P 1(8) = @(@u(s))- (2.3)

If instead of X, = 1 we assume X, = i (constant), then

(Po(s) = gio and (pl(s) — {@(S)]m
because

We still have
@n+1(5) = @al@(s))

Let us consider the branching process {X,} where X, is the population size at

the n™ generation with random number ¢ of offspring which are all independent with
probability distribution,

Pr{t=k}=p, k =0, 1,2, ... )

where px > 0 and pk =1. Also assume that Xo=1.

os) = Y Pr{X,=k}s", for n=0,1.2, . .

It is known that

and the generating function such that

01(8)=0(s) (1)
Pn+1(S)= 9 [pn(S)]
(0n+1(3)= On [(D(S)] ........... (2)

Let m=EX, and ¢t = Var X, = E(X3) — [E(X))]?

exist.
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4.3 Properties of Generating Functions

1) There is a one-to-one relation between the pmf and the gf:

oo o d*¢(s)
Pk =T "dsk <0
2) If &,...,&, are independent random variables with generating functions ¢;(s),..., On(s), and we let

X=&6++&, then
(b/\'(s) = ff)l(S) i 02(9) Sk (f)n(S).

3) The moments of ¢ can be computed by differentiating the g.f., for example the first moment is given

by
dg(s)

E[&] =N +2])2+3p3.+..., o
ds

s=1

4)  The p.g.f. ¢(s) is continuous, non-decreasing and convex on [0,1].
! d
5) ') =22 ., = EW).

6) o'()=[E2Y ., = var(x),

ds 2
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Another definition for Branching process is as follows:

A Galton-Watson process is a Markov chain (X, n = 0, I, 2, ... ) having state space N (the set of
non-negative integers), such that !

X

'\.r|+l = 2 'L‘;r ' (
r=| h
WherLe % are Lid. random variables with distribution ()
et
P(s)=Y"Pr{¢, =k}s* = > pst
k k (2
be the p.g.f. of {{,} and let
P, ()= Pr{X, =k}s*, n=0,1,2, .. (3
- [ J)

be the p.g.f. of {X,).

We assume that X, = 1: clearly P. () = « = e :
offspring d:iSIl‘ibU[iDn_ﬂ Y Po(s)=sand Py (s) =P (s). The r.v.’s X, and &, both give (the same)

Theorem 1. We have

P, (s)= P, (P(s)

)

and P(s)=P(P,_(s). (9
Proof: We have, forn =1, 2, ...
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| S~

[ &

) ‘.“\ g ' | “
di p (=T Pr{X, =h}s
&l Emfs A
40 1 |
" JIRy ¢ R
vl‘l{\ }lvl‘l{ +C,_‘+--'+c,’—k}.\ :’
L)
y-\\ |
. of L)+ f ji.i.d. randot
ing the p.g he sum G, ++G; ©
. brackets, being the p.g.f.oft
ithin the square brac
e ¢\‘\N\\l\‘l\ Wi

s
l\k‘\‘ ("\\h W “h “ ‘ ’ (\\‘ [\ ‘“Rl\ l} (\‘l 1.
\3““ ) )

J
P 3= Sl‘r{.\',, =il
vel)
=P (PW).

- on Xo = L
Thus we get (4 Putting 7 = 2. 3, 4., we get, when Ao

= )
P, ()= AP = rmm P =P (P()). Pils)= P(P(s)

and so on, lrerating 4) we get
P =Py (P =P, (PP

( 6
=P (P 8).

Fen=3 P =B (P =P(P (s)).
Again iterating ( 6). we get
p (=P, (P(P) =B s (A ).

and for n = 4, P (s) =B (P ()= P(R ).
Thus P =B, o () k=012
adfork=n-1

P =B (P, ()= PP, ).
Thus we get ( 5),

Note that even when Xo=i# 1, the relation () holds but () does not hold.

Moments of X,
Thoorm

1 could be used o find the moments of X, We have

PO =B, )= E(X)=m (say).
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ikp}. and rIE = vir “.JJJ then

Theorem 2. If m=£f,!rjj=+ r
={]

[ a
E*{Xﬂ}=mn y
il [t |J .
m" tm =1 1 »
ﬂnd W'Hr[xl;ull: . _m.-_l e Ifm II:JI
-~ ifm=1.

