
Prepared By Dr. N.THENMOZHI M.C.A., M.S., M.Phil., Ph.D.,

Govt, Arts College (Autonomous), Coimbatore-18
Department of Information Technology

OPEN SOURCE TOOLS (18MIT33C) -----II MSc

UNIT-IV: PERL: Introduction – advantages –working environment of Perl – variables –
strings –statements –subroutines – files –packages and modules – Object-Oriented PERL.
TEXT BOOKS
1. M.N. Rao, “Fundamentals of open source software”, PHI Learning Private Limited, 2015.
REFERENCE BOOKS
1. Larry Wall, Tom Christiansen, Jon Orwart- O Reilly, “Programming PERL”,3rd Edition,
2010.

UNIT-IV: PERL: Introduction – advantages –working environment of Perl – variables –
strings –statements –subroutines – files –packages and modules – Object-Oriented PERL.

4.1 INTRODUCTION

PERL stands for Practical Extraction and Report Language. It is an interpreted language
which is developed by Larry Wall in the year 1987. This language is mainly used for extracting
information from arbitrary text files, scanning the text files and printing reports based on the
resultant information. PERL was originally developed to manipulate text, but now because of its
advantages PERL is used in a wide range of tasks including system administration, GUI
development, network programming, etc.

4.2 Advantages and working environment of PERL

PERL is an efficient programming language used to solve problems in a wide spectrum
of environments including system programming, bio-informatics, and server-side web
programming. It is very easy to develop web applications using PERL and requires less effort
than any other web language. PERL is written in the C programming language, which is
extensively used to develop much system software, but a C/C++ program statement on UNIX is
different when coded for Windows because the libraries on different platforms are different.

4.2.1 Advantages of PERL

 PERL is easy to learn and use. PERL is portable and freely available.
 PERL can be used as a Common Gateway Interface (CGI) for web development.
 Both procedural and object-oriented programming is supported by PERL.
 PERL is extensive and also efficient in text and string manipulation.
 PERL helps in coding programs very quickly.
 Code written using PERL is very dense.
 PERL is supported to work with markup languages like HTML, XML, etc.
 Dynamic memory allocation is very easy in PERL.
 PERL is designed in such a way that it is possible to embed the PERL interpreter with

other systems.

4.2.2. PERL Working Environment

Working with the Terminal Window in Windows
We have three different options when we prefer windows.
1. If Cygwin is installed, double-clicking on the Cygwin desktop icon will automatically

open command-line prompt where one can proceed further.
2. Run the dialog box which will be appeared on the screen by pressing the ‘windows

key’ and ‘r’ key at the same time where one can type cmd (command) and then click
ok thereby popping up terminal window.

3. Run the dialog box which can also be appeared by clicking on ‘Start’ thereby ‘Run’
can be seen as one of the menu items. Click on Run and type cmd in the dialog box
and click OK.

In case of an alternative option for the standard terminal on windows, one can prefer
console as it is available for free.

Download at http://sourceforge.net/projects/console/

Working with the UNIX-style Systems
The users who use Unix style systems may opt for System PERL and PERLbrew. The

users who prefer Windows can opt for Cygwin, ActivePERL and Strawberry PERL.
PERL has an elaborate explanation in ‘ PERLdoc ’ , where one can learn the basic

structure of the docs and how to look up basic information in PERLdoc. One has to use a
terminal when programming PERL. “Using a terminal” will explain how to launch a terminal
and run a program from the command line in the documentation.

PERL Basics

Example 4.1 My first PERL program using terminal:
Open your terminal and enter
PERL -e ‘print “Hello, how are you!\n”’

For windows operating system, enter
PERL -e “print \“Hello, how are you!\n\”” (observe the difference in quotations)

Executing PERL programs from the command line.

