
Prepared By Dr. N.THENMOZHI M.C.A., M.S., M.Phil., Ph.D.,

Govt, Arts College (Autonomous), Coimbatore-18
Department of Information Technology
OPEN SOURCE TOOLS (18MIT33C) -----II MSc

UNIT-V: Ruby on Rails: Welcome to Ruby –Conditions, methods, loops and blocks - classes
and objects. Welcome to rails: Connecting to databases – working with databases.

Text Book :Steven Holzner, “Beginning ruby on rails”, Wiley publishing, Inc, 2007.

5. INTRODUCTION

Ruby is the programming language you’re going to be using, and Rails is the web
application framework that will put everything online.

Ruby is a pure object-oriented programming language. It was created in 1993 by
Yukihiro Matsumoto of Japan.

You can find the name Yukihiro Matsumoto on the Ruby mailing list at www.ruby-
lang.org. Matsumoto is also known as Matz in the Ruby community.

What is Ruby?
Ruby is the successful combination of −

 Smalltalk's conceptual elegance,
 Python's ease of use and learning, and
 Perl's pragmatism.

Ruby is −
 A high-level programming language.
 Interpreted like Perl, Python, Tcl/TK.
 Object-oriented like Smalltalk, Eiffel, Ada, Java.

Why Ruby?
Ruby originated in Japan and now it is gaining popularity in US and Europe as well. The

following factors contribute towards its popularity −
 Easy to learn
 Open source (very liberal license)
 Rich libraries
 Very easy to extend
 Truly object-oriented
 Less coding with fewer bugs
 Helpful community

Although we have many reasons to use Ruby, there are a few drawbacks as well that you may
have to consider before implementing Ruby −

https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/


Performance Issues − Although it rivals Perl and Python, it is still an interpreted
language and we cannot compare it with high-level programming languages like C or
C++.
Threading model − Ruby does not use native threads. Ruby threads are simulated in the
VM rather than running as native OS threads.

Ruby is "A Programmer's Best Friend".

Ruby has features that are similar to those of Smalltalk, Perl, and Python. Perl, Python,
and Smalltalk are scripting languages. Smalltalk is a true object-oriented language. Ruby, like
Smalltalk, is a perfect object-oriented language. Using Ruby syntax is much easier than using
Smalltalk syntax.

Features of Ruby

 Ruby is an open-source and is freely available on the Web, but it is subject to a license.

 Ruby is a general-purpose, interpreted programming language.

 Ruby is a true object-oriented programming language.

 Ruby is a server-side scripting language similar to Python and PERL.

 Ruby can be used to write Common Gateway Interface (CGI) scripts.

 Ruby can be embedded into Hypertext Markup Language (HTML).

 Ruby has a clean and easy syntax that allows a new developer to learn very quickly and
easily.

 Ruby has similar syntax to that of many programming languages such as C++ and Perl.

 Ruby is very much scalable and big programs written in Ruby are easily maintainable.

 Ruby can be used for developing Internet and intranet applications.

 Ruby can be installed in Windows and POSIX environments.

 Ruby support many GUI tools such as Tcl/Tk, GTK, and OpenGL.

 Ruby can easily be connected to DB2, MySQL, Oracle, and Sybase.

 Ruby has a rich set of built-in functions, which can be used directly into Ruby scripts.

Tools You Will Need

You will need a latest computer like Intel Core i3 or i5 with a minimum of 2GB of RAM (4GB
of RAM recommended). You also will need the following software

 Linux or Windows 95/98/2000/NT or Windows 7 operating system.
 Apache 1.3.19-5 Web server.
 Internet Explorer 5.0 or above Web browser.
 Ruby 1.8.5



5.1. Welcome to Ruby

Install Ruby and Rails on Windows
Just follow these steps to install Ruby:

 Download the one-click installer for Ruby at http://rubyinstaller.rubyforge.org.
 Click the installer to install Ruby.

Select Start➪Run
Type cmd in the Open field and click OK.
Then, type the following at the command prompt:

gem install rails --include-dependencies

Install Ruby and Rails in Linux and Unix

Open a shell and type ruby -v at the prompt

if you have version 1.8.2 or later installed, you’re all set. If you don’t have Ruby installed,
you can find pre-built versions for your Linux/Unix installation on the Internet, or you
can build it from the source, which you can find at

http:// ruby-lang.org/en.

1. tar xzf ruby-1.8.4.tar.gz
2. cd ruby-1.8.4
3. ./configure
4. make
5. make test
6. sudo make install

You’re also going to need Rails, which is most easily installed with RubyGems. To get
RubyGems, go to

http://rubygems.rubyforge.org
and click the download link.
Then go to the directory containing the download in a shell and enter the following at the

command prompt, updating rubygems-0.8.10.tar.gz to the most recent version of the download:

1. tar xzf rubygems-0.8.10.tar.gz
2. cd rubygems-0.8.10
3. sudo ruby setup.rb

All that’s left is to use RubyGems to install Rails, which you can do this way:
sudo gem install rails --include-dependencies

Popular Ruby Editors

http://rubygems.rubyforge.org


 If you are working on Windows machine, use text editor Notepad or Edit plus.
 VIM (Vi IMproved) is a very simple text editor. This is available on almost all Unix

machines and now Windows as well. Otherwise, your can use your favorite vi editor to
write Ruby programs.

 RubyWin is a Ruby Integrated Development Environment (IDE) for Windows.
 Ruby Development Environment (RDE) is also a very good IDE for windows users.

Interactive Ruby (IRb)
Interactive Ruby (IRb) provides a shell for experimentation. Within the IRb shell, you

can immediately view expression results, line by line.

This tool comes along with Ruby installation so you have nothing to do extra to have IRb
working.

Just type irb at your command prompt and an Interactive Ruby Session will start as
given below

$irb
irb 0.6.1(99/09/16)
irb(main):001:0> def hello
irb(main):002:1> out = "Hello World"
irb(main):003:1> puts out
irb(main):004:1> end
nil
irb(main):005:0> hello
Hello World
nil
irb(main):006:0>

Getting Started with Ruby
Ruby is the language that is going to make everything happen. To work with Ruby, you

need a text editor
Programs➪Accessories➪WordPad) or Notepad (Start➪Programs➪Accessories➪Notepad) in
Windows.

Each Ruby program should be saved with the extension .rb, such as this first example,
hello.rb,which displays a greeting from Ruby.

Example 5.1 Display a Message

1. Start your text editor and enter the following Ruby code:
puts “Hello from Ruby.”

2. Save the file as hello.rb.Make sure you save the file as a text file (select Text Document in
the Save As Type drop-down), and if you are using Windows WordPad or Notepad, make sure
you enclose the name of the file in quotes—”hello.rb”—before saving to prevent those editors
from saving the file as hello.rb.rtf or hello.rb.txt.

http://vim.sourceforge.net/
https://homepage1.nifty.com/markey/ruby/rubywin/index_e.html
https://homepage2.nifty.com/sakazuki/rde_en/


3. Use Ruby to run this new program and see the results. Just enter the ruby command followed
by the name of the program at the command line:

C:\rubydev>ruby hello.rb
Output

Hello from Ruby

5.1.1. Ruby - Syntax

Whitespace in Ruby Program
Whitespace characters such as spaces and tabs are generally ignored in Ruby code,

except when they appear in strings. Sometimes, however, they are used to interpret ambiguous
statements. Interpretations of this sort produce warnings when the -w option is enabled.

Example
a + b is interpreted as a+b ( Here a is a local variable)
a +b is interpreted as a(+b) ( Here a is a method call)
Line Endings in Ruby Program

Ruby interprets semicolons and newline characters as the ending of a statement.
However, if Ruby encounters operators, such as +, −, or backslash at the end of a line, they
indicate the continuation of a statement.
Ruby Identifiers

Identifiers are names of variables, constants, and methods. Ruby identifiers are case
sensitive. It means Ram and RAM are two different identifiers in Ruby.Ruby identifier names
may consist of alphanumeric characters and the underscore character ( _ ).
Here Document in Ruby

"Here Document" refers to build strings from multiple lines. Following a << you can
specify a string or an identifier to terminate the string literal, and all lines following the current
line up to the terminator are the value of the string.

If the terminator is quoted, the type of quotes determines the type of the line-oriented
string literal. Notice there must be no space between << and the terminator.

#!/usr/bin/ruby -w

print <<EOF
This is the first way of creating
here document ie. multiple line string.

EOF

print <<"EOF"; # same as above
This is the second way of creating
here document ie. multiple line string.

EOF

print <<`EOC` # execute commands
echo hi there
echo lo there



EOC

print <<"foo", <<"bar" # you can stack them
I said foo.

foo
I said bar.

bar

This will produce the following result −

This is the first way of creating
her document ie. multiple line string.
This is the second way of creating
her document ie. multiple line string.

hi there
lo there

I said foo.
I said bar.

Checking the Ruby Documentation
What about documentation?

To handle the local version of the documentation, use the ri tool. Just enter ri at the
command line, followed by the item you want help with, such as the puts method:

C:\rubydev>ri puts
In this example, the puts method of interest is part of the IO package, so request that

documentation by entering ri IO#puts at the command line:

irb(main):001:0> puts “Hello from Ruby.”
When you press the Enter key, irb evaluates your Ruby and gives you the result:

C:\rubydev>irb
irb(main):001:0> puts “Hello from Ruby.”
Hello from Ruby.

Although you can create multi-line programs using irb, it’s awkward, so this book
sticks to entering Ruby code in files instead. arguments, outputs a single record separator.

$stdout.puts(“this”, “is”, “a”, “test”)
The output is
this
is
a
test

Ruby Data types
Data types represents a type of data such as text, string, numbers, etc. There are different

data types in Ruby:



 Numbers
 Strings
 Symbols
 Hashes
 Arrays
 Booleans

Working with Numbers in Ruby
Ruby has some great features for working with numbers. In fact, Ruby handles numbers

automatically. There is no limit to the size of integers you can use a number like
12345678987654321. The floating-point numbers simply by using a decimal point like this:
3.1415, also give an exponent like this: 31415.0e-4. And you can give binary numbers by
prefacing them with 0b (as in 0b1111), octal—base eight—numbers by prefacing them with a 0
(like this: 0355), and hexadecimal numbers—base 16—by prefacing them with 0x (such as
0xddff).

Ruby stores numbers in a variety of types. For example, integers are stored as the Fixnum type
unless they become too large, in which case they are stored as the Bignum type. And floating-
point numbers are stored as the Float type.

To get started with numbers in Ruby, follow these steps:
1. Enter this Ruby code in a new file:
puts 12345
puts 3.1415
puts 31415.0e-4
puts 12_345_678_987_654_321
puts 0xddff
2. Save the file as numbers.rb.
3. Use Ruby to run numbers.rb:
C:\rubydev>ruby numbers.rb
12345
3.1415
3.1415
12345678987654321
56831

Strings in Ruby
Ruby string object holds and manipulates an arbitary sequence of bytes, typically

representing characters. They are created using String::new or as literals.
Quotes : Ruby string literals are enclosed within single and double quotes.
Example:

1. #!/usr/bin/ruby
2. puts 'Hello everyone'
3. puts "Hello everyone"



Output:
Hello everyone
Hello everyone

Use the %q (single quotes) or %Q (double quotes) inside the syntax instead quotes. Just
use %q or %Q with a single character, and Ruby will add quotes until it sees that character again.
For example,

You can also concatenate (join) strings together, using a +. For example, the expression
“It “ + “was “+ “too “ + “Cary “ + “Grant!” is the same as “It was too Cary Grant!”.
1. Enter this Ruby code in a new file, strings.rb:
puts “Hello”
puts “Hello “ + “there”
puts ‘Nice to see you.’
puts %Q/How are you?/
puts %Q!Fine, and you?!
puts %q!I’m also fine, thanks.!
puts “I have to say, ‘I am well.’”
puts “I’ll also say, \”Things are fine.\””

1. Save the file as strings.rb.
2. Run strings.rb using Ruby to see the result:
C:\rubydev>ruby strings.rb
Hello
Hello there
Nice to see you.
How are you?
Fine, and you?
I’m also fine, thanks.
I have to say, ‘I am well.’
I’ll also say, “Things are fine.”

Accessing string elements
You can access Ruby string elements in different parts with the help of square brackets [].

Within square brackets write the index or string.
Example:

1. #!/usr/bin/ruby
2. msg = "This is Testing Ruby String."
3. puts msg["Testing"]
4. puts msg["Ruby"]
5. puts msg[0]
6. puts msg[0, 2]
7. puts msg[0..9]
8. puts msg[0, msg.length]
9. puts msg[-3]

Output:
Testing
Ruby



T
Th
This is Te
This is Testing Ruby String.
n
Multiline string

Writing multiline string is very simple in Ruby language. We will show three ways to
print multi line string.
 String can be written within double quotes.
 The % character is used and string is enclosed within / character.
 In heredoc syntax, we use << and string is enclosed within word STRING.

Example:
1. puts "
2. A
3. AB
4. ABC
5. ABCD"
6.
7. puts %/
8. A
9. AB
10. ABC
11. ABCD/
12.
13. puts <<STRING
14. A
15. AB
16. ABC
17. ABCD
18. STRING
Output:
A
AB
ABC
ABCD

A
AB
ABC
ABCD
A
AB
ABC
ABCD

Variable Interpolation



Ruby variable interpolation is replacing variables with values inside string literals. The
variable name is put between #{ and } characters inside string literal.
Example:

1. #!/usr/bin/ruby
2. country = "India"
3. capital = "New Delhi"
4. puts "#{capital} is the capital of #{country}."
Output:
New Delhi is the capital of India
Concatenating Strings

Ruby concatenating string implies creating one string from multiple strings. You can join
more than one string to form a single string by concatenating them. There are four ways to
concatenate Ruby strings into single string:
 Using plus sign in between strings.
 Using a single space in between strings.
 Using << sign in between strings.
 Using concat method in between strings.

Example:

1. #!/usr/bin/ruby
2. string = "This is Ruby Tutorial" + " from Book." + " Wish you all good luck."
3. puts string
4. string = "This is Ruby Tutorial" " from Book." " Wish you all good luck."
5. puts string
6. string = "This is Ruby Tutorial" << " from Book." << " Wish you all good luck."
7. puts string
8. string = "This is Ruby Tutorial".concat(" from Book.").concat(" Wish you all good luck.

")
9. puts string
Output:
This is Ruby Tutorial from Book. Wish you all good luck.
This is Ruby Tutorial from Book. Wish you all good luck.
This is Ruby Tutorial from Book. Wish you all good luck.
This is Ruby Tutorial from Book. Wish you all good luck.
Freezing Strings

In most programming languages strings are immutable. It means that an existing string
can't be modified, only a new string can be created out of them. In Ruby, by default strings are
not immutable. To make them immutable, freeze method can be used.
Example:
1. #!/usr/bin/ruby
2. str = "Original string"
3. str << " is modified "

https://www.javatpoint.com/ruby-strings
https://www.javatpoint.com/ruby-strings
https://www.javatpoint.com/ruby-strings
https://www.javatpoint.com/ruby-strings
https://www.javatpoint.com/ruby-strings
https://www.javatpoint.com/ruby-strings


4. str << "is again modified"
5. puts str
6. str.freeze
7. #str << "And here modification will be failed after using freeze method"

Output:
Original string is modified is again modified

In the above output, we have made the string immutable by using freeze method. Last line is
commented as no string can't be modified any further.

