
Introduction to R
Dr. S. DEVAARUL

Asst. Professor,
Department of Statistics,

Government Arts college, Coimbatore.

• Statistics & Data Mining
• Commercial

Why R?

2

Statistical computing
and graphicshttp://www.r-project.org
• Developed by R. Gentleman & R. Ihaka
• Expanded by community as open source
• Statistically rich

• Data Visualization
and analysis platform

• Image processing,
vector computing

• Technical computing
• Matrix and vector

formulations

Features of R

R is an integrated suite of software for data manipulation,
calculation, and graphical display

• Effective data handling
• Various operators for calculations on arrays/matrices
• Graphical facilities for data analysis
• Well-developed language including conditionals, loops, recursive

functions and I/O capabilities.

• You can use R as a calculator
• Typed expressions will be evaluated and printed out

• Main operations: +, -, *, /, ^
• Obeys order of operations
• Use parentheses to group expressions

Basic usage: arithmetic in R

• Use parentheses to group expressions
• More complex operations appear as functions

• sqrt(2)
• sin(pi/4), cos(pi/4), tan(pi/4), asin(1), acos(1), atan(1)
• exp(1), log(2), log10(10)

Getting help
• help(function_name)

– help(prcomp)
• ?function_name

– ?prcomp
• help.search(“topic”)

– ??topic or ??“topic”

5

• Search CRAN
– http://www.r-project.org

• From R GUI: Help  Search help…
• CRAN Task Views (for individual packages)

– http://cran.cnr.berkeley.edu/web/views/

• Use variables to store values
• Three ways to assign variables

• a = 6
• a <- 6
• 6 -> a

Variables and assignment

• 6 -> a
• Update variables by using the current value in an assignment

• x = x + 1
• Naming rules

• Can include letters, numbers, ., and _
• Names are case sensitive
• Must start with . or a letter

R Commands
• Commands can be expressions or assignments

• Separate by semicolon or new line
• Can split across multiple lines

• R will change prompt to + if command not finished
• Useful commands for variables

• ls(): List all stored variables
• rm(x): Delete one or more variables
• class(x): Describe what type of data a variable stores
• save(x,file=“filename”): Store variable(s) to a binary file
• load(“filename”): Load all variables from a binary file

• Save/load in current directory or My Documents by default

Vectors and vector operations

c() command to create vector x
x=c(12,32,54,33,21,65)

c() to add elements to vector x
x=c(x,55,32)

seq() command to create
sequence of number

To create a vector:
2nd element of x
x[2]
first five elements of x
x[1:5]
all but the 3rd element of x
x[-3]

To access vector elements:

8

sequence of number
years=seq(1990,2003)
to contain in steps of .5
a=seq(3,5,.5)
can use : to step by 1
years=1990:2003;
rep() command to create data

that follow a regular pattern
b=rep(1,5)
c=rep(1:2,4)

x[-3]
values of x that are < 40
x[x<40]
values of y such that x is < 40
y[x<40]

mathematical operations on vectors
y=c(3,2,4,3,7,6,1,1)
x+y; 2*y; x*y; x/y; y^2

To perform operations:

Matrices & matrix operations

matrix() command to create matrix A with rows and cols
A=matrix(c(54,49,49,41,26,43,49,50,58,71),nrow=5,ncol=2))
B=matrix(1,nrow=4,ncol=4)

To create a matrix:

matrix_name[row_no, col_no]
To access matrix elements:

rowSums(A)
Statistical operations:

92*A+3; A+B; A*B; A/B;
Element by element ops:

matrix_name[row_no, col_no]
A[2,1] # 2nd row, 1st column element
A[3,] # 3rd row
A[,2] # 2nd column of the matrix
A[2:4,c(3,1)] # submatrix of 2nd-4th

elements of the 3rd and 1st columns
A["KC",] # access row by name, "KC"

rowSums(A)
colSums(A)
rowMeans(A)
colMeans(A)

max of each columns
apply(A,2,max)

min of each row
apply(A,1,min)

A %*% B;
Matrix/vector multiplication:

• Find # of elements or dimensions
• length(v), length(A), dim(A)

• Transpose
• t(v), t(A)

• Matrix inverse

Useful functions for vectors and matrices

• solve(A)
• Sort vector values

• sort(v)
• Statistics

• min(), max(), mean(), median(), sum(), sd(), quantile()
• Treat matrices as a single vector (same with sort())

• Most common plotting function is plot()
• plot(x,y) plots y vs x
• plot(x) plots x vs 1:length(x)