Proof: Differentiating ( 4), we get

Pl(s)=P, (pls))P'(s)
whence I?;(]Jzfi_ll’UF"r]j:mP;.J (1)
and on iterating

P/(1)=m*E_,(1)

=m" P'(1)=m",
Thus E(X,)=P(1)=m",

Differentiating ( 5) twice and proceeding in a similar fashion, one can find the second moment
P, (1), and thus the variance of X, in the form ( 8).

One can likewise proceed to get higher moments of X,

Examples:

Example 3(a). Let pj, k =0, 1,2 be the probability that an individual in 2 generation generates k
ofsprings. Then P (5) = py + pis + p &%, and Py(s), Py(s) can be calculated by simple algebra. The
pobability of extinction is one if m < 13 if m > 1, it is given by the root less than 1 of s = P (s), Suppose
tat py =213, p; = 116, and p, = 1/6; then m = 1/2 < 1. The equation s = P () becomes 52 - 55 + 4 =
Ovith roots 1 and 4; the probability of extinction is 1. Suppose that p, = 14, p, = /4P, = 1/2; then
m=3/4> 1; the equation s = P (5) has the roots 1/2 and 1. The oot 1/2 (smaller than unity) gives the
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———

probability of extinction. Note that the probability of extinction is po/p; Of I '“O“‘iﬂsmnqw
Po 2 pyand also that p, < for 2 ) py iff m > (or ) 1.

Example 3(b). Let the probability distribution of the number of offsprings generated by an indyyig,
in a generation be Poisson with mena A i.e. P(s) ="' It can be easily seen that the graph of Py

M D<s<] (ie. between the points (0. e and (1, 1) is convex, and that the curve of nm,,,,,,‘

Bies above v = 5 when A < 1, there being no other root of £ = P () except umity in (0, 1), “"P"Mh)
of extinction is then 1. When A > |, the curve y = P (s) intersects v = 5 1 another point Whose
s=coordinate has a value < | and the probability of extinction will be this value of 5. For example, ¢

A =2, it can be seen that s =¢”""""" has a root approximately equal to 0.2 which is smaller than I and
the probability of extinction is ¢ =0.2.

Example 3(c). Let the distribution of the number of offsprings be geometric with p, = 4 (| - b
k=0 L2 .. (0<h<1)Thenm = (I - b¥b and Pls)=bl(1-s (1-b)). The equation s = P () huy g

roots | and /(1 ~b). If m < 1. then the probability of extinction is 1 if m > I, the root b1 -, . |
and the probability of extinction is equal to the root 41 — b).

Example 3(@d). Let p, =bc*" k=1,2, . 0<b,c.b+c<] and p, =l-2m- Then = p/(
et

l-c':
We have
P(:)=1-L+£~. »
. I-c l-es L
The quadratic equation s = P (5) has the roots
1-(b+¢)

I and cli-0 =’n(“¥)-

If m=1, then 5, = | and the ility of extinction is 1- i VRN
extincion i g = 5 (< 1), probability extinction is I if m > 1, 5, < 1, and the probability of

q = 5, = 0819, : v €=05893 (m =~ 125> 1) and the probability of exuncoon

Note: It is not always possible 10 put the generating functions . ——
fungtimsP(s)obnimdinExamples:i(c)mud)m 3 « {5) in closed form. The x

WhenP(s)is!l’ieabovc!mm.P,(s)isalsoufu:samfm

P.(J):»a‘_-*_a!i
Y. +6.J
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? B Te 5, mfuwnomofmnvb

v“';n,,,nmybem"'ﬂhequmu
t"“",M,omtl8!'“”‘»‘““"\‘Uo<.=- > or |

w,.=:°.V=1-MP(Jo)=SmP(v)- I, 50 that

P(\')
P(s)- l

l-¢

I-c.so

.

