
SOFTWARE QUALITY ASSURANCE

UNIT III

Assuring the quality of software maintenance components:

the foundation of high quality – pre maintenance software

quality components -maintenance software quality

assurance tools. Assuring the quality of external participant

contributions: types of external participants – risks and

benefits of introducing external participants – assuring the

quality of external participant contribution: objectives.

CASE tools and their effect on software quality: CASE tool

–contribution of CASE tool to software project quality, to

software maintenance quality to improved project

management.

Assuring the quality of software maintenance

components:

Introduction
The following three components of maintenance service

are all essential for success:

■ Corrective maintenance – user support services

and software corrections.

■ Adaptive maintenance – adapts the software

package to differences in new customer requirements,

changing environmental conditions and the like.

■ Functionality improvement maintenance –

combines

(1) perfective maintenance of new functions added to

the software so as to enhance performance, with

(2) preventive maintenance activities that improve

reliability and system infrastructure for easier and

more efficient future maintainability.

Software maintenance QA activities: objectives

1. Assure, with an accepted level of confidence, that

the software maintenance activities conform to the

functional technical requirements.

2. Assure, with an accepted level of confidence, that

the software maintenance activities conform to

managerial scheduling and budgetary requirements.

3. Initiate and manage activities to improve and

increase the efficiency of software maintenance and

SQA activities.

The foundations of high quality

Foundation 1: software package quality

The two product operation factors are as follows.

(1) Correctness – includes:

■ Output correctness: The completeness of the

outputs specified (in other words, no pre-specified

output is missing), the accuracy of the outputs (all

system’s outputs are processed correctly), the up-to-

datedness of the outputs (processed information is up

to date as specified) and the availability of the outputs

(reaction times do not exceed the specified maximum

values, especially in online and real-time

applications).

■ Documentation correctness. The quality of

documentation: its completeness, accuracy,

documentation style and structure. Documentation

formats include hard copy and computer files – printed

manuals as well as electronic “help” files – whereas its

scope encompasses installation manuals, user manuals

and programmer manuals.

■ Coding qualification. Compliance with coding

instructions, especially those that limit and reduce

code complexity and define standard coding style.

(2) Reliability. The frequency of system failures as well as

recovery times.

The three product revision factors are as follows.

(1) Maintainability. These requirements are fulfilled

first and foremost by following the software structure

and style requirements and by implementing

programmer documentation requirements.

(2) Flexibility. Achieved by appropriate planning and

design, features that provide an application space

much wider than necessary for the current user

population. In practice, this means that room is left for

future functional improvements.

(3) Testability. Testability includes the availability of

system diagnostics to be applied by the user as well as

failure diagnostics to be applied by the support center

or the maintenance staff at the user’s site.

The two product transition factors are as follows.

(1) Portability. The software’s potential application in

different hardware and operating system

environments, including the activities that enable

those applications.

(2) Interoperability. The package’s capacity to

interface with other packages and computerized

equipment. High interoperability is achieved by

providing capacity to meet known interfacing

standards and matching the interfacing applied by

leading manufacturers of equipment and software.

Foundation 2: maintenance policy

Version development policy
This policy relates mainly to the question of how many

versions of the software should be operative

simultaneously.

Change policy

Change policy refers to the method of examining each

change request and the criteria used for its approval.

Pre-maintenance software quality components
Like pre-project SQA components, the pre-

maintenance SQA activities to be completed prior to

initiating the required maintenance services are of utmost

importance. These entail:

■ Maintenance contract review

■ Maintenance plan construction.

Maintenance contract review

(1) Customer requirements clarification

(2) Review of alternative approaches to maintenance

provision

(3)Review of estimates of required maintenance

resources

(4) Review of maintenance services to be provided by

subcontractors and/or the customer

(5) Review of maintenance costs estimates

Maintenance plan
Maintenance plans should be prepared for all

customers, external and internal.

The plan includes the following:

(1) A list of the contracted maintenance services

(2) A description of the maintenance team’s

organization

(3) (3) A list of maintenance facilities

(4) (4) A list of identified maintenance service risks

(5) A list of required software maintenance

procedures and controls

(6) The software maintenance budget

Maintenance software quality assurance tools

1.SQA tools for corrective maintenance
2.SQA tools for functionality improvement
maintenance
3.SQA infrastructure components for software
Maintenance

■Maintenance procedures and work instructions

■Supporting quality devices

■Training and certification of maintenance

teams

■ Preventive and corrective actions

 ■ Configuration management

■ Documentation and quality record control.