• plot() has many options for labels, colors, symbol, size, etc.
• Check help with ?plot

Graphical display and plotting

• Check help with ?plot
• Use points(), lines(), or text() to add to an existing plot
• Use x11() to start a new output window
• Save plots with png(), jpeg(), tiff(), or bmp()

• R functions and datasets are organized into packages
• Packages base and stats include many of the built-in functions in R
• CRAN provides thousands of packages contributed by R users

• Package contents are only available when loaded
• Load a package with library(pkgname)

R Packages

• Packages must be installed before they can be loaded
• Use library() to see installed packages
• Use install.packages(pkgname) and update.packages(pkgname)

to install or update a package
• Can also run R CMD INSTALL pkgname.tar.gz from command line

if you have downloaded package source

Exploring the iris data
• Load iris data into your R session:

– data (iris);
– help (data);

• Check that iris was indeed loaded:
– ls ();

• Check the class that the iris object belongs to:
– class (iris);

13

– class (iris);
• Print the content of iris data:

– iris;
• Check the dimensions of the iris data:

– dim (iris);
• Check the names of the columns:

– names (iris);

Exploring the iris data (cont.)
• Plot Petal.Length vs. Petal.Width:

– plot (iris[, 3], iris[, 4]);
– example(plot)

• Exercise: create a plot similar to this figure:

14
Src: Figure is from Introduction to Data Mining by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar

• Large data sets are better loaded through the file input interface in R
• Reading a table of data can be done using the read.table() command:

• a <- read.table(“a.txt”)
• The values are read into R as an object of type data frame (a sort of

matrix in which different columns can have different types). Various
options can specify reading or discarding of headers and other

Reading data from files

options can specify reading or discarding of headers and other
metadata.

• A more primitive but universal file-reading function exists, called
scan()

• b = scan(“input.dat”);
• scan() returns a vector of the data read

Programming in R
• The following slides assume a basic understanding of

programming concepts
• For more information, please see chapters 9 and 10 of

the R manual:
http://cran.r-project.org/doc/manuals/R-intro.html

Additional resources
• Beginning R: An Introduction to Statistical Programming by Larry

Pace
• Introduction to R webpage on APSnet:
http://www.apsnet.org/edcenter/advanced/topics/ecologyandepidemiologyinr

/introductiontor/Pages/default.aspx
• The R Inferno:

http://www.burns-stat.com/pages/Tutor/R_inferno.pdf
16

• Perform different commands in different situations
• if (condition) command_if_true

• Can add else command_if_false to end
• Group multiple commands together with braces {}
• if (cond1) {cmd1; cmd2;} else if (cond2) {cmd3; cmd4;}

Conditional statements

• if (cond1) {cmd1; cmd2;} else if (cond2) {cmd3; cmd4;}
• Conditions use relational operators

• ==, !=, <, >, <=, >=
• Do not confuse = (assignment) with == (equality)

• = is a command, == is a question
• Combine conditions with and (&&) and or (||)

• Use & and | for vectors of length > 1 (element-wise)

• Most common type of loop is the for loop
• for (x in v) { loop_commands; }
• v is a vector, commands repeat for each value in v
• Variable x becomes each value in v, in order
• Example: adding the numbers 1-10

Loops

• total = 0; for (x in 1:10) total = total + x;
• Other type of loop is the while loop

• while (condition) { loop_commands; }
• Condition is identical to if statement
• Commands are repeated until condition is false

• Might execute commands 0 times if already false
• while loops are useful when you don’t know number of iterations

Scripting in R
• A script is a sequence of R commands that perform some common

task
• E.g., defining a specific function, performing some analysis

routine, etc.
• Save R commands in a plain text file

• Usually have extension of .R• Usually have extension of .R
• Run scripts with source() :

• source(“filename.R”)
• To save command output to a file, use sink():

• sink(“output.Rout”)
• sink() restores output to console
• Can be used with or outside of a script

• Objects containing an ordered collection of objects
• Components do not have to be of same type
• Use list() to create a list:

• a <- list(“hello”,c(4,2,1),“class”);
• Components can be named:

Lists

• Components can be named:
• a <- list(string1=“hello”,num=c(4,2,1),string2=“class”)

• Use [[position#]] or $name to access list elements
• E.g., a[[2]] and a$num are equivalent

• Running the length() command on a list gives the number of higher-
level objects

• Writing functions in R is defined by an assignment like:
• a <- function(arg1,arg2) { function_commands; }

• Functions are R objects of type “function”
• Functions can be written in C/FORTRAN and called via .C() or .Fortran()
• Arguments may have default values