Program in Normal Mode (Editor)
To run a basic PERL program, type the program, save the program and then type PERL

<program_name>. A PERL file should be saved with ‘.pl’ extension. The file name must be any
combination of numbers, symbols and letters, but should not contain a space. The symbol
underscore (_) can be used in the place of spaces. PERL is case sensitive. C language is
structured, its syntax is not as flexible as scripting languages, such as PERL.

Example 4.2 Creation of a simple PERL program:
#!PERL
use strict;
use warnings;
use diagnostics;
this is a comment
print “Hello, World!\n”; # this is the output

How it works :
In the command prompt, type PERL followed by the filename, which contains a PERL

program. PERL reads the file, parses the code, and executes the file. A comment begins with a
sharp (#). It can be on its own line or given in a line after some code.
Strict, warnings, and diagnostics:

The above three statements can be very helpful for executing the program. They are
useful in declaring variables and subroutines properly which will warn against doing wrong

http://sourceforge.net/projects/console/

things. And if the use of diagnostics line in program is included, they actually give an extensive
description of anything wrong and suggestions to overcome it.
Note: The statements “use strict; use warnings; use diagnostics;” are considered for all the
programs.

4.3 VARIABLES
Unlike many other languages that concentrate on things, like strings, integers, floats, and

so on, PERL does not focus on what the data is but mainly focuses on how you organize the data,
rather than what the data is. It has its own powerful approach for data types. A PERL program is
a file, which includes many files of text instructions guiding the computer what to do with the
given data. The beauty of PERL is that it enables to assign any kind of data to a variable. The
‘my’ function in PERL is used in the declaration of variables and in making the variation visible
in the current scope.
Example 4.3 A few variables:
my $name = ‘Rao’;
my @list_names = (‘Vedavathi’, ‘Aruna’);
my $last_name = $name;
print $last_name;

Example 4.3 assigns values to some variables. The statement in the third line copies the string
Rao from the variable $name to the variable $last_name. The print statement prints the word Rao
to the console. The variables with ‘my’ function in front protects part of program from been
accidentally changed by another part where the same variable name was used.

4.3.1 Identifiers
Variables are usually represented by names. The names of the things in PERL are known

as identifiers. These are things, such as subroutines, filehandles, packages, and a few others.
PERL follows fairly simple naming rules. PERL names or identifiers must start with an alphabet
or underscore and optionally follow with one or more alphabets, numbers, or underscores.
Examples 3.4 Valid variables:
my $v;
my $xyz;
my $_add_2;
my $Salary;
my $roll_number_5;
The following are not valid variables:
my $salary-for-month;
my $~release;
my $2nd_variable;

4.3.2. Working with Data in Variable Types in PERL
There are three built-in variable types in PERL.

 Scalar
 Arrays
 Hash

Each type of variable existing in PERL is indicated by its own sigil character. Variable
names start with a special character known as sigil. Some of the sigils used in PERL are ‘$’, ‘@’,
‘%’. The type of the variable is predefined by these characters in PERL. Dealing with the
variables in PERL is a straightforward way, since it is not mandatory to define and allocate some
memory to them. So, PERL does not include any technique for memory reallocation.

Scalar Variables
Scalar variable starts with sigil ‘$’. Scalar variables are those which contain only one

element, it may be a string or a number or a reference. PERL will automatically convert them as
required. Strings are defined as sequences of characters including letters, numbers or symbols.
The numbers consist of integers, decimals or exponent values. The memory address of a scalar,
array or hash variable is contained in the reference which is a scalar value. In PERL, a scalar is
merely a single value. Here are some scalars:

my $name = ‘Rao’;
my $today_temp = 42;

A scalar can be a string, a number, or a reference. In PERL, its meaning is a single value.
If anything is not assigned to the variable, it will be as a value called undef.

my $xyz_var; # here its value is undef

If the value of the variable is undef it often displays ‘uninitialized’ warnings in the
program. We can declare several scalars at once by keeping parentheses around them, as shown
below:

my ($today_temp, $city_name);

After declaring them by putting parentheses at right side, values can be assigned to them
as shown below:

my ($today_temp, $city_name) = (45, ‘delhi’);

The above statements assigns 45 to $today_temp and “delhi” to $last_name. As we have
mentioned above that scalars can be numbers, or a string.