\‘-
s-1

Pls)-s

=Sl

=%

‘-

P (s)=1-m (,l‘_’!_.]+
|

P-4
(s-1)

-5

_}.

wmtl.d!enukinglinﬁtsdtheﬁghlhlndsi&ass—»l,wgm

l-¢ 1
l-csy m
Hence
P(s)-s, {l\"-‘o
P()-1 m)s-1"
Thus
Py(s)-sy P(P(s)) -5 (l ]P(s)-so
-1 P(P())-1 \m)Pl)-1
.(.L)ﬁ
mz s-1
and on iteration
P(") £2\80"% (_l_)l"-'o n=L2..
P(s)l m')s-1'
Solving for P, (s), we get

38




18MST24E: Stochastic Processes UNIT-IV Handled by: Dr. S. RaviSankar Page: 13
I MSc Statistics Semester-1l  Year/Semester: 2020-21/Even Mob.: 9842007798 Dept. of Statistics

c+(|-2")5
If m=1, then 5, =1 mdP(J)=‘_‘l_:—c;_’_
m‘+‘|"f“'u)"_

and P"(S)g:“—c-}n()""c-‘

Limiting Results
Suppose that m = 1. then &* = 2¢/(1-c¢),
nll-c)

"Pf{x">0}="{|-P"(m}_ |-c+nc

l-c 2 ( )
and lim nPr{X, >0}=—-2——=;-2— (see Theorem 9.8(a))

Suppose that m < 1, then 5, > 1 and
tim m™* Pe{X, >0} = limm ™" {1- £, (0)}
pe n—s0

= Iim l.-so =3°-l.
w—mm"—s5 %

P.(s)-P.(0)

i Pr{X, = xJ
Again 2.: {x, =kix, >0} o

R g AL,
1-#7,(0)

(15

Lm® -5,

Thus ,";,".‘_;Pr{X. =k|X, >0}s* ”"["i][lsi)“'
5

—

It can be easily verified that b(s) satisfies the equation
b(P(s))=mb(s)+1—m
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4.4 Concept of Weiner Process (Brownian Motion Process)

R. Brown (1972) observed that small particles immersed in a liquid exhibit
ceaseless irregular motion. The Brownian Motion Process arose an early attempt to
explain this phenomenon. Today, the Brownian motion process and its many
generations and extensions arise in numerous areas such as economics, communication
theory, biology, management science and mathematical statistics.

The Wiener process is a real valued continuous-time stochastic process named
in honor of American mathematician Norbert Wiener for his investigations on the

mathematical properties of the one-dimensional Brownian motion.

Definition of Wiener Process:
The stochastic process {X(t)} is called a Wiener Process (or Wiener-Einstein
Process or Brownian Motion Process) with mean p and variance o2, if
1) X(t) has independent increments, ie., for every pair of disjoint intervals of time
(s,t) and (u,v), where s <t <u <v, the r.v.s {X(t) — X(s)} and {X(v)
— X(u)} are independent.
i) Every increment {X(t) — X(s)} is normally distributed with mean p(t-s) and
variance o*(t-s).
Note:
1) /)= Wiener Process is a Markov Process with independent increments.
2) if)= Wiener Process is a Gaussian.
3) A Wiener Process {X(z), t >0} with X(0) =0, u=0 and ¢ =1, is called a
Standard Wiener Process.

4.5 Weiner Process as a limit of random walk
Consider that a Brownian particle performs a random walk such that in a small

interval of time of duration At, the displacement of the particle to the right or to the left
is also of small magnitude Ax, the total displacement X(t) of the particle in time 't'

being 'x'.
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Suppose that a random variable Z; denotes the length of the i" step taken by the

particle in a small interval of time At and that
Pr{Zi= 4x} = p and Pr{Z;=-4x} = q,
p+qg=1,0<p<l, where pis independent of x’and ‘t’.

Suppose that the interval of length ‘¢’ is divided into ‘%’ equal subintervals of
length 4¢ and that the displacement Z;, i=1, 2, ..., n in the 'n’ steps are mutually
independent random variables. Then n.4t = ¢ and the total displacement X(t) is the sum
of ‘n’i.i.d. random variables Z;, i=1, 2, ..., n.

ie, X(t) = X1 Zin=n(t) =t/,,.