By uncommenting the last line, we'll get an error as shown in the below output.
Output:

Comparing Strings
Ruby strings can be compared with three operators:

 With == operator : Returns true or false
 With eql? Operator : Returns true or false
 With casecmp method : Returns 0 if matched or 1 if not matched

Example:

1. #!/usr/bin/ruby
2. puts "abc" == "abc"
3. puts "as ab" == "ab ab"
4. puts "23" == "32"
5. puts "ttt".eql? "ttt"
6. puts "12".eql? "12"
7. puts "Java".casecmp "Java"
8. puts "Java".casecmp "java"
9. puts "Java".casecmp "ja"
Output:
True
False
False
true
true
0
0
1

Ruby Variables
Ruby variables are locations which hold data to be used in the programs. Each variable

has a different name. These variable names are based on some naming conventions. Unlike other
programming languages, there is no need to declare a variable in Ruby. A prefix is needed to
indicate it.

https://www.javatpoint.com/ruby-strings
https://www.javatpoint.com/ruby-strings
https://www.javatpoint.com/ruby-strings


There are four types of variables in Ruby:
 Local variables
 Class variables
 Instance variables
 Global variables

Local variables
A local variable name starts with a lowercase letter or underscore (_). It is only accessible

or have its scope within the block of its initialization. Once the code block completes, variable
has no scope.

When uninitialized local variables are called, they are interpreted as call to a method that
has no arguments.
Class variables

A class variable name starts with @@ sign. They need to be initialized before use. A
class variable belongs to the whole class and can be accessible from anywhere inside the class. If
the value will be changed at one instance, it will be changed at every instance.

A class variable is shared by all the descendents of the class. An uninitialized class
variable will result in an error.
Example:
1. #!/usr/bin/ruby
2. class States
3. @@no_of_states=0
4. def initialize(name)
5. @states_name=name
6. @@no_of_states += 1
7. end
8. def display()
9. puts "State name #@state_name"
10. end
11. def total_no_of_states()
12. puts "Total number of states written: #@@no_of_states"
13. end
14. end
15. # Create Objects
16. first=States.new("Assam")
17. second=States.new("Meghalaya")
18. third=States.new("Maharashtra")
19. fourth=States.new("Pondicherry")
20. # Call Methods
21. first.total_no_of_states()
22. second.total_no_of_states()
23. third.total_no_of_states()
24. fourth.total_no_of_states()
In the above example, @@no_of_states is a class variable.
Output:
Total number of states written: 4



Total number of states written: 4
Total number of states written: 4
Total number of states written: 4

Instance variables
An instance variable name starts with a @ sign. It belongs to one instance of the class and

can be accessed from any instance of the class within a method. They only have limited access to
a particular instance of a class. They don't need to be initialize. An uninitialized instance variable
will have a nil value.
Example:
1. #!/usr/bin/ruby
2. class States
3. def initialize(name)
4. @states_name=name
5. end
6. def display()
7. puts "States name #@states_name"
8. end
9. end
10. # Create Objects
11. first=States.new("Assam")
12. second=States.new("Meghalaya")
13. third=States.new("Maharashtra")
14. fourth=States.new("Pondicherry")
15. # Call Methods
16. first.display()
17. second.display()
18. third.display()
19. fourth.display()
In the above example, @states_name is the instance variable.
Output:
States name Assam
States name Meghalaya
States name Maharashtra
States name Pondicherry

Global variables
A global variable name starts with a $ sign. Its scope is globally, means it can be

accessed from any where in a program. An uninitialized global variable will have a nil value. It
is advised not to use them as they make programs cryptic and complex. There are a number of
predefined global variables in Ruby.
Example:
1. #!/usr/bin/ruby
2. $global_var = "GLOBAL"
3. class One
4. def display



5. puts "Global variable in One is #$global_var"
6. end
7. end
8. class Two
9. def display
10. puts "Global variable in Two is #$global_var"
11. end
12. end
13. oneobj = One.new
14. oneobj.display
15. twoobj = Two.new
16. twoobj.display
In the above example, @states_name is the instance variable.
Output:
Global variable in One is GLOBAL
Global variable in Two is GLOBAL

Summary

Local Global Instance Class

Scope Limited within the
block of
initialization.

Its scope is
globally.

It belongs to
one instance
of a class.

Limited to the
whole class in
which they are
created.

Naming Starts with a
lowercase letter or
underscore (_).

Starts with a
$ sign.

Starts with
an @ sign.

Starts with an
@@ sign.

Initializ
ation

No need to
initialize. An
uninitialized local
variable is
interpreted as
methods with no
arguments.

No need to
initialize. An
uninitialized
global
variable will
have a nil
value.

No need to
initialize. An
uninitialized
instance
variable will
have a nil
value.

They need to be
initialized
before use. An
uninitialized
global variable
results in an
error.

Storing Data in Variables
Ruby can store your data in variables, which are named placeholders that can store

numbers, strings, and other data. You reference the data stored in a variable by using the
variable’s name. For example, to store a value of 34 in a variable named temperature, you assign
that variable the value like this:

temperature = 34
puts temperature

Here’s the result:



34
Rules for the names you can use in Ruby

A standard variable starts with a lowercase letter, a to z, or an underscore, _, followed by
any number of name characters. A name character is a lowercase letter, an uppercase letter, a
digit, or an underscore. And you have to avoid the words that Ruby reserves for itself.
Example

temperature = 36
puts “The temperature is “ + String(temperature) + “.”
temperature = temperature + 5
puts “Now the temperature is “ + String(temperature) + “.”

Output
The temperature is 36.
Now the temperature is 41.

Creating Constants
A constant holds a value that you do not expect to change, such as the value of pi:

PI = 3.1415926535

Symbols
Symbols are like strings. A symbol is preceded by a colon (:). For example,

:abcd
They do not contain spaces. Symbols containing multiple words are written with (_). One

difference between string and symbol is that, if text is a data then it is a string but if it is a code it
is a symbol.

Symbols are unique identifiers and represent static values, while string represent values
that change.
Example:

In the above snapshot, two different object_id is created for string but for symbol same object_id
is created.
Hashes

A hash assign its values to its keys. They can be looked up by their keys. Value to a key
is assigned by => sign. A key/value pair is separated with a comma between them and all the
pairs are enclosed within curly braces. For example,
{"Akash" => "Physics", "Ankit" => "Chemistry", "Aman" => "Maths"}
Example:

https://www.javatpoint.com/ruby-data-types
https://www.javatpoint.com/ruby-data-types


1. #!/usr/bin/ruby
2. data = {"Akash" => "Physics", "Ankit" => "Chemistry", "Aman" => "Maths"}
3. puts data["Akash"]
4. puts data["Aman"]
5. puts data["Ankit"]
Output:
Physics
Maths
Chemistry

Ruby Hashes
A Ruby hash is a collection of unique keys and their values. They are similar to arrays

but array use integer as an index and hash use any object type. They are also called associative
arrays, dictionaries or maps. If a hash is accessed with a key that does not exist, the method will
return nil. The Syntax is

name = {"key1" => "value1", "key2" => "value2", "key3" => "value3"...}
OR

name = {key1: 'value1', key2: 'value2', key3: 'value3'...}

Creating Ruby Hash
Ruby hash is created by writing key-value pair within {} curly braces. To fetch a hash

value, write the required key within [] square bracket.
Example:
1. color = {
2. "Rose" => "red",
3. "Lily" => "purple",
4. "Marigold" => "yellow",
5. "Jasmine" => "white"
6. }
7. puts color['Rose']
8. puts color['Lily']
9. puts color['Marigold']
10. puts color['Jasmine']
Output:
Red
Purple
Yellow
white

Modifying Ruby Hash
A Ruby hash can be modified by adding or removing a key value pair in an already

existing hash.
Example:
1. color = {
2. "Rose" => "red",



3. "Lily" => "purple",
4. "Marigold" => "yellow",
5. "Jasmine" => "white"
6. }
7. color['Tulip'] = "pink"
8. color.each do |key, value|
9. puts "#{key} color is #{value}"
10. end
Output:
Rose color is red
Lilly color is purple
Marigold color is yellow
Jasmine color is white
Tulip color is pink

Ruby Hash Methods
A Ruby hash has many methods. Some are public class methods and some public

instance methods.
Public Class Methods

Method Description

Hash[object] Create a new hash with given objects.

new(obj) Return a new empty hash.

try_convert(obj) Try to convert obj into hash.

Public Instance Methods

Method Description

hsh==other_hash Two hashes are equal if they contain same key and value pair.

hsh[key] Retrieve value from the respective key.

hsh[key] = value Associates new value to the given key.

assoc(obj) Compare obj in the hash.

clear Remove all key value pair from hash.

compare_by_identity Compare hash keys by their identity.



compare_by_identity? Return true if hash compare its keys by their identity.

default(key=nil) Return default value.

default = obj Sets the default value.

delete(key) Delete key value pair.

each Call block once for each key in hash.

empty? Return true if hash contains no key value pair.

eql>(other) Return true if hash and other both have same content

fetch(key[, default]) Return value from hash for a given key.

flatten Return a new array that is a one-dimensional flattening of this
hash.

has_key?(key) Return true if given key is present in hash.

has_value?(value) Return true if given value is present in hash for a key.

include?(key) Return true if given key is present in hash.

to_s/ inspect Return content of hash as string.

Arrays
An array stores data or list of data. It can contain all types of data. Data in an array are

separated by comma in between them and are enclosed by square bracket. For example,
["Akash", "Ankit", "Aman"]

Elements from an array are retrieved by their position. The position of elements in an array starts
with 0.
Example:
1. #!/usr/bin/ruby
2. data = ["Akash", "Ankit", "Aman"]
3. puts data[0]
4. puts data[1]
5. puts data[2]

Output:
Akash
Ankit
Aman

Ruby Arrays

https://www.javatpoint.com/ruby-data-types
https://www.javatpoint.com/ruby-data-types
https://www.javatpoint.com/ruby-data-types
https://www.javatpoint.com/ruby-data-types


Ruby arrays are ordered collections of objects. They can hold objects like integer,
number, hash, string, symbol or any other array.

Its indexing starts with 0. The negative index starts with -1 from the end of the array. For
example, -1 indicates last element of the array and 0 indicates first element of the array.

Creating Ruby Arrays
A Ruby array is created in many ways.
 Using literal constructor []
 Using new class method

Using literal construct []
A Ruby array is constructed using literal constructor []. A single array can contain

different type of objects. For example, following array contains an integer, floating number and a
string.

1. exm = [4, 4.0, "Jose", ]
2. puts exm
Output:
4
4.0
Jose

Using new class method
A Ruby array is constructed by calling ::new method with zero, one or more than one

arguments. The syntax is
arrayName = Array.new

To set the size of an array,
Syntax is:

arrayName = Array.new(10)

Here, we have mentioned that array size is of 10 elements. To know the size of an array,
either size or length method is used.
Example:
1. #!/usr/bin/ruby
2. exm = Array.new(10)
3. puts exm.size
4. puts exm.length
Output:
10
10

Example:
1. #!/usr/bin/ruby
2. exm = Array("a"..."z")
3. puts "#{exm}"
Output:

https://www.javatpoint.com/ruby-arrays
https://www.javatpoint.com/ruby-arrays
https://www.javatpoint.com/ruby-arrays


Accessing Array Elements
Ruby array elements can be accessed using #[] method. You can pass one or more than

one arguments or even a range of arguments. The general format is

#[] method
Example:

1. days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
2. puts days[0]
3. puts days[10]
4. puts days[-2]
5. puts days[2, 3]
6. puts days[1..7]

Output:
Mon

Sat
Wed
Thu
Fri
Tue
Wed
Thu
Fri
Sat
Sun

at method : To access a particular element, at method can also be used.
Example:
1. days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
2. puts days.at(0)
3. puts days.at(-1)
4. puts days.at(5)
Output:
Mon
Sun
Sat

slice method : The slice method works similar to #[] method.
fetch method : The fetch method is used to provide a default value error for out of array range

indices.
Example:
1. days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
2. puts days.fetch(10)
Output:

https://www.javatpoint.com/ruby-arrays
https://www.javatpoint.com/ruby-arrays
https://www.javatpoint.com/ruby-arrays


Example:
1. days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
2. puts days.fetch(10, "oops")
Output:
oops

first and last method : The first and last method will return first and last element of an array
respectively.
Example:
1. days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
2. puts days.first
3. puts days.last
Output:
Mon
Sun

take method :The take method returns the first n elements of an array.
Example:
1. days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
2. puts days.take(1)
3. puts days.take(2)
Output:
Mon
Mon
Tue

drop method : The drop method is the opposite of take method. It returns elements after n
elements have been dropped.
Example:
1. days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
2. puts days.drop(5)
3. puts days.drop(6)
Output:
Sat
Sun
Sun

Adding Items to Array : Ruby array elements can be added in different ways.
 push or <<
 unshift
 insert

push or << : Using push or <<, items can be added at the end of an array.

https://www.javatpoint.com/ruby-arrays


Example:
1. days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
2. puts days.push("Today")
3. puts days << ("Tomorrow")
Output:
Mon
Tue
Wed
Thu
Fri
Sat
Sun
Today
Mon
Tue
Wed
Thu
Fri
Sat
Sun
Today
Tomorrow

Unshift : Using unshift, a new element can be added at the beginning of an array.
Example:
1. days = ["Fri", "Sat", "Sun"]
2. puts days.unshift("Today")
Output:
Today
Fri
Sat
Sun

insert
Using insert, a new element can be added at any position in an array. Here, first we need

to mention the index number at which we want to position the element.
Example:
1. days = ["Fri", "Sat", "Sun"]
2. puts days.insert(2, "Thursday")
Output:
Fri
Sat
Thursday
Sun

Removing Items from Array : Ruby array elements can be removed in different ways.



 pop
 shift
 delete
 uniq

Pop : Using pop, items can be removed from the end of an array. It returns the removed item.
Example:

1. days = ["Fri", "Sat", "Sun"]
2. puts days.pop

Output:
Sun

Shift : Using shift, items can be removed from the start of an array. It returns the removed item.
Example:
1. days = ["Fri", "Sat", "Sun"]
2. puts days.shift
Output:
Fri

Delete : Using delete, items can be removed from anywhere in an array. It returns the removed
item.
Example:
1. days = ["Fri", "Sat", "Sun"]
2. puts days.delete("Sat")
Output:
Sat

Uniq : Using uniq, duplicate elements can be removed from an array. It returns the remaining
array.
Example:
1. days = ["Fri", "Sat", "Sun", "Sat"]
2. puts days.uniq
Output:
Fri
Sat
Sun
Ruby Each Iterator

The Ruby each iterator returns all the elements from a hash or array.
Syntax:

(collection).each do |variable|
code...
end

Here collection can be any array, range or hash.
Example:
1. #!/usr/bin/ruby
2. (1...5).each do |i|

https://www.javatpoint.com/ruby-arrays
https://www.javatpoint.com/ruby-arrays
https://www.javatpoint.com/ruby-arrays


3. puts i
4. end
Output:
1
2
3
4

Ruby Times Iterator
A loop is executed specified number of times by the times iterator. Loop will start from

zero till one less than specified number.
Syntax:

x.times do |variable|
code...
end

Here, at place of x we need to define number to iterate the loop.
Example:
1. #!/usr/bin/ruby
2. 5.times do |n|
3. puts n
4. end
Output:
0
1
2
3
4

Ruby Upto and Downto Iterators
An upto iterator iterates from number x to number y.