4.Managerial control SQA tools for software
maintenance

■ Performance controls for corrective

maintenance services

■ Quality metrics for corrective maintenance

■ Costs of software maintenance quality.

Costs of prevention – Costs of error

prevention, i.e. costs of instruction and training

of maintenance team, costs of preventative and

corrective actions.

■ Costs of appraisal – Costs of error

detection, i.e. costs of review of maintenance

services carried out by SQA teams, external

teams and customer satisfaction surveys.

■ Costs of managerial preparation and

control – Costs of managerial activities carried

out to prevent errors, i.e. costs of preparation of

maintenance plans, maintenance team recruitment

and follow-up of maintenance performance.

■ Costs of internal failure – Costs of

software failure corrections initiated by the

maintenance team (prior to receiving customer

complaints).

■ Costs of external failure – Costs of

software failure corrections initiated by customer

complaints.

■ Costs of managerial failure – Costs of

software failures caused by managerial actions or

inaction, i.e. costs of damages resulting from

shortage of maintenance staff and/or inadequate

maintenance task organization.

Costs of external failure of software
corrective maintenance activities
(1) For software corrections:

■ All costs of software correction initiated by users

during the warranty period are external quality costs

because they are considered to result directly from software

development failures; hence, the developer is responsible

for their correction during this period.

 ■ Software corrections performed during the

contracted maintenance period are considered part of

regular service, as the responsibility of the developer for

corrections is limited to the warranty period. As such, the

costs of these services are considered regular service costs

and not quality costs.

■ During the contracted maintenance period, only

costs of re-correction after failure of the initial correction

efforts are considered external failure costs as the software

technician failed in his regular maintenance service.

(2) For user support services:

■ During the warranty period, user support services

are considered to be an inherent part of the instruction

effort, and therefore should not be considered external

failure costs.

■ During the contracted maintenance period, all

types of user support services, whether dealing with an

identified software failure or consultations about

application options, are all part of regular service, and their

costs are not considered external failure costs.

■ During both maintenance periods, an external

failure is defined as a case where a second consultation is

required after the initial consultation proves to be

inadequate. The costs of furnishing the second and further

consultations for the same case are considered external

failure costs.

Assuring the quality of external
participants’ contributions

Types of external participants

External participants can be classified into three main

groups:

(1) Subcontractors (currently called “outsourcing”

organizations) that undertake to carry out parts of a project,

small or large, according to circumstances. Subcontractors

usually offer the contractor at least one of the following

benefits: staff availability, special expertise or low prices.

(2) Suppliers of COTS software and reused software

modules.

The advantages of integrating these ready elements are

obvious, ranging from timetable and cost reductions to

quality. One expects that integration of these ready-for-use

elements will achieve savings in development resources, a

shorter timetable and higher quality software. Software of

higher quality is expected as these components have

already been tested and corrected by the developers as well

as corrected according to the faults identified by previous

customers. The characteristics of COTS software and

quality problems involved in their use are discussed by

Basili and Boehm (2001).

(3) The customer themselves as participant in

performing the project.

It is quite common for a customer to perform parts of

the project: to apply the customers’ special expertise,

respond to commercial or other security needs, keep

internal development staff occupied, prevent future

maintenance problems and so forth. This situation does

have drawbacks in terms of the customer–supplier

relationship necessary for successful performance of a

project, but they are overweighed by the inputs the

customer makes. Hence, the inevitability of this situation

has become a standard element of many software

development projects and contractual relations.

Risks and benefits of introducing external
participants
(1) Delays in completion of the project. In those cases

where external participants are late in supplying their parts

to the software system, the project as a whole will be

delayed. These delays are typical for subcontractors’parts

and customers’ parts but less so for COTS software

suppliers. In many cases the control over subcontractors’

and the customers’ software development obligations is

loose, a situation that causes tardy recognition of expected

delays and leaves no time for the changes and

reorganization necessary to cope with the delays and to

limit their negative effects on the project.