Writing your own functions

• Arguments may have default values
• Example: my.pow <- function(base, pow = 2) {return base^pow;}
• Arguments with default values become optional, should usually

appear at end of argument list (though not required)
• Arguments are untyped

• Allows multipurpose functions that depend on argument type
• Use class(), is.numeric(), is.matrix(), etc. to determine type

How do I get started with R (Linux)?
• Step 1: Download R

– mkdir for RHOME; cd $RHOME
– wget http://cran.cnr.berkeley.edu/src/base/R-2/R-2.9.1.tar.gz

• Step 2: Install R
– tar –zxvf R-2.9.1.tar.g
– ./configure --prefix=<RHOME> --enable-R-shlib
– make

22

– make
– make install

• Step 3: Run R
– Update env. variables in $HOME/.bash_profile:

• export PATH=<RHOME>/bin:$PATH
• export R_HOME=<RHOME>

– R

Useful R links
• R Home: http://www.r-project.org/
• R’s CRAN package distribution: http://cran.cnr.berkeley.edu/
• Introduction to R manual:

http://cran.cnr.berkeley.edu/doc/manuals/R-intro.pdf
• Writing R extensions:

http://cran.cnr.berkeley.edu/doc/manuals/R-exts.pdf
• Other R documentation:

23

• Other R documentation:
http://cran.cnr.berkeley.edu/manuals.html

Lecture 1: R Basics

An example
> # An example
> x <- c(1:10)
> x[(x>8) | (x<5)]
> # yields 1 2 3 4 9 10
> # How it works
> x <- c(1:10)

25

> x <- c(1:10)
> x
>1 2 3 4 5 6 7 8 9 10
> x > 8
> F F F F F F F F T T
> x < 5
> T T T T F F F F F F
> x > 8 | x < 5
> T T T T F F F F T T
> x[c(T,T,T,T,F,F,F,F,T,T)]
> 1 2 3 4 9 10

R Introduction
• To list the objects that you have in your current R session use the function ls or the function objects.

> ls()
[1] "x" "y"

• So to run the function ls we need to enter the name followed by an opening (and a closing). Entering only ls will just print the object, you will see the underlying R

26

followed by an opening (and a closing). Entering only ls will just print the object, you will see the underlying R code of the the function ls. Most functions in R accept certain arguments. For example, one of the arguments of the function ls is pattern. To list all objects starting with the letter x:
> x2 = 9
> y2 = 10
> ls(pattern="x")
[1] "x" "x2"

R Introduction
• If you assign a value to an object that already exists then the contents of the object will be overwritten with the new value (without a warning!). Use the function rm to remove one or more objects from your session.

> rm(x, x2)

27

• Lets create two small vectors with data and a scatterplot.
z2 <- c(1,2,3,4,5,6)
z3 <- c(6,8,3,5,7,1)
plot(z2,z3)
title("My first scatterplot")

R Warning !

R is a case sensitive language.

28

language.
FOO, Foo, and foo are three different objects

R Introduction
> x = sin(9)/75
> y = log(x) + x^2
> x
[1] 0.005494913
> y
[1] -5.203902

29

[1] -5.203902
> m <- matrix(c(1,2,4,1), ncol=2)
> m
> [,1] [,2]
[1,] 1 4
[2,] 2 1
> solve(m)
[,1] [,2]
[1,] -0.1428571 0.5714286
[2,] 0.2857143 -0.1428571

Lecture 2: Data Input

Outline
• Data Types
• Importing Data
• Keyboard Input
• Database Input
• Exporting Data

31

• Exporting Data
• Viewing Data
• Variable Labels
• Value Labels
• Missing Data
• Date Values

Data Types
R has a wide variety of data types

including scalars, vectors
(numerical, character, logical),

32

(numerical, character, logical),
matrices, dataframes, and lists.

Vectors
a <- c(1,2,5.3,6,-2,4) # numeric vector
b <- c("one","two","three") # character vector
c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE)
#logical vector

33

#logical vector
Refer to elements of a vector using subscripts.
a[c(2,4)] # 2nd and 4th elements of vector

Matrices
All columns in a matrix must have the same mode(numeric,

character, etc.) and the same length.
The general format is
mymatrix <- matrix(vector, nrow=r, ncol=c,

34

mymatrix <- matrix(vector, nrow=r, ncol=c,
byrow=FALSE,dimnames=list(char_vector_rowna
mes, char_vector_colnames))

byrow=TRUE indicates that the matrix should be filled by
rows. byrow=FALSE indicates that the matrix should
be filled by columns (the default). dimnames provides
optional labels for the columns and rows.