Syntax:
x.upto(y) do |variable|
code
end

Example:
1. #!/usr/bin/ruby
2. 1.upto(5) do |n|
3. puts n
4. end
Output:
1
2
3
4
5



Ruby Step Iterator
A step iterator is used to iterate while skipping over a range.

Syntax:

(controller).step(x) do |variable|
code
end

Here, x is the range which will be skipped during iteration.
Example:
1. #!/usr/bin/ruby
2. (10..50).step(5) do |n|
3. puts n
4. end
Output:
10
15
20
25
30
35
40
45
50

Ruby Each_Line Iterator
A each_line iterator is used to iterate over a new line in a string.

Example:
1. #!/usr/bin/ruby
2. "All\nthe\nwords\nare\nprinted\nin\na\nnew\line.".each_line do |line|
3. puts line
4. end
Output:
All
the
words
are
printed
in
a
newline.

Reserved Words
The following list shows the reserved words in Ruby. These reserved words may not be

used as constant or variable names. They can, however, be used as method names.

BEGINdo next then break false rescuewhen

https://www.javatpoint.com/ruby-iterators
https://www.javatpoint.com/ruby-iterators
https://www.javatpoint.com/ruby-iterators


Ruby Modules
 Ruby

module is a
collection of
methods and constants.

 A module method may be instance method or module method.
 Instance methods are methods in a class when module is included.
 Module methods may be called without creating an encapsulating object while instance

methods may not.
 They are similar to classes as they hold a collection of methods, class definitions,

constants and other modules.
 They are defined like classes. Objects or subclasses can not be created using modules.

There is no module hierarchy of inheritance.
Modules basically serve two purposes:
 They act as namespace. They prevent the name clashes.
 They allow the mixin facility to share functionality between classes.

Syntax:
module ModuleName
statement1
statement2
...........

end
Module name should start with a capital letter.

Module Namespaces
While writing larger files, a lot of reusable codes are generated. These codes are

organized into classes, which can be inserted into a file.
For example, if two persons have the same method name in different files. And both the

files need to be included in a third file. Then it may create a problem as the method name in both
included files is same.
Here, module mechanism comes into play. Modules define a namespace in which you can define
your methods and constants without over riding by other methods and constants.
Example:
Suppose, in file1.rb, we have defined number of different type of library books like fiction,
horror, etc. In file2.rb, we have defined the number of novels read and left to read including
fiction novels. In file3.rb, we need to load both the files file1 and file2. Here we will use module
mechanism.
file1.rb

1. #!/usr/bin/ruby
2.

END else nil true case for retry while

alias elsif not undef class if return while

and end or unlessdef in self __FILE__

begin ensureredountil defined?modulesuper __LINE__

https://www.javatpoint.com/ruby-modules
https://www.javatpoint.com/ruby-modules
https://www.javatpoint.com/ruby-modules


3. # Module defined in file1.rb file
4.
5. module Library
6. num_of_books = 300
7. def Library.fiction(120)
8. # ..
9. end
10. def Library.horror(180)
11. # ..
12. end
13. end

file2.rb

1. #!/usr/bin/ruby
2.
3. # Module defined in file2.rb file
4.
5. module Novel
6. total = 123
7. read = 25
8. def Novel.fiction(left)
9. # ...
10. end
11. end

file3.rb

1. require "Library"
2. require "Novel"
3.
4. x = Library.fiction(Library::num_of_books)
5. y = Novel.fiction(Novel::total)

A module method is called by preceding its name with the module's name and a period,
and you reference a constant using the module name and two colons.

Module Mixins
Ruby doesn't support multiple inheritance. Modules eliminate the need of multiple

inheritance using mixin in Ruby.
A module doesn't have instances because it is not a class. However, a module can be

included within a class.
When you include a module within a class, the class will have access to the methods of

the module.
Example:

1. module Name
2. def bella
3. end

https://www.javatpoint.com/ruby-modules
https://www.javatpoint.com/ruby-modules
https://www.javatpoint.com/ruby-modules
https://www.javatpoint.com/ruby-modules
https://www.javatpoint.com/ruby-modules
https://www.javatpoint.com/ruby-modules
https://www.javatpoint.com/ruby-modules
https://www.javatpoint.com/ruby-modules
https://www.javatpoint.com/ruby-modules


4. def ana
5. end
6. end
7. module Job
8. def editor
9. end
10. def writer
11. end
12. end
13.
14. class Combo
15. include Name
16. include Job
17. def f
18. end
19. end
20.
21. final=Combo.new
22. final.bella
23. final.ana
24. final.editor
25. final.writer
26. final.f

Here, module Name consists of methods bella and ana. Module Job consists of methods
editor and writer. The class Combo includes both the modules due to which class Combo can
access all the four methods. Hence, class Combo works as mixin.

The methods of a module that are mixed into a class can either be an instance method or a
class method. It depends upon how you add mixin to the class.

5.1.2. Ruby Operators
Ruby has a built-in modern set of operators. Operators are a symbol which is used to

perform different operations. For example, +, -, /, *, etc.
Types of operators:

 Unary operator
 Airthmetic operator
 Bitwise operator
 Logical operator
 Ternary operator
 Assignment operator
 Comparison operator
 Range operator

Unary Operator
Unary operators expect a single operand to run on.
! - Boolean NOT
~ - Bitwise complement
+ - Unary plus



Example
In file hello.rb, write the following code.

1. #!/usr/bin/ruby -w
2. puts("Unary operator")
3. puts(~5)
4. puts(~-5)
5. puts(!true)
6. puts(!false)

Output:
Unary Operator
-6
4
false
true
Airthmetic Operator

Airthmetic operators take numerical values as operands and return them in a single value.
+ - Adds values from both sides of the operator.
- - Subtract values from both sides of the operator.
/ - Divide left side operand with right side operand.
* - Multiply values from both sides of the operator.
** - Right side operand becomes the exponent of left side operand.
% - Divide left side operand with right side operand returning remainder.

Example
In file hello.rb, write the following code.

1. #!/usr/bin/ruby -w
2. puts("add operator")
3. puts(10 + 20)
4. puts("subtract operator")
5. puts(35 - 15)
6. puts("multiply operator")
7. puts(4 * 8)
8. puts("division operator")
9. puts(25 / 5)
10. puts("exponential operator")
11. puts(5 ** 2)
12. puts("modulo operator")
13. puts(25 % 4)

Output:
add operator
30
subtract operator
20
multiply operator
32
division operator

https://www.javatpoint.com/ruby-operators


5
exponential operator
25
modulo operator
1

Bitwise Operator
Bitwise operators work on bits operands.

& - AND operator
| - OR operator
<< - Left shift operator
>> - Right shift operator
^ - XOR operator
~ - Complement operator

Logical Operator
Logical operators work on bits operands.

&& - AND operator
|| - OR operator

Ternary Operator
Ternary operators first check whether given conditions are true or false, then execute the

condition.
?: - Conditional expression

Example
In file hello.rb, write the following code.
1. #!/usr/bin/ruby -w
2. puts("Ternary operator")
3. puts(2<5 ? 5:2)
4. puts(5<2 ? 5:2)
Output:
Ternary operator
5
2
Assignment operator

Assignment operator assign a value to the operands.
= - Simple assignment operator
+= - Add assignment operator
-= - Subtraction assignment operator
*= - Multiply assignment operator
/= - Divide assignment operator

Comparison Operator
Comparison operators compare two operands.
== - Equal operator



!= - Not equal operator
> - left operand is greater than right operand
< - Right operand is greater than left operand
>= - Left operand is greater than or equal to right operand
<= - Right operand is greater than or equal to left operand
<=> - Combined comparison operator
.eql? - Checks for equality and type of the operands
equal? - Checks for the object ID

Example
In file hello.rb, write the following code.

1. #!/usr/bin/ruby -w
2. puts("Comparison operator")
3. puts(2 == 5)
4. puts(2 != 5)
5. puts(2 > 5)
6. puts(2 < 5)
7. puts(2 >= 5)
8. puts(2 <= 5)

Output:
Comparison operator
false
true
false
true
false
true

Range Operator
Range operators create a range of successive values consisting of a start, end and range of

values in between. The (..) creates a range including the last term and (...) creates a range
excluding the last term. For example, for the range of 1..5, output will range from 1 to 5. and for
the range of 1...5, output will range from 1 to 4.

.. - Range is inclusive of the last term
… - Range is exclusive of the last term

5.2.Control Statements
Ruby If-else Statement

The Ruby if else statement is used to test condition. There are various types of if
statement in Ruby.

 if statement
 if-else statement
 if-else-if (elsif) statement
 ternay (shortened if statement) statement

Ruby if statement
Ruby if statement tests the condition. The if block statement is executed if condition is

true. Syntax:

https://www.javatpoint.com/ruby-operators
https://www.javatpoint.com/ruby-operators


if (condition)
//code to be executed
end

Example:
1. a = gets.chomp.to_i
2. if a >= 18
3. puts "You are eligible to vote."
4. end
Output:

Ruby if else
23
You are eligible to vote.

12Ruby if else statement tests the condition. The if block statement is executed if
condition is true otherwise else block statement is executed. Syntax is:

if(condition)
//code if condition is true

else
//code if condition is false
end

Example:
1. a = gets.chomp.to_i
2. if a >= 18
3. puts "You are eligible to vote."
4. else
5. puts "You are not eligible to vote."
6. end
Output:
15
You are not eligible to vote.
18
You are eligible to vote.
20
You are not eligible to vote.

Ruby if else if (elsif)
Ruby if else if statement tests the condition. The if block statement is executed if

condition is true otherwise else block statement is executed. Syntax:
if(condition1)
//code to be executed if condition1is true
elsif (condition2)
//code to be executed if condition2 is true
else (condition3)
//code to be executed if condition3 is true

https://www.javatpoint.com/ruby-if-else


end
Example:
1. a = gets.chomp.to_i
2. if a <50
3. puts "Student is fail"
4. elsif a >= 50 && a <= 60
5. puts "Student gets D grade"
6. elsif a >= 70 && a <= 80
7. puts "Student gets B grade"
8. elsif a >= 80 && a <= 90
9. puts "Student gets A grade"
10. elsif a >= 90 && a <= 100
11. puts "Student gets A+ grade"
12. end
Output:
45
Student is fail
98
Student gets A+ grade
100
Student gets A+ grade
64
72
Student gets B grade
Ruby ternary Statement

In Ruby ternary statement, the if statement is shortened. First it evaluates an expression
for true or false value then execute one of the statements. Syntax:

test-expression ? if-true-expression : if-false-expression
Example:
1. var = gets.chomp.to_i;
2. a = (var > 3 ? true : false);
3. puts a
Output:
2
false
5
true

Ruby Case Statement
In Ruby, we use 'case' instead of 'switch' and 'when' instead of 'case'. The case statement

matches one statement with multiple conditions just like a switch statement in other languages.
Syntax:

case expression
[when expression [, expression ...] [then]
code ]...

https://www.javatpoint.com/ruby-if-else
https://www.javatpoint.com/ruby-if-else
https://www.javatpoint.com/ruby-if-else


[else
code ]

end
Example:
1. #!/usr/bin/ruby
2. print "Enter your day: "
3. day = gets.chomp
4. case day
5. when "Tuesday"
6. puts 'Wear Red or Orange'
7. when "Wednesday"
8. puts 'Wear Green'
9. when "Thursday"
10. puts 'Wear Yellow'
11. when "Friday"
12. puts 'Wear White'
13. when "Saturday"
14. puts 'Wear Black'
15. else
16. puts "Wear Any color"
17. end
Output:
Enter your day: Sunday
Wear Any color
Enter your day: Saturday
Wear Black
Enter your day: Saturday
Wear Any color

Look at the above output, conditions are case sensitive. Hence, the output for 'Saturday'
and 'saturday' are different.

Ruby for Loop
Ruby for loop iterates over a specific range of numbers. Hence, for loop is used if a

program has fixed number of iterations. Ruby for loop will execute once for each element in
expression. The general Syntax is:

for variable [, variable ...] in expression [do]
code

end

Ruby for loop using range
1. a = gets.chomp.to_i
2. for i in 1..a do
3. puts i
4. end



Output:
5
1
2
3
4
5

Ruby for loop using array
1. x = ["Blue", "Red", "Green", "Yellow", "White"]
2. for i in x do
3. puts i
4. end
Output:
Blue
Red
Green
Yellow
White

Ruby while Loop
The Ruby while loop is used to iterate a program several times. If the number of

iterations is not fixed for a program, while loop is used. Ruby while loop executes a condition
while a condition is true. Once the condition becomes false, while loop stops its execution. The
general syntax is :

while conditional [do]
code

end
Example
1. #!/usr/bin/ruby
2. x = gets.chomp.to_i
3. while x >= 0
4. puts x
5. x -=1
6. end
Output:
5
5
4
3
2
1
0

Ruby do while Loop



The Ruby do while loop iterates a part of program several times. It is quite similar to a
while loop with the only difference that loop will execute at least once. It is due to the fact that in
do while loop, condition is written at the end of the code. The general format is

loop do
#code to be executed
break if booleanExpression
end

Example:
1. loop do
2. puts "Checking for answer"
3. answer = gets.chomp
4. if answer != '5'
5. break
6. end
7. end
Output:1
Checking for answer
3
Output:2
Checking for answer
5
Checking for answer
9
Ruby Until Loop

The Ruby until loop runs until the given condition evaluates to true. It exits the loop
when condition becomes true. It is just opposite of the while loop which runs until the given
condition evaluates to false. The until loop allows you to write code which is more readable and
logical. The general Syntax is :

until conditional
code

end
Example:
1. i = 1
2. until i == 5
3. print i*10, "\n"
4. i += 1
5. end
Output:
10
20
30
40
50
Ruby Break Statement



The Ruby break statement is used to terminate a loop. It is mostly used in while loop
where value is printed till the condition is true, then break statement terminates the loop. The
break statement is called from inside the loop. Syntax is :

break
Example:
1. i = 1
2. while true
3. if i*5 >= 25
4. break
5. end
6. puts i*5
7. i += 1
8. end
Output:
5
10
15
20

Ruby Next Statement
The Ruby next statement is used to skip loop's next iteration. Once the next statement is

executed, no further iteration will be performed. The next statement in Ruby is equivalent to
continue statement in other languages. The general syntax is :

next
Example:
1. for i in 5...11
2. if i == 7 then
3. next
4. end
5. puts i
6. end
Output:
5
6
8
9
10

Ruby redo Statement
Ruby redo statement is used to repeat the current iteration of the loop. The redo statement

is executed without evaluating the loop's condition. The redo statement is used inside a loop. The
general syntax is :

redo
Example:
1. i = 0

https://www.javatpoint.com/ruby-break-and-next-statement
https://www.javatpoint.com/ruby-break-and-next-statement


2. while(i < 5) # Prints "012345" instead of "01234"
3. puts i
4. i += 1
5. redo if i == 5
6. end
Output:
0
1
2
3
4
5
Ruby retry Statement

Ruby retry statement is used to repeat the whole loop iteration from the start. The retry
statement is used inside a loop. The syntax is :

retry

Ruby Comments
Ruby comments are non executable lines in a program. These lines are ignored by the

interpreter hence they don't execute while execution of a program. They are written by a
programmer to explain their code so that others who look at the code will understand it in a
better way.
Types of Ruby comments:

1. Single line comment
2. multi line comment

Ruby Single Line Comment
The Ruby single line comment is used to comment only one line at a time. They are

defined with # character. The general format is

#This is single line comment.
Example:
1. i = 10 #Here i is a variable.
2. puts i
Output:
10

The Ruby multi line comment is used to comment multiple lines at a time. They are
defined with =begin at the starting and =end at the end of the line. The Syntax is :

=begin
This
is
multi line
comment

=end

https://www.javatpoint.com/ruby-comments
https://www.javatpoint.com/ruby-comments
https://www.javatpoint.com/ruby-comments
https://www.javatpoint.com/ruby-comments
https://www.javatpoint.com/ruby-comments
https://www.javatpoint.com/ruby-comments


Example:
1. =begin
2. we are declaring
3. a variable i
4. in this program
5. =end
6. i = 10
7. puts i
Output:
10

5.3. Ruby Blocks
Ruby code blocks are called closures in other programming languages. It consist of a

group of codes which is always enclosed with braces or written between do..end. The braces
syntax always have the higher precedence over the do..end syntax. Braces have high precedence
and do has low precedence.
A block is written in two ways,

 Multi-line between do and end (multi-line blocks are niot inline)
 Inline between braces {}
Both are same and have the same functionality. To invoke a block, you need to have a

function with the same name as the block. A block is always invoked with a function. Blocks can
have their own arguments. The general syntax is :

block_name{
statement1
statement2
..........