(2) Low quality of project parts supplied by external

participants. Quality

problems can be classified as (a) defects: a higher than

expected number of defects, often more severe than

expected; and (b) non-standard coding and documentation:

violations of style and structure in instructions and

procedures (supposedly stipulated in any contract). Low

quality and non-standard software are expected to cause

difficulties in the testing phase and later in the maintenance

phase. The extra time required to test and correct low-

quality software can cause project delays even in cases

when external participants complete their tasks on time.

(3) Future maintenance difficulties. The fact that several

organizations take part in development but only one of

them, the contractor, is directly responsible for the project

creates two possibly difficult maintenance situations:

(a) One organization, most probably the contractor, is

responsible for maintenance of the whole project, the

arrangement commonly stipulated in the tender itself. The

contractor may then be faced with incomplete and/or non-

standard coding and documentation supplied by the

external participants, causing lower-quality maintenance

service delivered by the maintenance team and higher costs

to the contractor.

(b) Maintenance services are supplied by more than

one organization, possibly the subcontractors, suppliers of

COTS software and occasionally the customer’s software

development department. Each of these bodies takes

limited responsibility, a situation that may force the

customer to search for the body responsible for a specific

software failure once discovered.

Damages caused by software failures are expected to grow

in “multi-maintainer” situations. Neither of these situations

contributes to good and reliable maintenance unless

adequate measures are taken in advance, during the

project’s development and maintenance planning phases.

(4) Loss of control over project parts. Whether

intentionally or not, the control of software development

by external bodies may produce an unrealistically

optimistic picture of the project’s status. Communication

with external participants’ teams may be interrupted for

several weeks, a situation that prevents assessment of the

project’s progress. As a result, alerts about development

difficulties, staff shortages and other problems reach the

contractor belatedly. The possibilities for timely solution

of the difficulties – whether by adaptations or other suitable

changes – are thereby often drastically reduced.

Introduction of external participants: benefits and
risks

Assuring the quality of external participants’
contributions: objectives

(1) To prevent delays in task completion and to ensure

early alert of anticipated delays.

(2) To assure acceptable quality levels of the parts

developed and receive early warnings of breaches of

quality requirements.

(3) To assure adequate documentation to serve the

maintenance team.

(4) To assure continuous, comprehensive and reliable

control over external participants’ performance.

CASE tools and their effect on software
quality

What is a CASE tool?
CASE tools – definition

CASE tools are computerized software
development tools that support the developer when
performing one or more phases of the software life
cycle and/or support software maintenance.

The definition’s generality allows compilers, interactive

debugging systems, configuration management systems

and automated testing systems to be considered as CASE

tools. In other words, well-established computerized

software development support tools (such as interactive

debuggers, compilers and project progress control systems)

can readily be considered classic CASE tools, whereas the

new tools that support the developer for a succession of

several development phases of a development project are

referred to as real CASE tools.

The contribution of CASE tools to software
product quality
CASE tools contribute to software product quality by

reducing the number of errors introduced in each

development phase.

The contribution of CASE tools to software
maintenance quality

Corrective maintenance:

■ CASE-generated full and updated documentation

of the software enables easier and more reliable

identification of the cause for software failure.

■ Cross-referenced queries enable better

identification of anticipated effects of any proposed

correction.

■ Correction by means of lower CASE or integrated

CASE tools provides automated coding, with no expected

coding errors as well as automated documentation of

corrections.

Adaptive maintenance:

■ Full and updated documentation of the software by

CASE tools enables thorough examination of possible

software package adaptations for new users and

applications.

Functional improvement maintenance:

■ Use of the repository enables designers to assure

consistency of new applications and improvements

with existing software systems.

■ Cross-referenced repository queries enable better

planning of changes and additions.

■ Changes and additions carried out by means of

lower CASE or integrated CASE tools enable

automated coding, with no expected coding errors

as well as automated documentation of the changes

and additions.

The contribution of CASE tools to improved
project management

Let us compare two projects of similar nature and

magnitude: Project A is carried out by conventional

methods, Project B by advanced CASE tools.

The following results were obtained after comparison

of the planning and implementation phases:

In general, application of CASE tools is expected to

reduce project budgets and development time (“shorter

time to market”).