We know E{Zi}=(p-g) 4x and V{Zi}=4pq (4x)%
Hence, E{X()}=n.E{Zi} =t (p-0)?%/,, . (1)

and V{X(t) }=n.V{Zi} = 4pqt (Ax)z/At :

As Ax—0, At—0, we must have

2
(4x) /At - alimit, (p —q) » amultiple of Ax. ... (2)
Particularly in an interval of length ‘#’, X(?) has mean-value function =put and
variance function = ¢%t. In other words, as Ax—0, At—0, in such a way that the

equation (2) is satisfied and per unit of time,

E{X(t)}—»pu and V{X(t)}—>oc%. ... (3)
From (1) for t =1 and from (3) we have
— 2
M - IJ' and M - 0'2. ........... (4)
At At

The relation (2) and (4) will be satisfied, when
Ax = o(48)*?,
1 M 1/2 — 1l _ K 172
p=-[1+-(y™land q=-[1—=.(40)"]
Since, Z;i s are i.i.d. random variables, the sum Z;ﬁ) Zi = X(t) for large n(t)
(=n), is asymptotically normal with mean pt and variance ¢°t . Here, ‘t’ is the length
of the interval of time during which the displacement takes place is X(t) — X(0). Thus,
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for 0 <s <t, {X(t) — X(s)} is normally distributed with mean p(t-s) and variance o(t-
s). Further, the increments {X(s) — X(0)} and {X(t) — X(s)} are mutually independent.
= {X(t)} is a Markov Process.
Since, {X(t) — X(0)} is normally distributed with mean pt and variance ¢“t, the
transition probability density function of a Wiener Process is given by
P(Xo, x; )dx = Prix <X(t) < x+dx / X(0) = xo}

1 _(x—xg-pt)?
.e 202t dx.

oV2mt



18MST24E: Stochastic Processes UNIT-IV Handled by: Dr. S. RaviSankar Page: 17
I MSc Statistics Semester-1l  Year/Semester: 2020-21/Even Mob.: 9842007798 Dept. of Statistics

- Brownian Motion as a Limit of Random Walks. One of the many reasons that Brow-
nian motion is important in probability theory is that it is, in a certain sense, a limit of
rescaled simple random walks. Let £;,£,.... be a sequence of independent, identically
distributed random variables with mean 0 and variance 1. For each n > 1 define a
continuous-time stochastic process {1, ( l)}m, by

(1 Walt) = — f Y &

1<)<
|

This is a random step function with jumps of size +1//n at times k/n, where k € Z,.
Since the random variables ¢; are independent, the increments of IV, (#) are independent.
Moreover, for large n the distribution of W;,(f + 5) — Wy(s) is close to the NORMAL(0, 1)
distribution, by the Central Limit theorem. Thus, it requires only a small leap of faith to
believe that, as n — o, the distribution of the random function W, (t) approaches (in a
sense made precise below) that of a standard Brownian motion.

Why is this important? First, it explains, at least in part, why the Wiener process arises
so commonly in nature. Many stochastic processes behave, at least tor long stretches of
time, like random walks with small but frequent jumps. The argument above suggests
that such processes will look, at least approximately, and on the appropriate time scale,
like Brownian motion.

Second, it suggests that many important “statistics” of the random walk will have lim-
iting distributions, and that the limiting distributions will be the distributions of the cor-
responding statistics of Brownian motion. The simplest instance of this principle is the
central limit theorem: the distribution of W,,(1) is, for large n close to that of W(1) (the
gaussian distribution with mean ( and variance 1). Other important instances do not fol-
low s0 easily from the central limit theorem. For example, the distribution of

(2) M, (t) = umx H,,(t) = Imax Z 3

0<l<nl

converges, as 11 — x, to that of

(3) M(t) := max W(t).

D<a<t

The distribution of M(t) will be calculated explicitly below, along with the distributions of
several related random variables connected with the Brownian path,
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Application of Brownian / Branching Process and the analysis using Python.

Brownian Motion in Python

Simulation and animated visualization of Brownian Motion in Python
with Matplotlib
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Convergence to a Brownian Motion
Forget Determinism, see
Randomness in Action: How to
Model Stock Prices
Geometric Brownian Motion in Python with Matplotlib
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Geometric Brownian Motion
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