}
Example:
The below example shows themulti-line block.
1. [10, 20, 30].each do |n|
2. puts n
3. end
Output:
10
20
30
Below example shows the inline block.

[10, 20, 30].each {|n| puts n}
Output:
10
20
30

https://www.javatpoint.com/ruby-blocks
https://www.javatpoint.com/ruby-blocks
https://www.javatpoint.com/ruby-blocks


Ampersand parameter (&block)
The &block is a way to pass a reference (instead of a local variable) to the block to a

method. Here, block word after the & is just a name for the reference, any other name can be
used instead of this.
Example:

1. def met(&block)
2. puts "This is method"
3. block.call
4. end
5. met { puts "This is &block example" }
Output:
This is method
This is &block example

Here, the block variable inside method met is a reference to the block. It is executed with
the call method. The call method is same as yield method.

Initializing objects with default values
Ruby has an initializer called yield(self). Here, self is the object being initialized.

Example:
1. class Novel
2. attr_accessor :pages, :category
3. def initialize
4. yield(self)
5. end
6. end
7. novel = Novel.new do |n|
8. n.pages = 564
9. n.category = "thriller"
10. end
11. puts "I am reading a #{novel.category} novel which has #{novel.pages} pages."
Output:
I am reading a #{novel.category} novel which has 564 pages.

Ruby BEGIN Statement
Declares code to be called before the program is run.
BEGIN
{

code
}

Ruby END Statement
Declares code to be called at the end of the program.
END

https://www.javatpoint.com/ruby-blocks
https://www.javatpoint.com/ruby-blocks
https://www.javatpoint.com/ruby-blocks


{
code

}
Example
#!/usr/bin/ruby

puts "This is main Ruby Program"

END {
puts "Terminating Ruby Program"

}
BEGIN {
puts "Initializing Ruby Program"

}
This will produce the following result −
Initializing Ruby Program
This is main Ruby Program
Terminating Ruby Program

5.4. Ruby Class and Object
In object-oriented programming language, we design programs using objects and classes.

Object is a physical as well as logical entity whereas class is a logical entity only.
Ruby Class

Ruby class defines blueprint of a data type. Each Ruby class is an instance of class Class.
Classes in Ruby are first-class objects. Ruby class always starts with the keyword class followed
by the class name. Conventionally, for class name we use CamelCase. The class name should
always start with a capital letter. Defining class is finished with end keyword. Class name with
more than one word run together with each word capitalized and no separating characters.

The general syntax is
class ClassName
codes...

end
For example

class Java
def initialize(name = “world”)

@name = name
end
def say_welcome()

puts “Welcome #{@name}!”
end
def say_end()

puts “Bye #{@name}, see you again”
end

End
A new class Java is created. The @name is an instance variable available to all the

methods of the Java class. It is used by say_welcome and say_bye.



Ruby Object
In Ruby, everything is an object. When we create objects, they communicate together

through methods. Hence, an object is a combination of data and methods.
To create an object, first, we define a class. Single class can be used to create many

objects. Objects are declared using new keyword.

Creating object
Objects in Ruby are created by calling new method of the class. It is a unique type of

method and predefined in the Ruby library. Ruby objects are instances of the class. The general
syntax is

objectName = className.new
Example:

We have a class named Java. Now, let's create an object java and use it with following
command,

java = Java.new("John")
java.say_welcome
java.say_bye

Assigning @name =John, and it will produce
Welcome John!
Bye John, see you again

Ruby Methods
Ruby methods prevent us from writing the same code in a program again and again. It is

a set of expression that returns a value. Ruby methods are similar to the functions in other
languages. They unite one or more repeatable statements into one single bundle.

Defining Method
Methods are functions which are defined inside the body of a class. Data in Ruby is

accessible only via methods. There is a follow path in which Ruby looks when a method is called.
To find out the method lookup chain we can use ancestors method.

To use a method, we need to first define it. Ruby method is defined with the def keyword
followed by method name. At the end we need to use end keyword to denote that method has
been defined.

Methods name should always start with a lowercase letter. Otherwise, it may be
misunderstood as a constant. Syntax is :

def methodName
code...

end
Example:

Here, we have defined a method say_welcome using def keyword. The last line end
keyword says that we are done with the method defining. Now let's call this method. A method is
called by just writing its name.

>say_welcome
This will produce the following output

https://www.javatpoint.com/ruby-methods
https://www.javatpoint.com/ruby-methods
https://www.javatpoint.com/ruby-methods


welcome john!

Defining Method with Parameter
To call a particular person, we can define a method with parameter.

def welcome(name)
puts “Hello #{name}, welcome at Ruby class”

end

Here, #{name} is a way in Ruby to insert something into string. The bit inside the braces is
turned into a string. Let's call the method by passing a parameter Edward.

welcome(“Karthi”)
Output is

Hello Karthi, welcome at Ruby class

Instance Methods
The instance methods are also defined with def keyword and they can be used using a

class instance only.
Example:
1. #!/usr/bin/ruby -w
2.
3. # define a class
4. class Circle
5. # constructor method
6. def initialize(r)
7. @radius = r
8. end
9. # instance method
10. def getArea
11. 3.14 * @radius * @radius
12. end
13. end
14.
15. # create an object
16. circle = Circle.new(2)
17.
18. # call instance methods
19. a = circle.getArea()
20. puts "Area of the box is : #{a}"
Output:
Area of the box is : 12.56

Ruby OOPs Concept
Ruby is a true object oriented language which can be embedded into Hypertext Markup

Language. Everything in Ruby is an object. All the numbers, strings or even class is an object.
The whole Ruby language is basically built on the concepts of object and data.



OOPs is a programming concept that uses objects and their interactions to design
applications and computer programs. Following are some basic concepts in OOPs:

 Encapsulation
 Polymorphism
 Inheritance
 Abstraction

Encapsulation: It hides the implementation details of a class from other objects due to which a
class is unavailable to the rest of the code. Its main purpose is to protect data from data
manipulation.
Polymorphism: It is the ability to represent an operator or function in different ways for
different data input.
Inheritance: It creates new classes from pre defined classes. New class inherit behaviors of its
parent class which is referred as superclass. In this way, pre defined classes can be made more
reusable and useful.
Abstraction: It hides the complexity of a class by modelling classes appropriate to the problem.

Encapsulation:
Encapsulation is defined as the wrapping up of data under a single unit. It is the mechanism

that binds together code and the data it manipulates. In a different way, encapsulation is a
protective shield that prevents the data from being accessed by the code outside this shield.
 Technically in encapsulation, the variables or data of a class are hidden from any other class

and can be accessed only through any member function of own class in which they are
declared.

 Encapsulation can be achieved by declaring all the variables in the class as private and
writing public methods in the class to set and get the values of variables.

Example:

# Ruby program to illustrate encapsulation
#!/usr/bin/ruby
class Demoencapsulation

def initialize(id, name, addr)
# Instance Variables
@cust_id = id
@cust_name = name
@cust_addr = addr

end
# displaying result

def display_details()
puts "Customer id: #@cust_id"
puts "Customer name: #@cust_name"
puts "Customer address: #@cust_addr"

end
end
# Create Objects
cust1 = Demoencapsulation .new("1", "Mike", "Wisdom Apartments, Ludhiya")
cust2 = Demoencapsulation .new("2", "Jackey", "New Empire road, Khandala")



# Call Methods
cust1.display_details()
cust2.display_details()
Output:

Customer id: 1

Customer name: Mike

Customer address: Wisdom Apartments, Ludhiya

Customer id: 2

Customer name: Jackey

Customer address: New Empire road, Khandala

Explanation: In the above program, the class Demoencapsulation encapsulate the methods of the
class. You can only access these methods with the help of objects of the Demoencapsulation class
i.e. cust1 and cust2.

Advantages of Encapsulation:

 Data Hiding:The user will have no idea about the inner implementation of the class. It will
not be visible to the user that how the class is storing values in the variables. He only knows
that we are passing the values to a setter method and variables are getting initialized with
that value.

 Reusability: Encapsulation also improves the re-usability and easy to change with new
requirements.

 Testing code is easy:Encapsulated code is easy to test for unit testing.

Ruby Inheritance
In inheritance, we create new classes using pre defined classes. Newly created classes are

called derived classes and classes from which they are derived are called base classes. With
inheritance, a code can be reused again which reduces the complexity of a program. Ruby does
not support multiple levels of inheritance. Instead it supports mixins. In Ruby, < character is
used to create a subclass. The syntax is shown below:

parentClass < subClass
Example:
1. #!/usr/bin/ruby
2.
3. class Parent
4.
5. def initialize
6. puts "Parent class created"
7. end
8. end
9.
10. class Child < Parent
11.
12. def initialize



13. super
14. puts "Child class created"
15. end
16. end
17. Parent.new
18. Child.new

In the above example, two classes are created. One is base Parent class and other is
derived Child class. The super method calls the constructor of the Parent class.From the last two
line, we instantiate both the classes.
Output:
Parent class created
Parent class created
Child class created

In the output, first the Parent class is created, derived Child class also calls the
constructor of its parent class and then Child class is created.

Ruby Constructor
A constructor is automatically called when an object is created. They do not return any

values. In Ruby, they are called initialize. A constructor's main purpose is to initiate the state of
an object. They can't be inherited. The parent object constructor is called with super method.
Example:

1. #!/usr/bin/ruby
2. class Parent
3. def initialize
4. puts "Parent is created"
5. end
6. end
7. Parent.new
Output:
Parent is created

Polymorphism
In Ruby, one does not have anything like the variable types as there is in other

programming languages. Every variable is an “object” which can be individually modified. One
can easily add methods and functions on every object. So here, the Object Oriented Programming
plays a major role. There are many pillars of Object Oriented Programming in every other
programming language, like Inheritance, Encapsulation etc. One of these pillars is Polymorphism.

Polymorphism is a made up of two words Poly which means Many and Morph which
means Forms. So Polymorphism is a method where one is able to execute the same method using
different objects. In polymorphism, we can obtain different results using the same function by
passing different input objects. One can also write the If-Else commands but that just makes the
code more lengthy. To avoid this, the programmers came up with the concept of polymorphism.

In Polymorphism, classes have different functionality but they share common interference.
The concept of polymorphism can be studied under few sub categories.

https://www.javatpoint.com/ruby-oops
https://www.javatpoint.com/ruby-oops
https://www.javatpoint.com/ruby-oops
https://www.geeksforgeeks.org/ruby-programming-language-introduction/


1. Polymorphism using Inheritance
2. Polymorphism using Duck-Typing

1. Polymorphism using inheritance
Inheritance is a property where a child class inherits the properties and methods of a

parent class. One can easily implement polymorphism using inheritance. It can be explained
using the following example:

# Ruby program of Polymorphism using inheritance
class Vehicle
def tyreType
puts "Heavy Car"

end
end

# Using inheritance
class Car < Vehicle
def tyreType
puts "Small Car"

end
end

# Using inheritance
class Truck < Vehicle
def tyreType
puts "Big Car"

end
end

# Creating object
vehicle = Vehicle.new
vehicle.tyreType()

# Creating different object calling same function
vehicle = Car.new
vehicle.tyreType()

# Creating different object calling same function
vehicle = Truck.new
vehicle.tyreType()
Output:

Heavy Car

Small Car

Big Car



The above code is a very simple way of executing basic polymorphism. Here,
the tyreType method is called using different objects like Car and Truck. The Car and Truck
classes both are the child classes of Vehicle. They both inherit the methods of vehicle class
(primarily the tyretype method).

Polymorphism using Duck-Typing
In Ruby, we focus on the object’s capabilities and features rather than its class. So, Duck

Typing is nothing but working on the idea of what an object can do rather than what it actually is.
Or, what operations could be performed on the object rather than the class of the object. Here is a
small program to represent the before mentioned process.
Example :

# Ruby program of polymorphism using Duck typing
# Creating three different classes
class Hotel

def enters
puts "A customer enters"

end
def type(customer)

customer.type
end
def room(customer)

customer.room
end

end
# Creating class with two methods
class Single

def type
puts "Room is on the fourth floor."

end
def room

puts "Per night stay is 5 thousand"
end

end
class Couple

# Same methods as in class single
def type

puts "Room is on the second floor"
end
def room

puts "Per night stay is 8 thousand"
end

end
# Creating Object
# Performing polymorphism
hotel= Hotel.new



puts "This visitor is Single."
customer = Single.new
hotel.type(customer)
hotel.room(customer)
puts "The visitors are a couple."
customer = Couple.new
hotel.type(customer)
hotel.room(customer)
Output :

This visitor is Single.

Room is on the fourth floor.

Per night stay is 5 thousand

The visitors are a couple.

Room is on the second floor

Per night stay is 8 thousand

In the above example, The customer object plays a role in working with the properties of
the customer such as its “type” and its “room”. This is an example of polymorphism.

Data Abstraction in Ruby
The idea of representing significant details and hiding details of functionality is called data

abstraction. The interface and the implementation are isolated by this programming technique.
Data abstraction is one of the object oriented programming features as well. Abstraction is trying to
minimize information so that the developer can concentrate on a few ideas at a time. Abstraction is
the foundation for software development.

Consider a real-life example of making a phone call. The only thing the person knows is
that typing the numbers and hitting the dial button will make a phone call, they don’t know about
the inner system of the phone or the dial button on the phone. That’s what we call abstraction.
Another real-life example of abstraction is as users of television sets, we can switch it on or off,
change the channel and set the volume without knowing the details about how its functionality has
been implemented.

Data Abstraction in modules:

In Ruby, Modules are defined as a set of methods, classes, and constants together.For
example, consider the sqrt() method present in Math module. Whenever we need to calculate the
square root of a non negative number, We simply call the sqrt() method present in the Math
module and send the number as a parameter without understanding the actual algorithm that
actually calculates the square root of the numbers.

Data Abstraction in Classes: we can use classes to perform data abstraction in ruby. The class
allows us to group information and methods using access specifiers (private, protected, public).
The Class will determine which information should be visible and which is not.