Matrices
generates 5 x 4 numeric matrix

y<-matrix(1:20, nrow=5,ncol=4)
another example

cells <- c(1,26,24,68)
rnames <- c("R1", "R2")

35

rnames <- c("R1", "R2")
cnames <- c("C1", "C2")
mymatrix <- matrix(cells, nrow=2, ncol=2,
byrow=TRUE, dimnames=list(rnames, cnames))

#Identify rows, columns or elements using subscripts.
x[,4] # 4th column of matrix

x[3,] # 3rd row of matrix
x[2:4,1:3] # rows 2,3,4 of columns 1,2,3

Arrays
Arrays are similar to matrices but can have more than two

dimensions. See help(array) for details.

36

Data frames
A data frame is more general than a matrix, in that

different columns can have different modes (numeric,
character, factor, etc.).

d <- c(1,2,3,4)

37

e <- c("red", "white", "red", NA)
f <- c(TRUE,TRUE,TRUE,FALSE)
mydata <- data.frame(d,e,f)
names(mydata) <- c("ID","Color","Passed") #variable

names

Data frames
There are a variety of ways to identify the elements of a

dataframe .
myframe[3:5] # columns 3,4,5 of dataframe
myframe[c("ID","Age")] # columns ID and Age from dataframe

38

myframe[c("ID","Age")] # columns ID and Age from dataframe
myframe$X1 # variable x1 in the dataframe

Lists
An ordered collection of objects (components). A list allows you

to gather a variety of (possibly unrelated) objects under one
name.

example of a list with 4 components -
a string, a numeric vector, a matrix, and a scaler

39

a string, a numeric vector, a matrix, and a scaler
w <- list(name="Fred", mynumbers=a, mymatrix=y, age=5.3)
example of a list containing two lists
v <- c(list1,list2)

Lists
Identify elements of a list using the [[]] convention.
mylist[[2]] # 2nd component of the list

40

Factors
Tell R that a variable is nominal by making it a factor. The

factor stores the nominal values as a vector of integers in the
range [1... k] (where k is the number of unique values in the
nominal variable), and an internal vector of character strings
(the original values) mapped to these integers.

41

(the original values) mapped to these integers.
variable gender with 20 "male" entries and
30 "female" entries

gender <- c(rep("male",20), rep("female", 30))
gender <- factor(gender)

stores gender as 20 1s and 30 2s and associates
1=female, 2=male internally (alphabetically)
R now treats gender as a nominal variable

summary(gender)

Useful Functions
length(object) # number of elements or components
str(object) # structure of an object
class(object) # class or type of an object
names(object) # names

42

names(object) # names
c(object,object,...) # combine objects into a vector
cbind(object, object, ...) # combine objects as columns
rbind(object, object, ...) # combine objects as rows
ls() # list current objects
rm(object) # delete an object
newobject <- edit(object) # edit copy and save a newobject
fix(object) # edit in place

Importing Data
Importing data into R is fairly simple.
For Stata and Systat, use the foreign package.
For SPSS and SAS I would recommend the Hmisc package for

ease and functionality.

43

ease and functionality.
See the Quick-R section on packages, for information on

obtaining and installing the these packages.
Example of importing data are provided below.

From A Comma Delimited Text File
first row contains variable names, comma is separator
assign the variable id to row names
note the / instead of \ on mswindows systems

44

mydata <- read.table("c:/mydata.csv", header=TRUE, sep=",",
row.names="id")

From Excel
The best way to read an Excel file is to export it to a comma

delimited file and import it using the method above.
On windows systems you can use the RODBC package to access

Excel files. The first row should contain variable/column
names.

45

names.
first row contains variable names
we will read in workSheet mysheet

library(RODBC)
channel <- odbcConnectExcel("c:/myexel.xls")
mydata <- sqlFetch(channel, "mysheet")
odbcClose(channel)

From SAS
• # save SAS dataset in trasport format

libname out xport 'c:/mydata.xpt';
data out.mydata;
set sasuser.mydata;
run;

46

run;
• library(foreign)
#bsl=read.xport(“mydata.xpt")

Keyboard Input
Usually you will obtain a dataframe by importing it from SAS,

SPSS, Excel, Stata, a database, or an ASCII file. To create it
interactively, you can do something like the following.

create a dataframe from scratch

47

create a dataframe from scratch
age <- c(25, 30, 56)
gender <- c("male", "female", "male")
weight <- c(160, 110, 220)
mydata <- data.frame(age,gender,weight)

Keyboard Input
You can also use R's built in spreadsheet to enter the data

interactively, as in the following example.
enter data using editor

mydata <- data.frame(age=numeric(0), gender=character(0),

48

mydata <- data.frame(age=numeric(0), gender=character(0),
weight=numeric(0))
mydata <- edit(mydata)
note that without the assignment in the line above,
the edits are not saved!