Numbers:
Numbers include data types, like integer, floating point and non-decimal integers.

Number data types are explained as follows:

(i) Integers:
All the whole numbers along with negative numbers, except fractions are called integers.

Integers are often expressed as decimal integers with base 10. Integer literals are straightforward.
Example 4.5 Integers:
0
2014
−45
666
81923456222

(ii) Floating point numbers:
They store real numbers. In PERL, the floating-point numbers are represented in two

forms. One is the fixed method and another is the scientific method. In fixed form of floating-
point numbers, the decimal point is fixed on the number to denote the fractional part. Floating-
point numbers consist of significant which contains significant digits of the number, and an
exponent which represents the power of 10 that the significant is multiplied by.

Example 4.6 Floating point numbers:
1.48 366.000
366.0
3.25e55 # 3.25 times to 10 to the 55th power
−3.5e46 # negative 3.5 times 10 to the 46th power # (comment–a very big negative number)
−14e−34 # negative 14 times 10 to the −34 th power # (comment–a very small negative number)

(iii) Non-decimal integers:
PERL allows to specify numbers in other ways than decimal. Octal (base 8) number starts

with a leading 0, hexadecimal (base 16) number starts with a leading 0x, the hex digits A to F
represent the conventional digit values of 10 through 15, and binary (base 2) number starts with a
leading 0b.

Example 4.7 Non-decimal integers:
0467 # 467 octal number representation
0x12ff # 12FF hex-decimal number representation
0b1111 # a binary number representation

Array Variables
Array variable contains a list of elements (scalar data) and there is no restriction on the

number of elements in the list. The variables which are prefixed with sigil @ are called array
variables. The first element in the list will be accessed by index zero [0] and the next element
will have the index one [1] and so on.

The element of an array variable starts with the ‘$’ character followed by an array
variable name and square brackets which include the element index. This is the way of accessing
an element existing in an array in PERL. The ‘$’ character is used because the array variable in
PERL includes a list of scalar data.

Example 4.8 Creation of array variables:
@cities = (“Mumbai”, “Hyderabad”, “Delhi”, “Pune”);

As per Example 4.8, to access an element in the array variable cities, one should use the notation
$cities [index number]. So, to get the first element of the array, the notation is $cities [0], i.e., the
string “Mumbai” will be displayed and the second element can be accessed with $cities [1] and
so on.
The following point should be remembered while using array variables:

 The index of the last element of an array can be known by using special variable $array.
 In general, arrays are zero indexed, but this general setting can be changed by modifying

the default variable $ARRAY_BASE.

Slicing elements of an array:
Slicing an array is a process to create a new array with some of the elements retrieved

from an existing array. There exists no slice () function in PERL to do this operation. The
following process should be followed for slicing in PERL:

@new array-name = @old array-name [list of valid indices separated by comma]

Example: @capitals = @cities [0, 1, 2, 3, 4, 5];
Instead of specifying all the indices, it is also allowed to use the range operator (..)

between the indices as given below:
@capitals = @cities [0..5];

Adding an element to an array:
The element can be added to array in two ways as per requirement. It means that an

element can be added at the end of an array or at the beginning of the array. To do these
operations PERL provides the following two functions:

 Push(): This function adds an element at the end of the array. It takes two arguments, the
first argument should be the array name and the second argument should be the name of
the element to be added to the array or list of elements to be added to the array.

 Insight(): It adds an element at the beginning of the array like push() function, it also
takes two arguments.