Data Abstraction using Access Control: There are three levels of access control in Ruby (private,
protected, public). These are the most important implementation of data abstraction in ruby.



For Example

 Members who have been declared public in a class can be accessed from anywhere in the
program.

 Members declared to be private in a class can only be accessed from within the class. They
are not allowed to access any part of the code outside the class.

Output:

In Public
In Private

In the
above program,
we are not
allowed to
access the
privateMethod()
of Geeks class
directly,
however, we
can call the
publicMethod()
in the class in
order to access
the
privateMethod()
.

Advantages of
Data
Abstraction:

 Helps increase the security of a system because only crucial details are made available to the
user.

 It increases re-usability and prevents redundancy of code.
 Could alter the internal class implementation independently without affecting the user.

5.5. Welcome to rails
5.5. Ruby on Rails

Ruby on Rails tutorial provides basic and advanced concepts of Ruby on Rails.
5.5.1.Ruby on Rails Introduction

Ruby on Rails is a server-side web application development framework written in Ruby
language by David Heinemeier Hansson. He was working at 37 signals (now Basecamp)
company to create a project management application in Ruby. To help speed along the process,
he created a custom web framework Ruby on Rails. It is also called Rails.

It allows you to write less code than other languages and frameworks. It includes
everything needed to create database-backed web applications according to MVC pattern.

# Ruby program to demonstrate Data Abstraction
class Geeks
# defining publicMethod
public

def publicMethod
Puts "In Public!"
# calling privateMethod inside publicMethod
privateMethod

end
# defining privateMethod

private
def privateMethod

puts "In Private!"
end

end
# creating an object of class Geeks
obj = Geeks.new
# calling the public method of class Geeks
obj.publicMethod



Ruby on Rails Installation
We will set up Ruby on Rails in Ubuntu 14.04 operating system.There are three methods

to install Ruby:
 Using rbenv (recommended)
 Using rvm
 From source

We will install using rbenv as it is the most recommended way. First we will install some
dependencies for Ruby:

sudo apt-get update

1. sudo apt-get install git-core curl zlib1g-dev build-essential libssl-dev
2. libreadline-dev libyaml-dev libsqlite3-dev sqlite3 libxml2-dev
3. libxslt1-dev libcurl4-openssl-dev python-software-properties libffi-dev nodejs

Install rbenv
Installing rbenv is a simple two way process. First rbenv will be installed and then ruby-

build. Follow the following commands:
1. cd
2. git clone git://github.com/sstephenson/rbenv.git .rbenv
3. echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.bashrc\
4. echo 'eval "$(rbenv init -)"' >> ~/.bashrc
5. exec $SHELL

1. git clone git://github.com/rbenv/ruby-build.git ~/.rbenv/plugins/ruby-build
2. echo 'export PATH="$HOME/.rbenv/plugins/ruby-build/bin:$PATH"' >> ~/.bashrc
3. exec $SHELL

The above command will install rbenv in your home directory and will set the appropriate
environment variables.

Install Ruby
Install Ruby using following commands:

1. rbenv install -v 2.2.3
2. rbenv global 2.2.3

To disable Rubygems which generate local documentation for each gem that you install,
use following command:
1. echo "gem: --no-document" > ~/.gemrc
Now you need to install bundler gem to manage application dependencies with following
command.

1. gem install bundler

https://www.javatpoint.com/ruby-on-rails-installation
https://www.javatpoint.com/ruby-on-rails-installation
https://www.javatpoint.com/ruby-on-rails-installation
https://www.javatpoint.com/ruby-on-rails-installation
https://www.javatpoint.com/ruby-on-rails-installation
https://www.javatpoint.com/ruby-on-rails-installation
https://www.javatpoint.com/ruby-on-rails-installation
https://www.javatpoint.com/ruby-on-rails-installation
https://www.javatpoint.com/ruby-on-rails-installation


Install Rails
Install Rails using following command,

1. gem install rails

You can specify the version of Rails which you want to install using -v option in the
above command.

Now we will run rehash sub-command. This will install shims for all Ruby executables
known to rbenv, which allow you to use executables.
1. rbenv rehash
To verify the installed Rails version, use the following command.
1. rails -v

Install JavaScript Runtime
Some Rails features like Asset Pipeline, depends on JavaScript runtime. To get this

functionality, we need to install Node.js.
1. sudo add-apt-repository ppa:chris-lea/node.js
Now update apt-get and install Node.js packet.
1. sudo apt-get update
2. sudo apt-get install nodejs
Now you have successfully installed Ruby on Rails on your system.

Install Database
Rails default database is Sqlite3. If you want to use some other database due to any

reason, then you need to install it. Here, we will install MySQL server as our database.

1. sudo apt-get install mysql-server mysql-client libmysqlclient-dev
After this, install mysql2 gem, with following command.

1. gem install mysql2
Now you can easily use MySQL with Rails in your system.

Rails IDE or Editor
Ruby on Rails can be used with either a simple text editor or with an IDE. A text editor is

a tool that creates and edits a file with only plain text. Once the code is written in the editor, it
need to be compiled and run on a command line tool.

An IDE stands for Integrated Development Environment. It is a more powerful tool
providing many features, including text editor features. Some of the Rails IDEs are listed below:

TextMate , E, Intellij IDEA, NetBeans, Eclipse, Heroku, Aptana Studio, RubyMine, Kuso,
IDE, Komodo, Redcar, Arcadia, Ice Coder etc…

Rails Scripts
Rails provides us some excellent tools that are used to develop Rails application. These

tools are packaged as scripts from command line. Following are the most useful Rails scripts
used in Rails application:

 Rails Console
 WEBrick Web Server

https://www.javatpoint.com/ruby-on-rails-installation
https://www.javatpoint.com/ruby-on-rails-installation
https://www.javatpoint.com/ruby-on-rails-installation


 Generators
 Migrations

Ruby on Rails 5 Hello World Example
Step 1 : Create a directory jtp in which all the code will be present and will navigate from the

command line.
mkdir jtp

Step 2 : Change the directory to jtp
cd jtp

Step 3 : Create a new application with the name helloWorld.
rails new helloWorld

You will see something as shown in the below snapshot.

A helloWorld directory will be created in your system. Inside this folder there will be
many files and subfolders which is actually the Rails application.

Step 4 : Move in to your above created application directory that is helloWorld.
cd helloWorld

Step 5 : Rails 5 has no longer a static index page in production. There will not be a root page in
the production, so we need to create it. First we will create a controller called hello for
our home page.

1. rails generate controller hello

You will see something as shown in the below snapshot.



Step 6 : Now we need to add an index page. In file app/views/hello/index.html.erb, write

1. <h2>Hello World</h2>
2. <p>
3. Today is 23r March, Thursday.
4. </p>

Step 7 : Now we need to route the Rails to this action. Edit the config/routes.rb file to set the
index page to our new method. Add the following line in the routes.rb file,

root 'hello#index'
Step 8 : Now you can verify the page by running your server.

rails server

By default, Rails server listens to the port 3000. Although you can change it with the following
command.

rails server -p portNumber

Step 9 :Visit click here in your browser.

https://www.javatpoint.com/ruby-on-rails-hello-world-example
https://www.javatpoint.com/ruby-on-rails-hello-world-example
https://www.javatpoint.com/ruby-on-rails-hello-world-example
http://localhost:3000/


5.5.2. Creating the Application Framework
Rails can do most of the work in creating your application. In fact, all you need to do is

use the command rails applicationName, rails first at the command line in the rubydev directory.
Rails creates the files you’re going to need:

C:\rubydev\ch04>rails first
create
create app/controllers
create app/helpers
create app/models
create app/views/layouts
create config/environments
create components
create db
create doc
create lib
create lib/tasks
create log
create public/images
create public/javascripts
create public/stylesheets
create script/performance
create script/process
create test/fixtures
create test/functional
create test/integration
create test/mocks/development
create test/mocks/test
create test/unit
create vendor
create vendor/plugins
create tmp/sessions
create tmp/sockets
create tmp/cache
create Rakefile
create README
create app/controllers/application.rb



create app/helpers/application_helper.rb
create test/test_helper.rb
create config/database.yml
create config/routes.rb
create public/.htaccess
create config/boot.rb
create config/environment.rb
create config/environments/production.rb
create config/environments/development.rb
create config/environments/test.rb
create script/about
.
.etc…..
A lot of new directories (and only about half of them are shown here). Here is the new directory
structure of the rubydev\msc\first directory:

rubydev
|__msc

|__first
|__README
|__app
| |__controllers
| |__models
| |__views
| |__helpers
|
|__config
|__components
|__db
|__doc
|__lib
|__public
|__script
|__test
|__tmp
|__vendor

The README document that is automatically generated and placed in the rubydev\msc\first
directory contains an explanation of these directories.

app : Holds all the code that’s specific to this particular application.
app/controllers : Holds controllers that should be named like weblog_controller.rb for

automated URL mapping. All controllers should descend from
ActionController::Base.

app/models : Holds models that should be named like post.rb. Most models will descend from
ActiveRecord::Base.



app/views : Holds the template files for the view that should be named like weblog/index.rhtml
for the WeblogController#index action. All views use eRuby syntax. This directory
can also be used to keep stylesheets, images, and so on that can be symlinked to
public.

app/helpers : Holds view helpers that should be named like weblog_helper.rb.
app/apis : Holds API classes for web services.
config : Configuration files for the Rails environment, the routing map, the database, and

other dependencies.
components : Self-contained mini-applications that can bundle together controllers, models,

and views.
db : Contains the database schema in schema.rb. db/migrate contains all

the sequence of Migrations for your schema.
lib : Application specific libraries. Basically, any kind of custom code that doesn’t

belong under controllers, models, or helpers. This directory is in the load path.
Public : The directory available for the web server. Contains subdirectories for images,

stylesheets, and javascripts. Also contains the dispatchers and the default HTML
files.

Script : Helper scripts for automation and generation.
Test : Unit and functional tests along with fixtures.
Vendor : External libraries that the application depends on. Also includes the plugins
subdirectory. : This directory is in the load path.

5.5.3.Running the Application
To launch your new application, start by changing directories to the new first directory:

C:\rubydev\msc>cd first
There are a number of short Ruby programs in the rubydev\msc\first\script directory for

use with your new application. The server script launches the web server WEBrick, which comes
with Rails, so enter ruby script/server at the command line:
C:\rubydev\ch04\first>ruby script/server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with — help for options
[2006-05-16 12:26:22] INFO WEBrick 1.3.1
[2006-05-16 12:26:22] INFO ruby 1.8.2 (2004-12-25) [i386-mswin32]
[2006-05-16 12:26:22] INFO WEBrick::HTTPServer#start: pid=1684 port=3000

This starts the WEBrick server on port 3000 of your local host, which means you can
access your application at the URL http://localhost:3000/. To see that, open a browser on your
machine and navigate to that URL, as shown in Figure



The web page displays a cheery message, indicating that you’re now riding the Rails. Not
bad. To end the WEBrick session now, follow the directions displayed when WEBrick started,
such as pressing Ctrl+C in Windows.

5.5.4.Creating the Controller
The process of making the application do something for you begins when you create a

controller for the application. The controller is like the boss of the application: it’s the overseer
that makes things happen. Rails uses a model-view controller (MVC) architecture in its web
applications. The controller part is essential to any application, so you’re going to need to create
one. After stopping WEBrick, in the rubydev\msc\first directory, use the Ruby command ruby
script/generate controller Hello to create a new controller named Hello:

C:\rubydev\msc\first>ruby script/generate controller Hello
exists app/controllers/
exists app/helpers/
create app/views/hello
exists test/functional/
create app/controllers/hello_controller.rb
create test/functional/hello_controller_test.rb
create app/helpers/hello_helper.rb

That creates a new controller for your application. The code for the controllers in your
application appears in the rubydev\msc\first\controllers directory, and now you’ll find a file
named hello_controller.rb in that directory—that’s the support file for your new controller.
This file is long and complex. Just kidding :

class HelloController < ApplicationController
end

Here’s one of the places where Rails favors convention over configuration—your entire
HelloController class inherits just about all it needs from the ApplicationController class. That
class is supported in application.rb, also in the rubydev\ch04\first\controllers directory—here are
its contents:

# Filters added to this controller will be run for all controllers in the application.
# Likewise, all the methods added will be available for all controllers.
class ApplicationController < ActionController::Base
end

In other words, ApplicationController inherits from ActionController::Base—that is, the
Base class in the ActionController module.

Using the Rails Documentation
If you want, you can take a look at the Rails documentation for classes like

ActionController::Base. To do so, just enter the command gem_server on the command line:

C:\rubydev\msc\first>gem_server

Then navigate your browser to http://localhost:8808 to see the Rails documentation.



Testing the Controller
How far can you get with a web application that has a controller? You can test that out

immediately in your browser.
Example : Display a Message

To test a web application that has only a controller, follow these steps:
1. Start the WEBrick server:

C:\rubydev\msc\first>ruby script/server
2. Navigate to http://localhost:3000/hello.
3. You should see the results in Figure

Creating an Action
Controllers can execute actions to make a web application do something, and you can

easily add actions to the web application in Rails. The idea is that a controller is the boss of the
application, and it calls various actions, each of which performs a separate task. So you can think
of web applications as collections of tasks, implemented by the actions, which are driven by the
controller.

This example is going to have an action named there that will make the application
display some text in your web browser. You can specify the action you want the controller to
take in the URL you navigate to. To ask the hello controller to execute the there action, navigate
to http://localhost:3000/hello/there—you just specify the controller’s name first in the URL,
followed by the action you want the controller to execute. Rails decodes the URL and sends your
request to the appropriate controller, which in turn calls the appropriate action.

Creating the there action is easy in Rails—actions are supported by methods in the
controller’s .rb file. That’s all there is to it.
Example : To add the action named there to the controller, follow these steps:
1. Edit your hello_controller.rb file in rubydev\ch04\first\app\controllers from this:

class HelloController < ApplicationController
end

to this, adding a new method named there:
class HelloController < ApplicationController

def there
end

end
2. Save hello_controller.rb.
3. Start the WEBrick server:
C:\rubydev\msc\first>ruby script/server
Navigate to http://localhost:3000/hello/there.



You should see the results shown as
Template is Missing
“Missing template ./script/../config/../app/views/hello/there.rhtml”.

Creating a View
You’ve created a web application, added a controller to handle requests from the user,

and added an action to let the controller respond to those requests. But you still need some way
of returning a result to the user.

Associating a response with your action is done by creating a view in Rails applications.
A view is just what it sounds like—a way of seeing some result. After your application is all
done, it displays its results in a view. Ruby on Rails terminology—the controller is the boss of a
web application, actions are tasks that controllers can perform, and views give the controller a
way to display the results of the application.

You use a template to create a view. A template is a skeleton web page that will display
your results in a browser; at runtime, an action can store data throughout that template so that
your web page shows the data formatted as you want it.

Creating a template is easy—templates are just web pages with the extension .rhtml. That
extension makes Rails read the file and pops into it any data from the action you want displayed
before sending the template back to the browser.

In this example, the action is just a rudimentary, empty method named there in the
controller:

class HelloController < ApplicationController
def there
end

end
The file, hello_controller.rb, is in rubydev\msc\first\app\controllers because it’s the support code
for the hello controller’s there action. Rails will automatically connect a view template to this
action if you give the template the action’s name—there.rhtml, in this case—and place it in
rubydev\msc\first\app\views\hello.