Exporting Data
There are numerous methods for exporting R objects into other

formats . For SPSS, SAS and Stata. you will need to load the
foreign packages. For Excel, you will need the
xlsReadWrite package.

49

Exporting Data
To A Tab Delimited Text File
write.table(mydata, "c:/mydata.txt", sep="\t")
To an Excel Spreadsheet
library(xlsReadWrite)

write.xls(mydata, "c:/mydata.xls")

50

write.xls(mydata, "c:/mydata.xls")
To SAS
library(foreign)

write.foreign(mydata, "c:/mydata.txt",
"c:/mydata.sas", package="SAS")

Viewing Data
There are a number of functions for listing the contents

of an object or dataset.
list objects in the working environment

ls()
list the variables in mydata

51

list the variables in mydata
names(mydata)

list the structure of mydata
str(mydata)

list levels of factor v1 in mydata
levels(mydata$v1)

dimensions of an object
dim(object)

Viewing Data
There are a number of functions for listing the contents

of an object or dataset.
class of an object (numeric, matrix, dataframe, etc)

class(object)
print mydata

52

print mydata
mydata

print first 10 rows of mydata
head(mydata, n=10)

print last 5 rows of mydata
tail(mydata, n=5)

Variable Labels
R's ability to handle variable labels is somewhat unsatisfying.
If you use the Hmisc package, you can take advantage of some

labeling features.
library(Hmisc)

label(mydata$myvar) <- "Variable label for variable myvar"

53

label(mydata$myvar) <- "Variable label for variable myvar"
describe(mydata)

Variable Labels
Unfortunately the label is only in effect for functions provided by

the Hmisc package, such as describe(). Your other option is
to use the variable label as the variable name and then refer to
the variable by position index.

names(mydata)[3] <- "This is the label for variable 3"

54

names(mydata)[3] <- "This is the label for variable 3"
mydata[3] # list the variable

Value Labels
To understand value labels in R, you need to understand the data

structure factor.
You can use the factor function to create your own value lables.
variable v1 is coded 1, 2 or 3

55

variable v1 is coded 1, 2 or 3
we want to attach value labels 1=red, 2=blue,3=green

mydata$v1 <- factor(mydata$v1,
levels = c(1,2,3),
labels = c("red", "blue", "green"))

variable y is coded 1, 3 or 5
we want to attach value labels 1=Low, 3=Medium, 5=High

Value Labels
mydata$v1 <- ordered(mydata$y,

levels = c(1,3, 5),
labels = c("Low", "Medium", "High"))

Use the factor() function for nominal data and the ordered()
function for ordinal data. R statistical and graphic

56

function for ordinal data. R statistical and graphic
functions will then treat the data appropriately.

Note: factor and ordered are used the same way, with the same
arguments. The former creates factors and the later creates
ordered factors.

Missing Data
In R, missing values are represented by the symbol NA (not

available) . Impossible values (e.g., dividing by zero) are
represented by the symbol NaN (not a number). Unlike SAS,
R uses the same symbol for character and numeric data.

Testing for Missing Values

57

Testing for Missing Values
is.na(x) # returns TRUE of x is missing
y <- c(1,2,3,NA)
is.na(y) # returns a vector (F F F T)

Missing Data
Recoding Values to Missing
recode 99 to missing for variable v1
select rows where v1 is 99 and recode column v1
mydata[mydata$v1==99,"v1"] <- NA
Excluding Missing Values from Analyses

58

Excluding Missing Values from Analyses
Arithmetic functions on missing values yield missing values.
x <- c(1,2,NA,3)
mean(x) # returns NA
mean(x, na.rm=TRUE) # returns 2

Missing Data
The function complete.cases() returns a logical vector

indicating which cases are complete.
list rows of data that have missing values

mydata[!complete.cases(mydata),]
The function na.omit() returns the object with listwise deletion

59

The function na.omit() returns the object with listwise deletion
of missing values.

create new dataset without missing data
newdata <- na.omit(mydata)

Missing Data
Advanced Handling of Missing Data
Most modeling functions in R offer options for dealing with

missing values. You can go beyond pairwise of listwise
deletion of missing values through methods such as multiple
imputation. Good implementations that can be accessed

60

imputation. Good implementations that can be accessed
through R include Amelia II, Mice, and mitools.