The general form of push() function is:
push array, list;

Example 4.9 Usage of push() function:
push @numberarray, (3..6);

The general form of unshift() function is:
unshift array, list;

Example 4.10 Usage of unshift() function:
unshift @numberarray, 1; #operation is at the beginning of the array

Removing an element from an array:
It is possible to remove an element from the beginning of an array and also from the end

of the array. PERL includes two functions to perform these operations. The functions are
explained below:

 pop(): It deletes the last element of an array. It includes only one argument which is
nothing, but the name of the array.

 shift(): This function helps in removing the first element from the specified array
provided as argument.

It is allowed to remove an element from an array using index number. The following function is
used to perform this.

delete $array[index]: It deletes an element from the entry of DBMS file, the topmost point
shows next top after deletion of top element.

The general form to pop() function is:
pop array;

Example 4.11 Usage of pop() function:
@my lastelement = pop @numberarray;

The general form of shift() function is:
shift array;

Example 4.12 Usage of shift() function:
@my firstelement = shift @numberarray; #operation is performed on the first element of
array

The general form of delete() function is:
delete array[index];

Example 4.13 Usage of delete() function:
delete @numberarray[10];

Other Built-in Functions of array variable includes the following:

reverse (@array-name): It reverses the order of the elements stored in an array. The array name
should be passed as argument to this function.

Example 4.14 Usage of reverse() function:
@arrayxyz = reverse @arrayxyz;

sort (@array-name): This function sorts the elements of array in two ways, one way is to sort
alphabetically in ASCII order and the second way is to do sort process numerically . In different
versions of PERL different sorting algorithms were used, like quick sort, merge sort, etc.

Example 4.15 Usage of the sort() function:
@arrayxyz = sort @files; # this command sort lexically the files and stores in arrayxyz

splice (@array-name, offset, length, new-elements):

The first argument should be the array name in which some of the array elements are to
be replaced. The second argument is the offset which indicates the starting array element to be
removed, if this offset is negative then it will start from the end of the list. The third argument is
the length representing the number of elements to be removed from offset. The fourth argument
is the new elements which indicate the list of elements to be replaced with the removed elements
from the array. The size of the array can be increased or decreased accordingly.

Example 4.16 Usage of splice() function:
splice(@array, -1); # it removes the last element of array.

Hash Variables
Hash variables are prefixed with a sigil ‘%’. A hash is a special kind of an array where

each element consists of a key and a value associated with it. Hashes are very complex data types.
While accessing the elements of an array, the index must be a number, whereas in the case of
accessing an element of a hash variable, the hash index could be a number, or a string. All the
keys within a hash must be unique. A hash allows a programmer to create one-to-one
associations between a variable, or ‘key’, and its value. The most well-known special hash
variable is %ENV which contains environment variables. Hashes are one of the most important
features of PERL.

Example 4.17 Creation of hash variables:
my %students = (“sarat”, 1, “ramesh”, 2, “sangam”, “excellent”,);
print $students{‘sarat’}; # the above code is equal to declaring @array=(1,2,’excellent’)

The output generated by the program is:

1
my $name = $student{ ‘Ramesh’ }; # output for this is 2
$students{rakesh} = ‘raju’; # this how we add data–a new value raju to hash named students

%students = (%students, rakesh => ‘raju’, krishna => ‘sanjay’); # adding multiple values in hash

Arithmetic Operations
The arithmetic operators, like +, −, * and / are used for addition, subtraction,

multiplication and division, respectively. Initially precedence, multiplication and division are
calculated. Then addition and subtraction are calculated. The associativity is from left to right in
both the cases.

Example 4.18 Prints 12 as result:
my $result = 8 + 4 / 2 * 2;
print $result;

To prevent visual confusion, the authors generally avoid parentheses, but they are strongly
recommended. To avoid confusion we can also write Example 4.18 as:

my $result = 8 + ((4 / 2) * 2);
print $result;

If one wants the addition first, followed by the multiplication and then division, just use
parentheses to group things logically.

my $result = (8 + 4) / (2 * 2);
print $result;

Now, we obtained 3 as the answer instead of 12. To handle exponentiation use ** operator. To
calculate the cube of 15, the following code is to be considered.
print 15 ** 3;

The result is 3375.

