
Basic of R language
Dr. S. DEVAARUL

Learning aims
• Basic use of R and R help
• How to give R commands
• R data structures
• Reading and writing data• Reading and writing data
• Some more R commands (exercises)

R project
• ”R is a free software environment for

statistical computing and graphics”
(http://www.r-project.org)

• ”Bioconductor is a software project for the • ”Bioconductor is a software project for the
analysis of genomic data”
(http://www.bioconductor.org)
– Currently works as an expansion to R

Packages
• R consists of a core and packages.
• Packages contain functions that are not

available in the core.
• For example, Bioconductor code is • For example, Bioconductor code is

distributed as several dozen of packages
for R.
– Software packages
– Metadata (annotation) packages

Starting the work with R

Start help

Help - Search engine

Help - packages

Anatomy of a help file 1/2

Function {package}

General descriptionGeneral description
Command and it’s
argument
Detailed description
of arguments

Anatomy of a help file 2/2

Description of how
function actually
worksworks
What function
returns
Related functions

Examples, can be
run from R by: example(mas5)

Functions or commands in R 1/3
• To use a function in a package, the package needs to be loaded in memory.
• Command for this is library(), for example:

library(affy)library(affy)
• There are three parts in a command:

– the command
– brackets
– Arguments inside brackets (these are not always present)

Functions or commands in R 2/3
• R is case sensitive, so take care when typing in the commands!

– library(affy) works, but Library(affy) does not.
• Multiple commands can be written on the same • Multiple commands can be written on the same line. Here we first remove missing values from the variable year, and then calculate it’s arithmetic average.

– Writing:
• na.omit(year)
• mean(year)

– Would be the same as
• mean(na.omit(year))

Functions or commands in R 3/3
• Command can have many arguments.

These are always giving inside the
brackets.

• Numeric (1, 2, 3…) or logic (T/F) values • Numeric (1, 2, 3…) or logic (T/F) values
and names of existing objects are given
for the arguments without quotes, but
string values, such as file names, are
always put inside quotes. For example:

• mas5(dat3, normalize=T, analysis=”absolute”)

Data structures 1/6
• Vector

– A list of numbers, such as (1,2,3,4,5)
– R: a<-c(1,2,3,4,5)

• Command c creates a vector that is assigned to object a• Command c creates a vector that is assigned to object a
• Factor

– A list of levels, either numeric or string
– R: b<-as.factor(a)

• Vector a is converted into a factor

Data structures 2/6
• Data frame

– A table where columns can contain numeric and string values
– R: d<-data.frame(a, b)

• Matrix
– All columns must contain either numeric or string values, but these can not be combined
– R: e<-as.matrix(d)

• Data frame d is converted into a matrix e
– R: f<-as.data.frame(e)

• Matrix e is converted into a dataframe f

Data structures 3/6
• List

– Contains a list of objects of possibly different types.
– R: g<-as.list(d)

• Converts a data frame d into a list g• Converts a data frame d into a list g
• Class structures

– Many of the Bioconductor functions create a formal class structure, such as an AffyBatch object.
– They contain data in slots
– Slots can be accessed using the @-operator:

• dat2@cdfName

Data structures 4/6
• Some command need to get, for example, a matrix, and do not accept a data frame. Data frame would give an error message.
• To check the object type:

– R: class(d)– R: class(d)
• To check what fields there are in the object:

– R: d
– R: str(d)

• To check the size of the table/matrix:
– R: dim(d)

• To check the length of a factor of vector:
– R: length(a)

Data structures 5/6
• Some data frame related commands:

– R: names(d)
• Reports column names

– R: row.names(d)
• Reports row names• Reports row names

• These can also be used for giving the names for the data frame. For example:
– R: row.names(d)<-c("a","b","c","d","e")

• Letters from a to e are used as the row names for data frame d
• Note the quotes around the string values!

– R: row.names(d)

Data structures 5/6
• Naming objects:

– Never use command names as object names!
– If your unsure whether something is a command

name, type to the comman line first. If it gives an error
message, you’re safe to use it.message, you’re safe to use it.

– Object names can’t start with a number
– Never use special characters, such as å, ä, or ö in

object names.
– Underscore (_) is not usable, use dot (.) instead:

• Not acceptable: good_data
• Better way: good.data

– Object names are case sensitive, just like commands

Reading data 1/2
• Command for reading in text files is:

read.table(”suomi.txt”, header=T, sep=”\t”)
• This examples has one command with three

arguments: file name (in quotes), header that arguments: file name (in quotes), header that
tells whether columns have titles, and sep that
tells that the file is tab-delimited.