Date Values
Dates are represented as the number of days since 1970-

01-01, with negative values for earlier dates.
use as.Date() to convert strings to dates
mydates <- as.Date(c("2007-06-22", "2004-02-13"))
number of days between 6/22/07 and 2/13/04

61

number of days between 6/22/07 and 2/13/04
days <- mydates[1] - mydates[2]

Sys.Date() returns today's date.
Date() returns the current date and time.

Date Values
The following symbols can be used with the format()

function to print dates.
Symbol Meaning Example
%d day as a number (0-31) 01-31

62

%d day as a number (0-31) 01-31
%a
%A

abbreviated weekday
unabbreviated weekday

Mon
Monday

%m month (00-12) 00-12
%b
%B

abbreviated month
unabbreviated month

Jan
January

%y
%Y

2-digit year
4-digit year

07
2007

Date Values
print today's date
today <- Sys.Date()
format(today, format="%B %d %Y")

"June 20 2007"

63

Lecture 3: Data
ManipulationManipulation

Outline
• Creating New Variable
• Operators
• Built-in functions
• Control Structures
• User Defined Functions

65

• User Defined Functions
• Sorting Data
• Merging Data
• Aggregating Data
• Reshaping Data
• Sub-setting Data
• Data Type Conversions

Introduction
Once you have access to your data, you will want to

massage it into useful form. This includes creating new
variables (including recoding and renaming existing
variables), sorting and merging datasets, aggregating
data, reshaping data, and subsetting datasets (including

66

data, reshaping data, and subsetting datasets (including
selecting observations that meet criteria, randomly
sampling observation, and dropping or keeping
variables).

Introduction
Each of these activities usually involve the use of R's built-

in operators (arithmetic and logical) and functions
(numeric, character, and statistical). Additionally, you
may need to use control structures (if-then, for, while,
switch) in your programs and/or create your own

67

switch) in your programs and/or create your own
functions. Finally you may need to convert variables or
datasets from one type to another (e.g. numeric to
character or matrix to dataframe).

Creating new variables
• Use the assignment operator <- to create new variables. A wide array of operators and functions are available here.
• # Three examples for doing the same computations

mydata$sum <- mydata$x1 + mydata$x2mydata$mean <- (mydata$x1 + mydata$x2)/2

68

mydata$mean <- (mydata$x1 + mydata$x2)/2
attach(mydata)mydata$sum <- x1 + x2mydata$mean <- (x1 + x2)/2detach(mydata)

• mydata <- transform(mydata,sum = x1 + x2,mean = (x1 + x2)/2)

Creating new variables
Recoding variables
• In order to recode data, you will probably use one or

more of R's control structures.
• # create 2 age categories

mydata$agecat <- ifelse(mydata$age > 70,
c("older"), c("younger"))

69

c("older"), c("younger"))
another example: create 3 age categories
attach(mydata)
mydata$agecat[age > 75] <- "Elder"
mydata$agecat[age > 45 & age <= 75] <- "Middle Aged"
mydata$agecat[age <= 45] <- "Young"
detach(mydata)

Creating new variables
Recoding variables
• In order to recode data, you will probably use one or

more of R's control structures.
• # create 2 age categories

mydata$agecat <- ifelse(mydata$age > 70,

70

mydata$agecat <- ifelse(mydata$age > 70,
c("older"), c("younger"))
another example: create 3 age categories
attach(mydata)
mydata$agecat[age > 75] <- "Elder"
mydata$agecat[age > 45 & age <= 75] <- "Middle Aged"
mydata$agecat[age <= 45] <- "Young"
detach(mydata)

Creating new variables
Renaming variables
• You can rename variables programmatically or

interactively.
• # rename interactively

fix(mydata) # results are saved on close

71

fix(mydata) # results are saved on close
rename programmatically
library(reshape)
mydata <- rename(mydata, c(oldname="newname"))
you can re-enter all the variable names in order
changing the ones you need to change. The limitation
is that you need to enter all of them!
names(mydata) <- c("x1","age","y", "ses")

Arithmetic Operators
Operator Description
+ addition
- subtraction
* multiplication

72

* multiplication
/ division
^ or ** exponentiation
x %% y modulus (x mod y) 5%%2 is 1
x %/% y integer division 5%/%2 is 2

Logical Operators
Operator Description
< less than
<= less than or equal to
> greater than

73

> greater than
>= greater than or equal to
== exactly equal to
!= not equal to
!x Not x
x | y x OR y
x & y x AND y
isTRUE(x) test if x is TRUE

Control Structures

• R has the standard control structures you would expect.
expr can be multiple (compound) statements by
enclosing them in braces { }. It is more efficient to use
built-in functions rather than control structures
whenever possible.