4.4 STRINGS
Literal strings can be represented in two different ways: single-quoted string and double

quoted string . A single-quoted string literal is a sequence of characters, enclosed in single quotes
(‘ ’). The single quotes are used in strings to identify the starting and the ending of the string, but
they are not part of the string. Here the backslash character (\) does not have full energy. The
limitations with single quote usage is in the newline character ‘\n’ is not considered as newline
with single quotes as generally done in case of double quotes.

Example 4.19 Single quoted strings:
‘welcome’ #interpreted as w,e,l,c,o,m,e
‘welcome\n’ .. #interpreted as w,e,l,c,o,m,e,\,n
‘welcome to home’ #interpreted as w,e,l,c,o,m,e newline t,o, , h,o,m,e
‘\’’ #interpreted as a single quote, as single quote given after the backslash
‘\\’ #interpreted as backslash\, as two backslash are kept in a row
‘’ #interpreted as a null string, which is a space character

The substr() function considers a string and displays as given by the parameters for it.
The general form of substr() function is:

substr offset , length

Example 4.20 Usage of substr() function:
my $string = ‘welcome’, 0, 3;
my $substring = substr $string, 0, 3;
print $substring;

The output generated by the program is:
wel # as mentioned in the substring, from 0 th element three characters(3) are displayed

The double quoted string literal is a sequence of characters, enclosed in double quotes
(“ ”). The double quotes and backslash are used for control characters and also for representing
octal and hexadecimal numbers.

Example 4.21 Double quoted strings:
“welcome” # same as single quotes no special effect
“welcome\n” # now backslash character works and takes as a newline
“welcome \t mam” .. # tab special character works here

In the same way \a for bell (alarm), \f form feed, \r return, \e for escape, \\ for backslash
can be used.

String concatenation is done by “.” dot operator. The general form of string concatenation
is:

$string = $string . $string ;
Example 4.22 How to concatenate the strings:
my $string1 = “ravi”;
my $string2 = “revanth”;
my $stringconcat = $string1 . $string2;
print $stringconcat;

The output generated by the program is:
ravirevanth

Example 4.23 Numbers as strings:
my $string1 = “10”;
my $string2 = “5”;
my $stringconcat = $string1 + $string2;
my $stringconcat = $string1 - $string2;
print $stringconcat;

The output generated by the program is:
105
5

Another magic operations to strings are auto increment (++) and auto decrement (--), the
increment will take to the next letter, and decrement brings the previous letter.

Example 4.24 How to increment the value of a variable:
my $stringinc = “b”;
$stringinc++;
print $stringinc;

The output generated by the program is:
c

4.5 STATEMENTS
Statements can be defined as a complete unit of instruction for the computer to process.

The semicolon (;) at the end of each statement is very important. It indicates that the PERL
statement is complete. Statements are used in a language in order to process or evaluate the
expressions. The statements which are kept between an opening brace ({) and closing brace (})
can be called a block. A block may include one or more PERL statements. Every block statement
will be treated as an individual statement by PERL. There are two kinds of statements, namely,
conditional statements and control statements.

4.5.1 Conditional Statements
The conditional statements existing in PERL are ‘if’, ‘unless’ and ‘switch’. The

conditional statements are used to test whether the specified condition in the statement is true or

not, and thereby, deciding either to continue the execution of scripts or jump to a particular
statement.
if statement

This statement is the primary conditional structure in PERL which is used to execute a
block of statements if the given condition is true. The general form of ‘if’ statement is:

if(Boolean expression)
{

Statement 1;
Statement 2;
. . .
Statement N;

}
If the result of Boolean expression is true then the statements in the block will undergo

execution.