Reading data 2/2
• It is customary to save the data in an object in R. This is done with the assignment operator (<-):

dat<-read.table(”suomi.txt”, header=T, sep=”\t”)
• Here, the data read from file suomi.txt is saved • Here, the data read from file suomi.txt is saved in an object dat in R memory.
• The name of the object is on the left and what is assigned to the object is on the right.
• Command read.table() creates a data frame.

Using data frames
• Individual columns in the data frame can be

accessed using one of the following ways:
– Use its name:

• dat$year
• dat is the data frame, and year is the header of one of its columns. • dat is the data frame, and year is the header of one of its columns.

Dollar sign ($) is an opertaor that accesses that column.
– Split the data frame into variables, and use the names

directly:
• attach(dat)
• year

– Use subscripts

Subscripts 1/2
• Subscripts are given inside square brackets after the object’s name:

– dat[,1]
• Gets the first column from the object dat

– dat[,1]
• Gets the first row from the object dat

– dat[1,1]
• Gets the first row and it’s first column from the object dat

• Note that dat is now an object, not a command!

Subscripts 2/2
• Subscripts can be used for, e.g., extracting a

subset of the data:
– dat[which(dat$year>1900),]

• Now, this takes a bit of pondering to work out…
• First we have the object dat, and we are accessing a part of it, • First we have the object dat, and we are accessing a part of it,

because it’s name is followed by the square brackets
• Then we have one command (which) that makes an evaluation

whether the column year in the object dat has a value higher than
1900.

• Last the subscript ends with a comma, that tells us that we are
accessing rows.

• So this command takes all the rows that have a year higher 1900
from the object dat that is a data frame.

Writing tables
• To write a table:

– write.table(dat, ”dat.txt”, sep=”\t”)
– Here an object dat is written to a file called dat.txt. This file should be

tab-delimited (argument sep).
• To capture what is written on the screen:• To capture what is written on the screen:

– sink(”output.txt”)
– dat
– sink()
– Here, output written on the screen should be written to a file output.txt

instead. Contents of the object dat are written to the named file. Last,
the file is closed.

– Note that if you accidentally omit the last command, you’ll not be able
to see any output on the screen, because output is still redirected to a file!

Quitting R
• Use command q() or menu choise File->Exit.
• R asks whether to save workspace image. If you do, all the object currently in R memory are written to a file .Rdata, and all command will be written a file .Rhistory.written a file .Rhistory.
• These can be loaded later, and you can continue your work from where you left it.
• Loading can be done after starting R using the manu choises File->Load Workspace and File-> Load History.

In summary 1/2
• Commands can be recognized from the brackets ”()” that follow them. If you calculate how many bracket pairs there are, you’ll be able to identify the number of commands.

– pData(dat)<-pd
• Assignment to an object is denoted by ”<-” or ”->” or ”=”. If you see a notation ”= =”, you’ll looking at a comparison operator.

– Many other notations can be found from the documentation for the Base – Many other notations can be found from the documentation for the Base package or R.
• Table-like objects are often followed by square brackets ”[]”. Square never associate with commands, only objects.

– dat[,1]
• Special characters $ and @ are used denoting individual columns in a data frame or an individual slot in a class type of an object, respectively.

– dat$year
– dat2@cdfName

In summary 2/2
• If you encounter a new command during the exercises, and you’d like to know what it does, please consult the documentation. All R commands are listed nowhere, and the only way to get to know new commands is to read the documentation files, so we’d like you to practise this youself.youself.
• You’ll probably see command and notations that were not introduced in this talk. This in intentional, because we thought that these things are best handled on a situational basis. In such cases, please ask for more clarifications if needed.
• If you run into problems, please ask for help from the teachers. That’s why we are here!

Installing R

Downloading R

Downloading R

Downloading R

Downloading R

Downloading R

Installing R for Windows
• Execute the R-2.3.0-win32.exe with

administrator privileges
• Once the program is installed, run the R

program by clicking on its iconprogram by clicking on its icon

• R 2.2.1 with Bioconductor 1.7.0 is installed
on corona.csc.fi, also

• R 2.3.1 is in works

Downloading Bioconductor

Installing Bioconductor

Installing Bioconductor

Installing Bioconductor

Installing Bioconductor

Installing Bioconductor (the best way)
• Alternatively, you can install Bioconductor

using a script:
source("http://www.bioconductor.org/biocLite.R")source("http://www.bioconductor.org/biocLite.R")
biocLite()
biocLite(c(” "hgu133a", "hgu133acdf",
"hgu133aprobe", "ygs98", "ygs98cdf",
"ygs98probe")

Linear Models & Descriptive
Statistics• Has functions for all common

statistics
• summary() gives lowest, mean,

median, first, third quartiles, median, first, third quartiles,
highest for numeric variables