74

Control Structures

• if-else
• if (cond) expr

if (cond) expr1 else expr2
• for
• for (var in seq) expr

75

• for (var in seq) expr
• while
• while (cond) expr
• switch
• switch(expr, ...)
• ifelse
• ifelse(test,yes,no)

Control Structures

• # transpose of a matrix
a poor alternative to built-in t() function
mytrans <- function(x) {
if (!is.matrix(x)) {

warning("argument is not a matrix: returning NA")

76

warning("argument is not a matrix: returning NA")
return(NA_real_)

}
y <- matrix(1, nrow=ncol(x), ncol=nrow(x))
for (i in 1:nrow(x)) {

for (j in 1:ncol(x)) {
y[j,i] <- x[i,j]

}
}

return(y)
}

Control Structures

• # try it
z <- matrix(1:10, nrow=5, ncol=2)
tz <- mytrans(z)

77

R built-in functions
Almost everything in R is done through functions. Here I'm only referring to numeric and character functions that are commonly used in

78

functions that are commonly used in creating or recoding variables.
Note that while the examples on this page apply functions to individual variables, many can be applied to vectors and matrices as well.

Numeric Functions
Function Description
abs(x) absolute value
sqrt(x) square root
ceiling(x) ceiling(3.475) is 4
floor(x) floor(3.475) is 3

79

floor(x) floor(3.475) is 3
trunc(x) trunc(5.99) is 5
round(x, digits=n) round(3.475, digits=2) is 3.48
signif(x, digits=n) signif(3.475, digits=2) is 3.5
cos(x), sin(x), tan(x) also acos(x), cosh(x), acosh(x), etc.
log(x) natural logarithm
log10(x) common logarithm
exp(x) e^x

Character Functions
Function Description
substr(x, start=n1, stop=n2) Extract or replace substrings in a character vector.

x <- "abcdef"
substr(x, 2, 4) is "bcd"
substr(x, 2, 4) <- "22222" is "a222ef"

grep(pattern, x ,
ignore.case=FALSE, fixed=FALSE)

Search for pattern in x. If fixed =FALSE then pattern is a regular expression. If
fixed=TRUE then pattern is a text string. Returns matching indices.

Applied Statistical
Computing and

80

ignore.case=FALSE, fixed=FALSE) fixed=TRUE then pattern is a text string. Returns matching indices.
grep("A", c("b","A","c"), fixed=TRUE) returns 2

sub(pattern, replacement, x,
ignore.case =FALSE, fixed=FALSE)

Find pattern in x and replace with replacement text. If fixed=FALSE then pattern is
a regular expression.
If fixed = T then pattern is a text string.
sub("\\s",".","Hello There") returns "Hello.There"

strsplit(x, split) Split the elements of character vector x at split.
strsplit("abc", "") returns 3 element vector "a","b","c"

paste(..., sep="") Concatenate strings after using sep string to seperate them.
paste("x",1:3,sep="") returns c("x1","x2" "x3")
paste("x",1:3,sep="M") returns c("xM1","xM2" "xM3")
paste("Today is", date())

toupper(x) Uppercase
tolower(x) Lowercase

Stat/Prob Functions
• The following table describes functions related to

probaility distributions. For random number generators
below, you can use set.seed(1234) or some other integer
to create reproducible pseudo-random numbers.

81

Function Description
dnorm(x) normal density function (by default m=0 sd=1)

plot standard normal curve
x <- pretty(c(-3,3), 30)
y <- dnorm(x)
plot(x, y, type='l', xlab="Normal Deviate", ylab="Density", yaxs="i")

pnorm(q) cumulative normal probability for q
(area under the normal curve to the right of q)
pnorm(1.96) is 0.975

qnorm(p) normal quantile.
value at the p percentile of normal distribution
qnorm(.9) is 1.28 # 90th percentile

rnorm(n, m=0,sd=1) n random normal deviates with mean m
and standard deviation sd.
#50 random normal variates with mean=50, sd=10
x <- rnorm(50, m=50, sd=10)