In other words, to establish a view template for the hello controller’s there action, you
can create a file named there.rhtml and store it in the rubydev\msc\first\app\views\hello directory.
Create a View
To add a view to the application, follow these steps:
1. Start your text editor and place this text in it:
<html>

<head>
<title>Using Ruby on Rails</title>

</head>
<body>

<h1>Welcome to Ruby on Rails</h1>
This is your first Ruby on Rails application.
<br>
<br>
Using this application, you’ve been introduced to controllers, actions, and views.
<br>



<br>
Not bad for a first example!

</body>
</html>
2. Save this file as rubydev\msc\first\app\views\hello\there.rhtml.
3. Start the WEBrick server:

C:\rubydev\msc\first>ruby script/server
4.Navigate to http://localhost:3000/hello/there.

How It Works
This example shows how to connect a sample view template to an action, displaying a

sample, static web page—there.rhtml—in the browser. All you had to do was to place there.rhtml
into rubydev\msc\first\app\views\hello to connect the template to the hello controller’s there
action.

You’ve completed your first Ruby on Rails web application. Note that only two files
were involved—hello_controller.rb and there.rhtml:

rubydev
|__msc

|__first
|__README
|__app
| |__controllers
| |__hello_controller.rb
| |__models
| |__views
| |__hello
| |__there.rhtml
| |__helpers

.
5.5.5. Introducing Model-View-Controller Architecture

Control starts in the browser, when the user enters the URL for the application. That
sends a request to the web server, which decodes the URL and sends the request from the
browser on to the controller. The controller can have a number of actions to select from—there’s
just one in this case, but you can add as many methods as you want to hello_controller.rb. The
controller passes the request on to the appropriate action, as specified in the URL in this case.



The action in this example didn’t really do anything, just used a view template to return
data to the browser. The following figure shows what the process looks like schematically.

Figure 1 : This is a specific case of a more general picture—the model-view-controller picture.
Figure 2 : shows what that picture looks like in overview.

Figure 2:

It’s going to be helpful to take this picture apart, piece by piece, to get the full model-
view-controller story. In the early days of web applications, all the code was heaped together into
a single document, which ran when you accessed it from a browser. However, as online
applications got longer and longer, it became a good idea to split out the presentation code from
the rest of the code to make maintenance and debugging easier. That led to a whole new breed of
applications. But even that architecture in turn has been superceded by the addition of the model
for data handling. Enter the MVC architecture, which all starts with the controller.

The Controller
When the user enters a URL into his browser, a request is sent from the browser to the

web server. If your web server supports Rails, it’s going to hand the request from the browser off
to a Rails controller of the kind you’ve already seen.



The controller supervises the entire application, handling requests as needed. For
example, the controller can decode the URL you’ve already seen—
http://localhost:3000/hello/there—to know that you’re requesting the action named there.

Controllers can also route requests between the web pages of an application—so far, the
application you’ve seen only has one web page, but it’s a rare application that stops at one web
page. Most have multiple pages, and the controller can route the user from page to page.

At its most basic, a controller just inherits from the ApplicationController class, which in
turn inherits from the ActionController::Base class—the ActionController module is the one that
contains the support for controllers in Rails:

class HelloController < ApplicationController
end

And as you’ve also already seen, you create actions simply by adding methods to the controller:
class HelloController < ApplicationController

def there
end

end
The controller calls the various actions, and when the actions have done their thing, the

controller passes the results of the application on to a view.

The View
A view is responsible for displaying the results of an action. There can be many different

views in a web application, because web applications can display many different pages in the
user’s browser. The view you’ve seen so far has been static, but of course you usually want to
display data in the view. That means that an action will typically pass data on to the view, and
you’re going to see how to do that in this chapter. Rails view templates often allow you to insert
data into them before they are sent back to the user’s browser by the controller.

In other words, you use views to interact with the user. When you want to read data from
the user, you send a view with various HTML controls such as text fields, list boxes, text areas,
and so on. When the user clicks the Submit button, that data is passed to your application’s
controller, which hands it off to an action, which in turn passes it to a view that is sent back to
the browser.

Views are supported with the ActionView modules in Rails. In fact, in Rails, controllers
and views are so tightly integrated that together, the ActionView and ActionController modules
are referred to as the ActionPack. So the controller routes requests to actions, and the actions
send views to the user’s browser.

The Model
You also need the model in a Rails application. The model handles the data processing

that takes place in a web application. Actions can interact with the model to handle the data
churning that needs to be done.

For example, the model is where you can place the business rules of an application that
figure the tax and/or shipping on an order from the user. Or you can check a database to see
whether an item is in stock. Or you can look up a user’s information from another database. That
is, the model is the number cruncher in the application. It has no clue about its environment, and



knows nothing about being on a web server as part of an online application. You just hand it data
and tell it what to do. It does the data-handling work, and returns the result. Typically, actions
pass data into the model and then retrieve the results.

Rails is written especially to handle databases, and the model is where that support is.
You can base models on the Rails ActiveRecord module—note, not ActionRecord, but
ActiveRecord. That’s the overview of the model-view-controller architecture that Rails uses.
Because Rails applications are broken up into these components, it’s important to know what
they do. You’ve already seen the controller and view at work in your first Rails web application,
and you’re going to see how to work with models soon.

So far, the view has been pretty static, just displaying a welcome message. It’s time to
add some more functionality there.

5.5.6.Connecting to Databases

Web applications often store data online on a server. And most often, they use databases
to store that information. Ruby on Rails is especially built to handle databases online easily.

Tutorial on Databases : The following table 1 shows students grades.

Table 1: Students

This is actually a paper version of what is called a table in a database. Data of Name,
Grade, and ID in the students table are called columns. ach student gets a record in the table. A
record is a row in the table, and it contains all of the columns’ information for a particular
student: name, grade, and ID. That is you create a table in a database simply by putting together
the columns and rows of that table. (The intersection of a column and a row is called a field; a
row in this example has three fields: Name, Grade, and ID.).

Databases can contain many tables, and in a relational database, you can relate those
tables together. For example, you may also want to keep track of how much money each student
owes you in addition to the students table information. This new table might be called fees, and it
might look like



The fees table keeps track of the amount each student owes by ID. If you wanted to know
how much the student named Tom owed, but didn’t have his ID handy, you could look up Tom
in the students table, find his ID, and use it in the fees table. In other words, the records in the
students and fees tables are tied together by the ID field, as shown in the figure.

You can store these two tables, students and fees, in a single database, and relate them,
record by record, using the ID field. A field that you use to connect records in a table to records
in another table is called a primary key. The ID field in the students table is that table’s primary
key. The primary key is the main data item you use to index records in a table. You’re going to
need an ID column in tables you use with Rails applications—actually, Rails needs id, Each table
should have a column named id.

To construct an online store, you need two controllers—the management controller used
to update the online database with what’s in stock and set prices, and the customer controller
used to let people buy from the store. Begin by creating the store application itself. This
application is placed in the msc directory:

C:\rubydev\msc>rails store
OK, that gives you the application framework.

Creating the Database
After installing MySQL, to create the database for the store application to use, start the

MySQL monitor on the command line like this:
C:\rubydev\msc>mysql -u root -p

This command gives root as the username and tells the MySQL monitor to ask for a password.
Enter the password you set during MySQL installation at the prompt:

C:\rubydev\ch06>mysql -u root -p
Enter password: *********

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.19-nt
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.
mysql>



Your goal is to create a database to hold the items for sale in your online store. In fact,
establish three databases—one for development, one for testing, and one for production. Name
them store_development, store_test, and store_production, and create them using the create
database command in the MySQL monitor:

mysql> create database store_development;
Query OK, 1 row affected (0.06 sec)

mysql> create database store_test;
Query OK, 1 row affected (0.01 sec)

mysql> create database store_production;
Query OK, 1 row affected (0.00 sec)

To make MySQL work with that database, enter the use command and the name of the database
to use, store_development:

mysql> use store_development
Database changed

mysql>

Now create a table in the store_development database. This table will hold the items for
sale in your online store, so a good name for this table is simply items. You can create a new
table named items in the store_development database with the create table command:

mysql> create table items (
-> id int not null auto_increment,
-> name varchar(80) not null,
-> description text not null,
-> price decimal(8, 2) not null,
-> primary key(id)
-> );

MySQL responds with:
Query OK, 0 rows affected (0.06 sec)

exit MySQL:
mysql> exit
Bye

Configuring Database Access
In the rubydev\msc\store\config directory, you’ll find a file named database.yml. It lets

you connect your application to your database.
# MySQL (default setup). Versions 4.1 and 5.0 are recommended.
#
# Install the MySQL driver:
# gem install mysql
# On MacOS X:



# gem install mysql -- --include=/usr/local/lib
# On Windows:
# There is no gem for Windows. Install mysql.so from RubyForApache.
# http://rubyforge.org/projects/rubyforapache
#
# And be sure to use new-style password hashing:
# http://dev.mysql.com/doc/refman/5.0/en/old-client.html
development:
adapter: mysql
database: store_development
username: root
password:
host: localhost
# Warning: The database defined as ‘test’ will be erased and
# re-generated from your development database when you run ‘rake’.
# Do not set this db to the same as development or production.
test:
adapter: mysql
database: store_test
username: root
password:
host: localhost
production:
adapter: mysql
database: store_production
username: root
password:
host: localhost

Creating the Controller and Model
Actually connecting the database to your code could be tough, but Rails has a utility

named scaffold that makes the process easy. The purpose of scaffold is much as it sounds: to
create a scaffold for your application—that is, a framework that you can fill in, or not, as you
decide. You can use the scaffold utility to build a model and controller for data-aware
applications. Here’s how you’d do so:
1. Change directories to the rubydev\ch06\store directory:

C:\>cd \rubydev\msc\store>ruby
C:\rubydev\msc\store>

2. Create a model named Item and a controller named Manage this way:
C:\rubydev\msc\store>ruby script/generate scaffold Item Manage

3. Rails creates the controller and model:
C:\rubydev\msc\store>ruby script/generate scaffold Item Manage

exists app/controllers/
exists app/helpers/
create app/views/manage
exists test/functional/



dependency model
exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/item.rb
create test/unit/item_test.rb
create test/fixtures/items.yml
create app/views/manage/_form.rhtml
create app/views/manage/list.rhtml
create app/views/manage/show.rhtml
create app/views/manage/new.rhtml
create app/views/manage/edit.rhtml
create app/controllers/manage_controller.rb
create test/functional/manage_controller_test.rb
create app/helpers/manage_helper.rb
create app/views/layouts/manage.rhtml
create public/stylesheets/scaffold.css

Rails’ scaffold utility builds the application’s model and controller. The model is named
item.rb, and it contains a new class named Item, inherited from ActiveRecord::Base:

class Item < ActiveRecord::Base
End
ActiveRecord is the module that contains the Rails support for working with databases,

and the Base class is the primary class on which you base database-aware models.

Naming the Model
The name of the model, Item, was specially chosen. As you may recall, the database

created for the store application was named store_development, and the table contained inside
that database was named items. The two names—Item and items—are tied together.

Naming the Controller
You can choose the name of the controller with more freedom. In the example

application, the controller is to be used when managing the online store—adding new items for
sale, listing the prices, and so on, so the controller is simply named Manage. That creates a
controller class named ManageController, inherited from ApplicationController, just as the
controllers you saw earlier. However, scaffold stocks this controller with code, as you see here in
manager_controller.rb:

class ManageController < ApplicationController
def index
list
render :action => ‘list’
end
# GETs should be safe (see http://www.w3.org/2001/tag/doc/whenToUseGet.html)
verify :method => :post, :only => [ :destroy, :create, :update ],
:redirect_to => { :action => :list }
def list



@item_pages, @items = paginate :items, :per_page => 10
end
def show
@item = Item.find(params[:id])
end
def new
@item = Item.new
end
def create
@item = Item.new(params[:item])
if @item.save
flash[:notice] = ‘Item was successfully created.’
redirect_to :action => ‘list’
else
render :action => ‘new’
end
end
def edit
@item = Item.find(params[:id])
end
def update
@item = Item.find(params[:id])
if @item.update_attributes(params[:item])
flash[:notice] = ‘Item was successfully updated.’
redirect_to :action => ‘show’, :id => @item
else
render :action => ‘edit’
end
end
def destroy
Item.find(params[:id]).destroy
redirect_to :action => ‘list’
end
end

A number of actions have already been built into the Manage controller. How about taking
a look at them in action?

Running the store Application
Change directories to the rubydev\msc\store directory and run WEBrick to start the store

application like this:

C:\rubydev\ch06\store>ruby script/server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options



[2006-05-30 11:23:26] INFO WEBrick 1.3.1
[2006-05-30 11:23:26] INFO ruby 1.8.2 (2004-12-25) [i386-mswin32]
[2006-05-30 11:23:26] INFO WEBrick::HTTPServer#start: pid=1252 port=3000

Now navigate to http://localhost:3000/manage, as shown in the following Figure. You see
the titles of the fields in the items table—Name, Description, and Price. In other words, the
model was successful in connecting to the items database table. (The id field isn’t shown because
it’s an auto-increment field.)

By entering simply the name of the controller, without an action, in the URL
(http://localhost: 3000/manage), you called the default index action, which looks like this in the
manage_controller.rb file:

class ManageController < ApplicationController
def index

list
render :action => ‘list’

End

This method calls the list action, which loads the current items in the items table into item_pages
and @items:

def list
@item_pages, @items = paginate :items, :per_page => 10

End

The index action then calls render :action => ‘list’ to render the view associated with the
list action, which is rubydev\msc\store\app\views\manage\list.rhtml. The list view lists the
current records in the items table. However, there are no records to display yet. Change that by
adding some.

Adding a Record to the store Application
The New Item link links to http://localhost:3000/manage/new, bringing up to create new records
by entering data into various HTML controls—a text field for the name of the new item you’re
creating in the store’s database, a text area for its description, and so on.

The New Item link accesses the new action to display the page, which creates a new
record using the model class, Item:



def new
@item = Item.new

end
that’s the method that lets you display a view in the browser. When you render a partial view,
you render it in-place—that is, inside the current view. So render :partial => ‘form’ really means
“display the form view at this location in the current view.”

When you fill out the controls in this view with the data for the new record and click the
Create button, you navigate to the create action, which looks like this in the manage controller:

def create
@item = Item.new(params[:item])
if @item.save

flash[:notice] = ‘Item was successfully created.’
redirect_to :action => ‘list’

else
render :action => ‘new’

end
end

This is where the new record is created. In the create action, Rails uses the information entered
into the _form view to create a new model object like this:

def create
@item = Item.new(params[:item])
.
.
.

end
Then the create action attempts to save the new record in the database, using the model’s save
method (built into ActiveRecord::Base, the class from which the Item class inherits) this way:

def create
@item = Item.new(params[:item])
if @item.save

.

.

.
end

end
If the save operation is successful, the save method returns a value of true, and the create action
executes this code:

def create
@item = Item.new(params[:item])
if @item.save

flash[:notice] = ‘Item was successfully created.’
redirect_to :action => ‘list’
.
.



.
end

end
In this case, the new item has been successfully created, so the message passed on to the list
action is ‘Item was successfully created.’. If the new item had not been successfully created, the
code renders the new action so you can try to create the item again:

def create
@item = Item.new(params[:item])
if @item.save

flash[:notice] = ‘Item was successfully created.’
redirect_to :action => ‘list’

else
render :action => ‘new’

end
end

Displaying a New Record
It’s possible because this application uses a Rails layout. Layouts are templates that views

are inserted into automatically. Using a layout gives your application a consistent feel across
many different views, because you can create standard headers and footers for each web page, as
well as use a standard stylesheet, and more.