Note: The braces related to the block are mandatory even if the block contains only a single
statement.
Example 4.25 Usage of ‘if’ statement:

my $rajesh = “kavin”;
if ($rajesh gt ‘avinash’)
{

print “’$rajesh’ comes after ‘avinash’ in sorted order.\n”;
} # the above condition is true
In addition to the above syntax, it is also allowed to write the ‘if’ statement as follows if

only single statement should be executed provided the Boolean expression evaluates to be true.
The alternative general forms of ‘if’ statement is: “statement” if (Boolean expression); In

some situations, it is necessary to execute another block of statements if the Boolean expression
specified in ‘if’ statement evaluates to be false. This block of statements is called as ‘else’ block
is: The general form of using else block is:

if (Boolean expression)
{

Statement 1;
Statement 2;
. .
Statement N;

}
else
{

Statement 1;
Statement 2;
.
.
Statement N;

}
In a simple way, the general form of using block code can also be written as follows:

if (Boolean expression)
BLOCK

else
BLOCK

Example 4.26 Usage of “ifelse” statement:
if ($rajesh gt ‘avinash’)
{

print “’$rajesh’ comes after ‘avinash’ in sorted order.\n”;
}
else
{

print “’$rajesh’ does not come after ‘avinash’.\n”;
print “this is the second statement.\n”;

}
elsif statement

This statement is used to test multiple conditions and executing unique block of
statements for each condition is satisfied. The general form of ‘elsif’ statement is:

if (expression or condition)
{

Statements;
}
elsif (condition)
{

Statements;
}
elsif (condition)
{

Statements;
}

In a simple way, the general form of ‘elsif’ statement can also be written as:
if (condition)

BLOCK
elsif (condition)

BLOCK
elsif (condition)

BLOCK
..............

The block of statements will be executed only if the Boolean expression or the condition related
to that block results in true. In this type of checking multiple conditions using elsif statement, it
is possible to add else block to the existing construct to make them execute if no condition is
satisfied. The general form of adding else block to elsif statement is:

if (condition)
{

Statements;
}

elsif (condition)
{

Statements;
}
elsif (condition)
{
Statements;
}
. .
else
{
Statements;
}
The else block will be executed if the conditions specified in the ‘if’ statement and ‘elsif’

statement evaluate to false. Alternatively, the general form of adding else block to elsif statement
can also be written as follows:

if (condition)
BLOCK

elsif (condition)
BLOCK

elsif (condition)
BLOCK
.....

else
BLOCK

#! /usr/ bin/PERL
print “Enter the number”;
my $num= <STDIN>;
if ($num <=25)
{

print “The number entered is less than 25”;
}
elsif ($num <=50)
{

print “The number you have entered is greater than 25 and less than 50”;
}
elsif ($num<=75)
{

print “The number you have entered is greater than 50 and less than 75”;
}
else
{

print “The number entered is greater than 75”;
}

unless statement
It is opposite to ‘if’ statement. The block following the ‘if’ statement will be executed if

the condition specified is true, whereas in the case of ‘unless’ statement, the block gets executed
if the condition specified is false. The general form of ‘unless’ statement is:

unless (Boolean expression)
{

Statements;
}

(or)
unless (condition)

BLOCK

If the Boolean expression results in false then only the control takes up the block for
execution, otherwise it will continue the execution process from the immediate statement after
the block. If single statement needs to be executed then the general form of ‘unless’ statement is:
The alternative general forms of ‘unless’ statement is:

“statement” unless (condition)

Note: The else and elsif clauses can also be used with this ‘unless’ statement. The syntax of else
and elsif clauses with ‘unless’ statement is similar to the ‘if’ statement except, the only
difference is that ‘if’ should be replaced with ‘unless’.

Example 4.27 Usage of ‘unless’ statement:
unless ($age< 20; $count++)
{

a = b + count;
print “this is example for count : $count\n”;

}

4.5.2 Control Statements
The control statements are an important category of the Perl statements. The main

purpose of Perl control statements is to change the sequential flow of a Perl program.