• stem() gives stem-leaf plots
• table() gives tabulation of

categorical variables

Basics
• Highly Functional

– Everything done through functions
– Strict named arguments
– Abbreviations in arguments OK (e.g. T for TRUE)

• Object Oriented• Object Oriented
– Everything is an object
– “<-” is an assignment operator
– “X <- 5”: X GETS the value 5

Data Structures
• Supports virtually any type of data
• Numbers, characters, logicals (TRUE/

FALSE)
• Arrays of virtually unlimited sizes• Arrays of virtually unlimited sizes
• Simplest: Vectors and Matrices
• Lists: Can Contain mixed type variables
• Data Frame: Rectangular Data Set

Data Structure in R
Linear Rectangular

All Same Type VECTORS MATRIX*All Same Type VECTORS MATRIX*

Mixed LIST DATA FRAME

Reading Data: summary
• Directly using a vector e.g.: x <-

c(1,2,3…)
• Using scan and read.table function
• Using matrix function to read data • Using matrix function to read data

matrices
• Using data.frame to read mixed data
• library(foreign) for data from other

programs

Accessing Variables
• edit(<mydataobject>)
• Subscripts essential tools

– x[1] identifies first element in vector x
– y[1,] identifies first row in matrix y– y[1,] identifies first row in matrix y
– y[,1] identifies first column in matrix y

• $ sign for lists and data frames
– myframe$age gets age variable of myframe
– attach(dataframe) -> extract by variable name

Subset Data
• Using subset function

– subset() will subset the dataframe
• Subscripting from data frames

– myframe[,1] gives first column of myframe
• Specifying a vector• Specifying a vector

– myframe[1:5] gives first 5 rows of data
• Using logical expressions

– myframe[myframe[,1], < 5,] gets all rows of the first column that contain values less than 5

Graphics
• Plot an object, like: plot(num.vec)

– here plots against index numbers
• Plot sends to graphic devices

– can specify which graphic device you want
• postscript, gif, jpeg, etc…
• you can turn them on and off, like: dev.off()

• Two types of plotting• Two types of plotting
– high level: graphs drawn with one call
– Low Level: add additional information to existing graph

Programming in R
• Functions & Operators typically work on entire vectors
• Expressions surrounded by {}
• Codes separated by newlines, “;” • Codes separated by newlines, “;” not necessary
• You can write your own functions and use them

Statistical Functions in R
• Descriptive Statistics
• Statistical Modeling

– Regressions: Linear and Logistic
– Probit, Tobit Models
– Time Series

• Multivariate Functions
• Inbuilt Packages, contributed

packages

Descriptive Statistics
• Has functions for all common statistics
• summary() gives lowest, mean, median, first, third quartiles, median, first, third quartiles, highest for numeric variables
• stem() gives stem-leaf plots
• table() gives tabulation of categorical variables

Statistical Modeling• Over 400 functions
– lm, glm, aov, ts

• Numerous libraries & packages
– survival, coxph, tree (recursive trees), nls, …

• Distinction between factors and regressors
– factors: categorical, regressors: continuous– factors: categorical, regressors: continuous
– you must specify factors unless they are obvious to R
– dummy variables for factors created automatically

• Use of data.frame makes life easy

How to model
• Specify your model like this:

– y ~ xi+ci, where
– y = outcome variable, xi = main

explanatory variables, ci = covariates, +
= add terms= add terms

– Operators have special meanings
• + = add terms, : = interactions, / = nesting,

so on…
• Modeling -- object oriented

– each modeling procedure produces
objects

Synopsis of Operators

main effect and multiplication*
add or remove termsadd or subtract+ or -
In Formula meansUsually meansOperato

r

nesting onlyno specific %in%
limiting interaction
depths

exponentiation^
interaction onlysequence:
main effect and nestingdivision/
main effect and
interactions

multiplication*

Modeling Example:
Regression

carReg <- lm(speed~dist, data=cars)
carReg = becomes an object
to get summary of this regression, we

typetype
summary(carReg)
to get only coefficients, we type
coef(carReg), or carReg$coef
don’t want intercept? add 0, so
carReg <- lm(speed~0+dist, data=cars)

Multivariate Techniques
• Several Libraries available

– mva, hmisc, glm,
– MASS: discriminant analysis and multidim scaling

• Econometrics packages• Econometrics packages
– dse (multivariate time series, state-space models), ineq: for measuring inequality, poverty estimation, its: for irregular time series, sem: structural equation modeling, and so on…
[http://www.mayin.org/ajayshah/]

Summarizing…
• Effective data handling and storage
• large, coherent set of tools for data

analysisanalysis
• Good graphical facilities and display

– on screen
– on paper

• well-developed, simple, effective
programming