Using a Layout
The layout for all the actions in the manage controller in the store application is in the file

manage.rhtml, stored as rubydev\store\msc\app\views\layouts\manage.rhml. In manage.rhtml,
the contents of the @content_for_layout variable are simply popped into the web page like this:

<%= @content_for_layout %>

Using a Stylesheet
Note the stylesheet_link_tag method in manage.rhtml, which links to the stylesheet

scaffold.css:
<%= stylesheet_link_tag ‘scaffold’ %>

This stylesheet, rubydev\store\ch06\public\stylesheets\scaffold.css, specifies the
cascading style sheet (CSS) styles used in the layout, and, therefore, in all the views displayed
using the layout.

Displaying Records
The list view displays all the records in the items table in an HTML table. That HTML

table is created using embedded Ruby to call the Item model’s content_columns class method to
get the names of the columns in the items table, and to display them by calling each column
object’s human_name method (which, in this case, just returns the column’s name in the items
table):

To see the contents of the items table, enter the SQL command select * from items;,
which selects and displays all records in the items table.

Adding Another Record



To create another new record, just navigate to http://localhost:3000/manage. The manage
controller’s default action is the index action, which renders the list action like this in the manage
controller:

def index
list
render :action => ‘list’

end

To create a new record, follow these steps:
1. Start the WEBrick server:

C:\rubydev\msc\store>ruby script/server
2. Navigate to http://localhost:3000/manage.
3. In the list view, click the New Item link to get to the http://localhost:3000/manage/newpage.
4. Create a new item for sale, giving it the name clock, the description “A nice digital clock.
Contains all you would expect—and the alarm is not too loud!”, and the Click the Create button
on the page (http://localhost:3000/manage/new). The new item is created and your browser is
redirected to the http://localhost:3000/manage/list page.

Editing Records
Making changes to records is no problem with the manage controller—just click the Edit

link. In the following exercise you update the price of alarm clocks in your database.

To edit a record, follow these steps:
1. Start the WEBrick server:

C:\rubydev\msc\store>ruby script/server
2. Navigate to http://localhost:3000/manage/.
3. Click the Edit link for the alarm clock.
4. Change the price of the alarm clock to $15.99.
5. Click the Edit button.

The alarm clock’s record is updated, and the new data is displayed.
6.Click the Back link at the bottom of the clock record to return to list view. As you can see in
that view, the price of the alarm clock has indeed been updated.

Beautifying the Display
Bear in mind that you have control over what all these views look like—the scaffold

utility generates template files, and it’s up to you to customize them as you want. For example,
you might want to beautify the display of the list view. To do so, you could follow these steps:

1. Add background0 and background1 style classes to rubydev\msc\store\public\stylesheets\
scaffold.css:

body { background-color: #fff; color: #333; }
.
.
.
.fieldWithErrors {

padding: 2px;



background-color: red;
display: table;

}
.background0 {

background-color: coral;
}
.background1 {

background-color: white;
}
.
.
.

2. Modify rubydev\msc\store\app\views\manage\list.rhtml, adding this code:
<h1>Listing items</h1>
<table>
<tr>
<% for column in Item.content_columns %>
<th><%= column.human_name %></th>
<% end %>

Now start the WEBrick server and navigate to http://localhost:3000/manage/list. The page shows
the new list view with a number of additional records.

5.6.Working with Databases
Let us consider the store application example from rubydev\msc\store to display your

items to users, and to get their purchases in a cart.

5.6.1.Displaying Items to the Customer
The manage controller is used to control the store application’s connection to the

database. You need a second controller if you want to let users peruse the store—obviously, they
shouldn’t have access to the administrative part of the store. The following exercise leads you
through the creation of another controller.

To create a second controller for the store application, follow these steps:
1. Change directories to the rubydev\ch07\store directory:

C:\>cd \rubydev\ch07\store>ruby
C:\rubydev\ch07\store>

2. Create the second controller, named buy, like this:
C:\>cd \rubydev\ch07\store>ruby script/generate controller Buy index

3. Start the WEBrick server:
C:\rubydev\ch07\store>ruby script/server

4. Navigate to http://localhost:3000/buy.

The command
C:\>cd \rubydev\ch07\store>ruby script/generate controller Buy index

creates the buy controller and the action named index. Because you’ve named the action index,
it’ll be the default action, executed if the user navigates to http://localhost:3000/buy.



5.6.2.Getting the Items for Sale
How do you get the records from the items table?

You can create a class method in the model, rubydev\ch07\store\app\models\item.rb,
named, say, return_items, like this:

class Item < ActiveRecord::Base
def self.return_items
.
.
.
end

end

How does that work?
You call find(:all) in return_items in the model class, rubydev\msc\store\app\models\item.rb:

class Item < ActiveRecord::Base
def self.return_items

find(:all)
end

end

There are actually three ways to call find:
 find(:id)—Finds a record by ID
 find(:first)—Finds the first record
 find(:all)—Returns all the records in the table
In fact, you can specify other requirements in hash form following :id, :first, or :all.

Here’s an example that finds items less than or equal to $20.00, and orders the found records by
name, and if the name is the same, by description:

class Item < ActiveRecord::Base
def self.return_items

find(:all,
:order => “name description”,
:conditions => “price <= 20.00”
)

end
end



Ruby SQL Information
:conditions SQL code indicating a condition or conditions to match.
:group Specifies an attribute indicating how the result should be grouped, making

use of the SQL GROUP BY clause.
:include Specifies associations to be included using SQL LEFT OUTER JOINs.
:joins Specifies additional SQL joins.
:limit Specifies an integer setting the upper limit of the number of rows to be

returned.
:offset Specifies an integer indicating the offset from where the rows should be

returned.
:order Lets you specify the fields to set the order of returned records.
:readonly Marks the returned records read-only.
:select A SQL SELECT statement, as in SELECT * FROM items.

OK, a new class method in the Item model, return_items, returns the full set of records in the
items table. To start the process of displaying the items for sale when the buy controller’s index
action is called, you call return_items in the index action:

class BuyController < ApplicationController
def index

@items = Item.return_items
end

end

Making progress load all the records from the items table into the @items array. Now display
them.

5.6.3.Showing the Items for Sale

Displaying the records is the job of the view connected to the index action, rubydev\ch07\store\
app\views\buy\index.rhtml, which currently looks like this:

<h1>Buy#index</h1>
<p>Find me in app/views/buy/index.rhtml</p>

Show Database Items in a Web Page
To show the database items stored in the @items array in a web page, follow these steps:

1. Create a new web page:
<html>
<head>
<title>The Store</title>
</head>
<body>
<h1>Buy From Our Store!</h1>
<b>Welcome to the store.</b>
<br>
<b><i>Please buy a lot of items, thank you.</i></b>



<br>
<br>
.
.
.
</body>
</html>
2. You can display the items for sale in an HTML table, so add that as well:
<html>
<head>
194
Chapter 7
<title>The Store</title>
</head>
<body>
<h1>Buy From Our Store!</h1>
<b>Welcome to the store.</b>
<br>
<b><i>Please buy a lot of items, thank you.</i></b>
<br>
<br>
<table cellpadding=”6”>
.
.
.
</table>
</body>
</html>
3. Add a loop over the items in the @items array:
<html>
<head>
<title>The Store</title>
</head>
<body>
<h1>Buy From Our Store!</h1>
<b>Welcome to the store.</b>
<br>
<b><i>Please buy a lot of items, thank you.</i></b>
<br>
<br>
<table cellpadding=”6”>
<% for item in @items %>
.
.
.
<% end %>



</table>
</body>
</html>
4. Display the name and description of each item, row by row in the table:
<table cellpadding=”6”>
<% for item in @items %>
<tr>
<td><b><%=h item.name %></b></td>
<td><%=h item.description %></td>
.
.
.
</tr>
<% end %>
</table>

Finally, add a link that lets the user add each item to the shopping cart:
<table cellpadding=”6”>
<% for item in @items %>
<tr>
<td><b><%=h item.name %></b></td>
<td><%=h item.description %></td>
<td><%= link_to ‘Add to cart’, :action => ‘add’, :id => item %></td>
</tr>
<% end %>
</table>
6. Start the WEBrick server:

C:\rubydev\ch07\store>ruby script/server
7.Navigate to http://localhost:3000/buy to see the result, as shown in Figure.



That finishes the display of the items for sale. You can beautify the display by using CSS
formatting, and work on polishing the HTML for the item display. How to grab data from a
database table and display it.

Of course, the purpose of displaying the items is so users will buy them. You need to start
building a shopping cart so that can happen.

5.7. Creating a Shopping Cart
Users are presented with all items in the store in the index.rhtml view. If they want to buy

an item, they click the Add to Cart link that you created in step 5 of the preceding
<tr>
<td><b><%=h item.name %></b></td>
<td><%=h item.description %></td>
<td><%= link_to ‘Add to cart’, :action => ‘add’, :id => item %></td>
</tr>

That link connects to the add action in the buy controller

5.7.1.Designing the Shopping Cart
The session hash is going to be involved with the shopping cart because it’s a good place

to store the customer’s purchases. Theoretically, you could just set up some arrays to store the
names of the items the customer has purchased, their descriptions, and their prices, and store that
in the session hash.

Then when you need that data, you simply fetch it from the session. That’s certainly one
way to handle the shopping cart data. The data handled by a model in Rails applications. Rails
data-handling is model-centric, and your code is made easier if you use models (for instance, you
can access all your data as @model_object.name, @model_object.id, @model_price, and so on).
Storing data with a model in this example will also point out some new aspects of database-
handling in Rails.

Here’s the plan: create a new model named Purchase to hold a single item that the
customer has purchased.

The model will be tied to a table named purchases in the store_development, with the
following fields: id, item_id (this is the item’s id in the items table), quantity, and price.

Store a single purchase as a record in the purchases table, the customer will buy many
items, store them in an array in an object of a new class, the Cart class, as shown in the
following figure.

So you need two new classes—the Purchase class to keep track of individual purchases, and the
Cart class to keep track of the many Purchase objects a customer creates as he shops.



Creating the purchases Table
The Purchase class is a model tied to a database table, the purchases table, so first create

that table. Just follow these steps:
1. Start the MySQL monitor:
C:\rubydev\ch07\store>mysql -u root -p
.
.
mysql>
2. Switch to the store_development database:
mysql> use store_development
Database changed
3. Create the purchases table:
mysql> create table purchases (
-> id int not null auto_increment,
-> item_id int not null,
-> quantity int not null default 0,
-> price decimal(8, 2) not null,
-> constraint purchases_items foreign key (item_id) references items(id),
-> primary key (id)
-> );
Query OK, 0 rows affected (0.05 sec)
mysql>
4. Exit the MySQL monitor:
mysql> exit
Bye

The items table stores the items for sale. Like the purchases table, the items table has an
id value for each record. The preceding line of SQL says that the item_id field in the purchases
table holds the id value of the item in the items table. That is, item_id is a foreign (not primary)
key. Foreign keys can be used to relate tables—if you want to look up a purchase in the items
table, for instance, you can do that using the item_id value in the purchases table.

Creating the Purchase Model
The purchases table, each record of which will hold a purchase by the customer, now

needs to be tied to a model in the store application. To do that, change directories to
rubydev\msc\store, and then create the new model like this:

C:\rubydev\ch07\store>ruby script/generate model Purchase

Now when the user makes a purchase, you’ll catch that item, create a Purchase object
from it, and then store that object in the cart. Here’s the new model, purchase.rb:

class Purchase < ActiveRecord::Base
End

Still have to tell Rails about the foreign key connection to the items table:
mysql> create table purchases (
-> id int not null auto_increment,



-> item_id int not null,
-> quantity int not null default 0,
-> price decimal(8, 2) not null,
-> constraint purchases_items foreign key (item_id) references items(id),
-> primary key (id)
-> );

The Rails core development team set things up so that you have to tell Rails about foreign
keys yourself.cThat’s because not all database servers let you work with foreign keys. You tell
Rails about yourcitem_id foreign key with the belongs_to method in the purchase.rb. model. The
syntax looks like this:

class Purchase < ActiveRecord::Base
belongs_to :item
.
.
.
End

That connects the purchases and items tables as far as Rails is concerned. You’re going to need
the belongs_to method each time you want to connect database tables using foreign keys. You
also need some way of producing new Purchase objects when the user buys something.
 Create a new class method named buy_one that you can pass an item (from the items table)

to when the user purchases that item:
 So when the user buys a displayed item, you can pass that item to the Purchase class’s

buy_one method to create a Purchase object from that item. That means that when you call
the buy_one method, you start by creating a new Purchase object:

 To make life easier for yourself, you can store the purchased item inside the new Purchase
object.

 Now when you create a new Purchase object, you’ll have access to the actual Item object
that was purchased, which means you can access its name, description, and so on.

 Next, you can store the quantity of the item purchased in the Purchase object, enabling the
user to purchase multiple items.

 You also create a new field for the Purchase object named price, holding the price of the
item.

 Finally, you just return the new Purchase object from the buy_one method:
class Purchase < ActiveRecord::Base

belongs_to :item
def self.buy_one(item)

purchase = self.new
purchase.item = item
purchase.quantity = 1
purchase.price = item.price
return purchase

end
end
OK, the Purchase class is ready to go—when the user buys one of the displayed items, all

you have to do is to fetch the item from the items table and pass it to the Purchase class’s



buy_one method to create a new Purchase object. That new Purchase object should go into the
shopping cart—which means you’ve got to create a Cart class next.

Creating the Cart
The Cart class exists to keep track of the purchases the user makes—which means

keeping track of Purchase objects as they’re created.
 Start writing the Cart class, by creating an empty Purchases array named @purchases in

the initialize constructor:
 The cart should also keep track of the total price of all the purchased items, so you might

add an attribute named price to the Cart class, setting it to 0.0 when the cart is first
created.

 You can make the purchases and price attributes available publicly by using attr_reader.
 Next, you’re going to need a way to add new purchases to the cart. A convenient means

to do that is to add a new method, add_purchase, to the Cart class. It’s easiest to set this
method up to accept items as the user purchases.

 When you pass a new item to the add_purchase method, you can use that item to create a
new Purchase object, and add that new object to the purchases array using the array
append operator, <<.

 And when you add a new purchase to the cart, update the total attribute of the cart by
adding the price of the new item to the total.

class Cart
attr_reader :purchases
attr_reader :total
def initialize

@purchases = []
@total = 0.0

end
def add_purchase(item)

@purchases << Purchase.buy_one(item)
@total += item.price

end
end

That’s the Cart class, which is stored in cart.rb. You can place it with the other models in
rubydev\msc\store\app\models\cart.rb.The Cart class is not derived from the ActiveRecord::Base
class, but it’s as much a model as the other two models in this example (item.rb and purchase.rb).

Storing the Cart in a Session
As the customer navigates from page to page, the server is going to lose control of the

application, which means all your data will be reset to its initialization values. To store the
purchases in the cart, you’ve got to store the whole cart in the session. To make accessing the
cart easy, create a helper method in the controller, get_cart:

 This helper method is private, which means Rails won’t make it into an action. Private
methods in the controller stay private to the controller and are not accessible as public
actions.