Loops
In some cases, It is necessary to execute a particular block by several times depending on

the specified condition evaluates to be true. The repeated execution of a block can be called a
loop. There are four loops available in PERL which are as follows:

 for loop
 while loop
 until loop
 foreach loop

for loop:

This loop works similar to C and other languages. It executes a block of statements
iteratively till the condition mentioned in the statement results to be false. The general form of
‘for’ loop is:

LABEL for (initialization; condition; increment or decrement) BLOCK

Initialization assigns some specific value to the variable specified, and executes only
once at the beginning of for statement. Then the condition will be checked, if it evaluates to be
true then the block will be executed. After that the increment or decrement of the variable
mentioned will take place and again the condition will be checked. If the condition results in
‘true’ then again the block will be executed. This process goes on until the condition is not met.

Example 4.28 Usage of for loop:
for ($count= 1; $count< 20; $count++)
{
a = b + count;
print “this is example for count : $count\n”;
}

Note: The LABEL before the ‘for’ in the above syntax is an optional identifier followed by a
colon. LABEL is very useful when there is a need to alter the normal flow within the block by
using the loop controls (next, last and redo). The braces related to block should not be omitted
even if a single statement exists.

while loop:
This executes the block repeatedly until the specified condition fails. The general form of

while loop is:
while (condition)
{

Statements;
}
If the condition evaluates to be true then the control executes the statements inside the

block. The condition will be checked every time for each iteration of the loop. Loop termination
takes place when the condition results to be false.

Example 4.29 Usage of while loop:
$count = 0;
while ($count < 15)
{

$count += 3;
print “count value is now $count\n”; # output values 3 6 9 12

}

The general form of while loop when continue block is included:
LABEL while (condition) BLOCK continue BLOCK

In this case, LABEL is an optional identifier followed by a colon (:), if it is included it
must be in uppercase. It includes an optional block continue which will be executed after each
current iteration. In simple words, it can also be said that the continue block will undergo
execution before the successive re-evaluations of the test condition. In case of use of the three
looping controls, namely, next, last or redo then the label can use as a support for jumping to or
from within the block.
until loop:

It is just the reverse of while loop. This until loop executes the block as long as the
condition remains false. Initially, if the condition is true the entire block is skipped. The block
will undergo repeated execution until the condition becomes true. The general form of ‘until’
loop is:

until (condition)
{

Statements;
}

Example 4.30 Usage of ‘until’ loop:
my $factnum= 1;
my $i= 1;
until ($i > 10)
{

$factnum *= $i++;
}
print $factnum; # this script prints factorial of 10

The general form of until loop when continue block included is:
LABEL until (condition) block continue block

Note: Either LABEL or continue block are optional.

foreach loop:
This loop has its applications in areas of lists and arrays. If one wants to iterate over

every element of a list or an array to execute some particular code for unique element, then this
loop will be very useful. The general form of ‘foreach’ loop is:

LABEL foreach VAR (LIST) BLOCK

LABEL is an optional identifier in uppercase followed by a semicolon. VAR is a variable
which helps to iterate all the elements in the specified list or an array foreach iteration. LIST
represents a list of scalars or an array that points to a list. A BLOCK must be enclosed by curly
braces ({}) even if single statement exists.

Example 4.31 Usage of ‘foreach’ loop:

$find = “cherry”;
$message = “none\n”;
@elements = (“rajesh”, “shanthi”, “cherry”, “laxmi”, “kishore”);

foreach $name (@elements)
{

if ($name eq $find)
{
$message = “$find name is found!\n”; # assignment is done if given string is

found in the array last;
}

}
print $message; #prints message if it is found or not

The general form of foreach loop when continue block included is:
LABEL foreach VAR (LIST) BLOCK continue BLOCK

Note: This continue block is optional. If it is present, it will be executed after each iteration.