Applied Statistical
Computing and

82

x <- rnorm(50, m=50, sd=10)
dbinom(x, size, prob)
pbinom(q, size, prob)
qbinom(p, size, prob)
rbinom(n, size, prob)

binomial distribution where size is the sample size
and prob is the probability of a heads (pi)
prob of 0 to 5 heads of fair coin out of 10 flips
dbinom(0:5, 10, .5)
prob of 5 or less heads of fair coin out of 10 flips
pbinom(5, 10, .5)

dpois(x, lamda)
ppois(q, lamda)
qpois(p, lamda)
rpois(n, lamda)

poisson distribution with m=std=lamda
#probability of 0,1, or 2 events with lamda=4
dpois(0:2, 4)
probability of at least 3 events with lamda=4
1- ppois(2,4)

dunif(x, min=0, max=1)
punif(q, min=0, max=1)
qunif(p, min=0, max=1)
runif(n, min=0, max=1)

uniform distribution, follows the same pattern
as the normal distribution above.
#10 uniform random variates
x <- runif(10)

Function Description
mean(x, trim=0,
na.rm=FALSE)

mean of object x
trimmed mean, removing any missing values and
5 percent of highest and lowest scores
mx <- mean(x,trim=.05,na.rm=TRUE)

sd(x) standard deviation of object(x). also look at var(x) for variance and mad(x) for median absolute
deviation.

median(x) median
quantile(x, probs) quantiles where x is the numeric vector whose quantiles are desired and probs is a numeric vector with

probabilities in [0,1].
30th and 84th percentiles of x
y <- quantile(x, c(.3,.84))

83

y <- quantile(x, c(.3,.84))

range(x) range
sum(x) sum
diff(x, lag=1) lagged differences, with lag indicating which lag to use
min(x) minimum
max(x) maximum
scale(x, center=TRUE,
scale=TRUE)

column center or standardize a matrix.

Other Useful Functions

Function Description
seq(from , to, by) generate a sequence

indices <- seq(1,10,2)
#indices is c(1, 3, 5, 7, 9)

84

#indices is c(1, 3, 5, 7, 9)

rep(x, ntimes) repeat x n times
y <- rep(1:3, 2)
y is c(1, 2, 3, 1, 2, 3)

cut(x, n) divide continuous variable in factor with n levels
y <- cut(x, 5)

Sorting
• To sort a dataframe in R, use the order() function. By

default, sorting is ASCENDING. Prepend the sorting
variable by a minus sign to indicate DESCENDING
order. Here are some examples.

• # sorting examples using the mtcars dataset

85

• # sorting examples using the mtcars dataset
data(mtcars)
sort by mpg
newdata = mtcars[order(mtcars$mpg),]
sort by mpg and cyl
newdata <- mtcars[order(mtcars$mpg, mtcars$cyl),]
#sort by mpg (ascending) and cyl (descending)
newdata <- mtcars[order(mtcars$mpg, -mtcars$cyl),]

Merging
To merge two dataframes (datasets) horizontally, use the

merge function. In most cases, you join two dataframes
by one or more common key variables (i.e., an inner
join).

merge two dataframes by ID

86

merge two dataframes by ID
total <- merge(dataframeA,dataframeB,by="ID")

merge two dataframes by ID and Country
total <-
merge(dataframeA,dataframeB,by=c("ID","Country"))

Merging
ADDING ROWS
To join two dataframes (datasets) vertically, use the rbind

function. The two dataframes must have the same
variables, but they do not have to be in the same order.

total <- rbind(dataframeA, dataframeB)

87

total <- rbind(dataframeA, dataframeB)
If dataframeA has variables that dataframeB does not, then either:
Delete the extra variables in dataframeA or
Create the additional variables in dataframeB and set them to NA

(missing)
before joining them with rbind.

Aggregating
• It is relatively easy to collapse data in R using

one or more BY variables and a defined
function.

• # aggregate dataframe mtcars by cyl and vs, returning
means

88

means
for numeric variables
attach(mtcars)
aggdata <-aggregate(mtcars, by=list(cyl),
FUN=mean, na.rm=TRUE)

print(aggdata)
• OR use apply

Aggregating
• When using the aggregate() function, the by

variables must be in a list (even if there is only
one). The function can be built-in or user
provided.

• See also:

89

• See also:
• summarize() in the Hmisc package
• summaryBy() in the doBy package

Data Type Conversion

• Type conversions in R work as you would expect. For example, adding a character string to a numeric vector converts all the elements in the vector to character.
• Use is.foo to test for data type foo. Returns TRUE or FALSE

90

TRUE or FALSEUse as.foo to explicitly convert it.
• is.numeric(), is.character(), is.vector(), is.matrix(), is.data.frame()as.numeric(), as.character(), as.vector(), as.matrix(), as.data.frame)