 When get_cart is called, it should first check if the cart was already stored in the session and
if so, it should return the cart:



 If the cart doesn’t exist in the session, the get_cart method should create a new Cart object
and return that:

class BuyController < ApplicationController
def index

@items = Item.return_items
end

private
def get_cart

if session[:shopping_cart]
return session[:shopping_cart]

else
return Cart.new

end
end

end
The application.rb file is run first so you can initialize your application. To make the store
application pre-load the Cart and Purchase classes, add the following code to
rubydev\ch07\store\app\controllers\application.rb:

class ApplicationController < ActionController::Base
model :cart
model :purchase
end

The next step is to put the cart to use and handle a purchase.

Handling a Purchase
When the user navigates to the store, http://localhost:3000/buy, he sees the buy page that

displays the items available. When the user clicks an item’s Add to Cart link, that item’s ID is
sent to the controller. Now you define a new action named add to tell the controller it’s time to
add that item to the cart.
To add a purchase to the cart, follow these steps:
1. Edit the rubydev\ch07\store\app\controllers\buy_controller.rb, adding the add action:

class BuyController < ApplicationController
def index

@items = Item.return_items
end
def add
.
.
end

Private
def get_cart

if session[:shopping_cart]
return session[:shopping_cart]

else
return Cart.new

end



end
end

2. Add this code to the add action:
def add

item = Item.find(params[:id])
@cart = get_cart
@cart.add_purchase(item)
session[:shopping_cart] = @cart
redirect_to(:action => ‘display_cart’)

end

Displaying the Cart
The display_cart action displays the cart, so add that action to

rubydev\msc\store\app\controllers\buy_controller.rb now:
class BuyController < ApplicationController

def index
@items = Item.return_items

end
def display_cart

.

.
end

private
def get_cart

if session[:shopping_cart]
return session[:shopping_cart]

else
return Cart.new

end
end

end
display_cart simply needs to set up the data to be displayed in the accompanying view, so you
start by getting the cart from the session, using the get_cart method, and load two instance
variables: @purchases with the array of purchases and @total with the total of the purchases, like
this:

def display_cart
@cart = get_cart
@purchases = @cart.purchases
@total = @cart.total

end



That makes the data in the cart accessible to the display_cart view. In that view,
rubydev\msc\app\views\buy\display_cart.rhtml, you need to display both the purchases the user
made and the total.

The first figure shows the result after the user makes some purchases by clicking the Add
to Cart link. As you see, the purchased items appear in the cart, and the total cost of all the items
appears at the bottom of the page.

Not bad—you’ve now been able to let the customer select items to buy, and have
displayed his shopping cart as he adds items to it.

But what if a customer wants to purchase two calculators? You’d end up with the
situation shown in the next Figure, where you have two single entries for calculators—clearly,
that would make customers blink. How about combining purchases as they’re made?

Combining Purchases in the Cart
To combine purchases in the cart, you have to modify cart.rb—specifically, the

add_purchase method, which simply (and naively) adds new items to the @purchases array:
def add_purchase(item)

@purchases << Purchase.buy_one(item)
@total += item.price

end



 You need to check whether the item being added to the @purchases array is already in that
array. To do so, loop over the array.

 It’s easy enough to compare the ID of the new item to the items already in the @purchases
array, this way.

 If the item already exists in the @purchases array, you can set a true/false flag, appendFlag,
to false, indicating that the item should not be appended to the array.

 If the item already exists in the @purchases array, all you need to do is to increase the
quantity of the item by one:

 If the item doesn’t already exist in the array, you create a new element in @purchases. In
either case, you update the total with the new item’s price, as before:

def add_purchase(item)
appendFlag = true
for purchase in @purchases

if (item.id == purchase.item.id)
appendFlag = false
purchase.quantity += 1

end
end
if(appendFlag)

@purchases << Purchase.buy_one(item)
end
@total += item.price

end
Now the code does the right thing with the @purchases array when the customer purchases
multiple items. To display that array correctly, you need to modify display_cart.rhtml. Start by
adding a new column to the display of purchased items—the quantity of each item purchased.
And there you have it—now when the customer buys several of the same items, the store
application handles the situation correctly by displaying the quantity of each item in the
display_cart.rhtml view will shown in the following Figure.

Clearing the Cart
Let the customer clear the cart when he wants to. To do that, add a link in the

display_cart.rhtml file with the text Clear cart, connected to the action clear_cart: You can see
this new link in the display cart page in following figure. When the user clicks that link, control
is transferred to the clear_cart action, which calls the initialize method of the Cart object to clear
the cart:

class BuyController < ApplicationController
def index

@items = Item.return_items
end
.
.
def clear_cart

@cart = get_cart
@cart.initializeinitialize

end



private
def get_cart

if session[:shopping_cart]
return session[:shopping_cart]

else
return Cart.new

end
end

end
In cart.rb, add the clear method to reset the @purchases array and set the current total price to 0.0:

class Cart
attr_reader :purchases
attr_reader :price
def initialize

@purchases = []
@price = 0.0

end
def clear

@purchases = []
@price = 0.0

end
.
.
end

All that’s left is to tell the customer that the cart has indeed been cleared. You can do so
by displaying a new page, clear_cart.rhtml, connected to the clear_cart action, like this: The
following figure shows the page that comes up after the user clears the cart.



Letting the User View the Cart Anytime
As a final refinement, let the user view his cart at anytime. To do that, just add a link, See

your cart, to the index.rhtml page that displays the items for sale:
<html>

<head>
<title>The Store</title>

</head>
<body>

<h1>Buy From Our Store!</h1>
<b>Welcome to the store.</b>
<br>
<b><i>Please buy a lot of items, thank you.</i></b>
<br>
<br>
<table cellpadding=”6”>

<% for item in @items %>
<tr>

<td><b><%=h item.name %></b></td>
<td><%=h item.description %></td>
<td><%= link_to ‘Add to cart’, :action => ‘add’, :id => item
%></td>

</tr>
<% end %>

</table>
<br>
<%= link_to ‘See your cart’, :action => ‘display_cart’ %>

</body>
</html>



Figure shows the new link on the page.

Letting the customer view the cart at any time means that the cart could be empty, so it’d
be a problem trying to loop over the @purchases array in the display_cart.rhtml view. To head
that off, check to see if @purchases is empty in display_cart.rhtml, and if so, display a message
that the cart is empty, like this:
<html>

<head>
<title>Your Cart</title>

</head>
<body>

<h1>Your Shopping Cart</h1>
<% if (@purchases == []) %>
<b>There are no items in your cart:</b>
<br>
<br>
<%= link_to ‘Shop some more!’, :action => ‘index’ %>
<% else %>
<b>Here are the items in your cart:</b>
<br>
<br>
<table cellpadding=”6”>
<tr>
<% for column in Item.content_columns %>



<th><%= column.human_name %></th>
<% end %>
<th>Quantity</th>

</tr>
<% for purchase in @purchases
item = purchase.item
%>
<tr>

<td><b><%=h item.name %></b></td>
<td><%=h item.description %></td>
<td><%=h item.price %></td>
<td><%=h purchase.quantity %></td>

</tr>
<% end %>
</table>
<br>
<b>Total: $<%=h @total %></b>
<br>
<br>
<%= link_to ‘Clear cart’, :action => ‘clear_cart’ %>
<br>
<%= link_to ‘Shop some more!’, :action => ‘index’ %>
<% end %>

</body>
</html>

And that’s it—you’ve created a full, multi-page shopping cart demonstration application.

EXERCISES
1. Use a negative index to access the third element in this array: array = [1, 2, 3, 4, 5, 6, 7, 8].
2. Construct a hash that will act the same as the array introduced in the previous exercise, as far

as the [] operator is concerned.
3. Use a range to create the array introduced in exercise.
4. Create a method that calls itself—a technique called recursion—to calculate factorials. A

factorial is the product of the number times all the other whole numbers down to one—for
example, the factorial of 6, written as 6!, is 6 × 5 × 4 × 3 × 2 × 1 = 720.

5. Construct a method named printer that you can call with some text, which then calls a code
block to print out that text.

6. Create a method named array_converter that takes four arguments and returns them in an array.
Create a class named Vehicle, and pass the color of the vehicle to the constructor. Include a
method named get_color to return the vehicle’s color. Print out the color of the vehicle.

7. Construct a new class named Car based on the Vehicle class, and override the
get_colormethod so it always returns blue. Print out the color of the car.

8. Create a Car class based on two modules, one that contains a get_color method, and one that
contains a get_number_of_wheels method. Print out the color of the car, and the number of
wheels.



9.Create a web application named test with a controller named do and an action named greeting
that displays the text “Hello”.

10. Modify the test application to store its “Hello” message in the greeting action.
11. Add a second action named greeting2 that displays “Hello again” and link to it from the

greeting action’s view template. Add a second text field to the textfields example (which
uses <input> elements to create a text field) to get the user’s age, and then display that age.

12. Add a second text field to the textfields2 example (which uses the text_field_tag method to
create a text field) to get the user’s age, and then display that age.

13. Add a second text field to the textfields3 example (which uses the text_field method to create
a text field) to get the user’s age, and then display that age.

14. Configure a Rails application to connect to a database server with the username orson_welles
and the password rosebud.

15. Use the scaffold utility to create a model named item and a controller named merchandise.
16. If you know CSS, set the font size of scaffold-generated views to 16 points.
17. Add a text field and a Submit button to the display cart view asking for the user’s name so

that he can check out.
18. Add a checkout action to the buy controller that recovers the customer’s name and the

amount he owes.
19. Add a checkout view that displays the user’s name and how much he owes to let him check

out.


	What is Ruby?
	Why Ruby?
	Features of Ruby
	Tools You Will Need
	Popular Ruby Editors
	Interactive Ruby (IRb)
	5.1.1. Ruby - Syntax
	Whitespace in Ruby Program
	Example

	Line Endings in Ruby Program
	Ruby Identifiers
	Here Document in Ruby

	Ruby Data types
	56831
	Quotes : Ruby string literals are enclosed within 
	I’ll also say, “Things are fine.”
	Accessing string elements
	Multiline string
	Concatenating Strings
	Freezing Strings
	Comparing Strings

	Ruby Variables
	Local variables
	Class variables
	Instance variables
	Global variables
	Summary
	34
	puts “Now the temperature is “ + String(temperatur
	Now the temperature is 41.
	Symbols

	Ruby Hashes
	Creating Ruby Hash
	Modifying Ruby Hash
	Ruby Hash Methods
	Public Class Methods
	Public Instance Methods

	Arrays

	Ruby Arrays
	Creating Ruby Arrays
	Using literal construct []
	Using new class method
	Accessing Array Elements
	Adding Items to Array : Ruby array elements can be
	push or <<  : Using push or <<, items can be added
	Unshift : Using unshift, a new element can be adde
	insert
	Removing Items from Array : Ruby array elements ca
	Pop : Using pop, items can be removed from the end
	Shift : Using shift, items can be removed from the
	Delete : Using delete, items can be removed from a
	Uniq : Using uniq, duplicate elements can be remov
	Ruby Each Iterator
	Ruby Times Iterator
	Ruby Upto and Downto Iterators
	Ruby Step Iterator
	Ruby Each_Line Iterator
	Reserved Words

	Ruby Modules
	Module Namespaces
	Module Mixins
	5.1.2. Ruby Operators
	Ruby has a built-in modern set of operators. Opera
	Types of operators:
	Unary operator
	Airthmetic operator
	Bitwise operator
	Logical operator
	Ternary operator
	Assignment operator
	Comparison operator
	Range operator
	Unary Operator
	Unary operators expect a single operand to run on.
	!  - Boolean NOT
	~ - Bitwise complement
	+ - Unary plus
	Example
	Airthmetic Operator
	Bitwise Operator
	&- AND operator
	|- OR operator
	<<- Left shift operator
	>>- Right shift operator
	^- XOR operator
	~- Complement operator
	Logical Operator
	&&- AND operator
	||- OR operator
	Ternary Operator
	Comparison Operator
	==- Equal operator
	!=- Not equal operator
	>- left operand is greater than right operand
	<- Right operand is greater than left operand
	>=- Left operand is greater than or equal to righ
	<=- Right operand is greater than or equal to lef
	<=>- Combined comparison operator
	.eql?- Checks for equality and type of the operan
	Range Operator
	..- Range is inclusive of the last term
	…- Range is exclusive of the last term
	5.2.Control Statements

	Ruby If-else Statement
	Ruby if statement
	Ruby if else
	Example:
	1.a = gets.chomp.to_i   
	2.if a >= 18   
	3.puts "You are eligible to vote."   
	4.else   
	5.puts "You are not eligible to vote."   
	6.end  
	Output:
	15
	You are not eligible to vote.
	20
	You are not eligible to vote.
	Ruby if else if (elsif)
	Ruby if else if statement tests the condition. The
	if(condition1)  
	//code to be executed if condition1is true  
	elsif (condition2)  
	//code to be executed if condition2 is true  
	else (condition3)  
	//code to be executed if condition3 is true  
	end  
	Ruby ternary Statement
	Ruby Case Statement
	In Ruby, we use 'case' instead of 'switch' and 'wh
	Syntax:
	case expression  
	[when expression [, expression ...] [then]  
	   code ]...  
	[else  
	   code ]  
	end  
	Example:
	1.#!/usr/bin/ruby   
	2.print "Enter your day: "   
	3.day = gets.chomp   
	4.case day   
	5.when "Tuesday"   
	6.puts 'Wear Red or Orange'   
	7.when "Wednesday"   
	8.puts 'Wear Green'   
	9.when "Thursday"   
	10.puts 'Wear Yellow'   
	11.when "Friday"   
	12.puts 'Wear White'   
	13.when "Saturday"   
	14.puts 'Wear Black'   
	15.else   
	16.puts "Wear Any color"   
	17.end   
	Output:
	Enter your day: Sunday
	Wear Any color
	Enter your day: Saturday
	Wear Black
	Enter your day: Saturday
	Wear Any color
	Look at the above output, conditions are case sens
	Ruby for Loop
	Ruby for loop iterates over a specific range of nu
	Ruby for loop using range
	Ruby for loop using array
	Ruby while Loop
	The Ruby while loop is used to iterate a program s
	while conditional [do]  
	   code  
	end  
	Example
	Ruby do while Loop
	Ruby Until Loop
	The Ruby until loop runs until the given condition
	Ruby Break Statement
	The Ruby break statement is used to terminate a lo
	Ruby Next Statement
	Ruby redo Statement
	Ruby redo statement is used to repeat the current 
	general syntax is :
	Ruby retry Statement

	Ruby Comments
	Ruby Single Line Comment
	5.3. Ruby Blocks
	Ampersand parameter (&block)
	Initializing objects with default values
	Ruby BEGIN Statement
	Ruby END Statement
	Example


	5.4. Ruby Class and Object
	Ruby Class
	Ruby Object
	Creating object

	Ruby Methods
	Defining Method
	Defining Method with Parameter
	Instance Methods


	Ruby OOPs Concept
	Ruby Inheritance
	Ruby Constructor

	Data Abstraction in Ruby
	5.5. Ruby on Rails 
	5.5.1.Ruby on Rails Introduction
	Ruby on Rails Installation
	Install rbenv
	Install Ruby
	Install Rails
	Install JavaScript Runtime
	Install Database

	Rails IDE or Editor
	Rails Scripts
	Ruby on Rails 5 Hello World Example