Loop Controls
PERL provides three loop controls, namely, next, last, and redo.

next:
Placing this loop control inside the loop will stop the current iteration and go on to the

next one. The general form of ‘next’ loop control is:
Label: while (condition) { next Label; }

last:
This control immediately terminates execution of the loop by skipping the remaining

statements in the block. This is similar to the break keyword in the C language. ‘Last label
expression’ can also be given in the script. The general form of ‘last’ loop control is:

Label: while (condition) { last Label ; }

redo:
It will execute the same iteration again without re-evaluating the conditional statement

for the loop. The general form of ‘redo’ loop control is: Label:
while (condition) { } redo Label;

4.6 SUBROUTINES
PERL allows the user to define their own functions named as subroutines . To perform a

particular task a separate code is defined and can be called anywhere across programs. A
subroutine can be reusable and can be defined anywhere in the program. PERL program executes
subroutine in the program by calling or invoking it, and this act of invoking a subroutine is called
subroutine invocation. If the subroutines had defined in another file, it is possible to load them in
any program by using use, do or require statement.

4.6.1 Uses of Subroutine
 It breaks the program into smaller parts which is very easy to read and understand.
 The same piece of code which performs the same task can be used multiple times.
 PERL subroutines are flexible and powerful.

A subroutine can be defined by using the keyword ‘sub’ followed by the subroutine name.
The ‘sub’ keyword is case-sensitive and should be in lower case. The subroutine name starts with
a letter followed by one or more letters, numbers, or underscores. A subroutine name must be
chosen in such a way that it should not belong to PERL built-in functions. The general form of
subroutine is:

sub subroutine-name { ….. }

Prototypes Attributes Block ‘Prototypes’ indicates PERL what parameters the subroutine
expects. ‘Attributes’ gives a subroutine additional explanation. Both attributes and prototypes are
optional. ‘Block’ consists of the code to be executed whenever subroutine is called.
Example 4.32 Subroutine:

sub subroutine-name
{

Code to be executed
}
A subroutine can be called anywhere in the program by two ways. One way to call a

subroutine by prefixing ampersand (&) to the name of subroutine. Another way of calling
subroutine is by specifying the subroutine name with parenthesis. The general form for calling a
subroutine in the above mentioned two ways are as:

&subroutine-name, and subroutine-name ().

4.6.2 Return Statement in Subroutine
There are two methods to return a value from a subroutine. One method is called an

implicit method which makes the value, or any expression, or a list, or a single scalar to be
returned from subroutine as the last statement in it. This implicit method is very easy. The
second method is to return a value from a subroutine is by using the return statement explicitly.
This method can be called explicit method. The return value can either be a scalar value or a list.
The general form of ‘return’ statement is:

return (return-value);
The return-value is the value that the subroutine needs to return. If the subroutine does

not include return statement, it will return the last value calculated. A subroutine may consist of
multiple return statements, the first one that is executed will exit the subroutine.

my variables
Variables which are used in a subroutine can be made private to itself with the help of my

operator. It helps to avoid overwriting similarly-named variables in the main program. Since, the
subroutine body is considered as a block, therefore, the variables only exist within the body of
the subroutine.

Example 4.33 The subroutine defined before the script:
Sub name #defining subroutine name
{

print “hi this is subroutine test\n”;
}
for ($n= 1; $n<5;$n++)
{

name;
} # calling subroutine 4 times using a for loop

The output generated by the program is:
hi this is subroutine test
hi this is subroutine test
hi this is subroutine test
hi this is subroutine test

In Example 4.33, there is no return value sending back, it displays the value from the
subroutine. In some cases the return value may be sent to the calling function by return keyword.
The subroutine defined in Example 4.33 shows how the return keyword is used in subroutine. It
is also possible to create anonymous subroutines in PERL. Subroutines without a name can be
known as anonymous subroutines.

Example 4.34 Usage of subroutines:
sub total (@)
{

my $total = 0;
for my $temp (@_)
{

$total += $temp;
}
return $total;

}
#this subroutine named total prints the total of numbers, by taking through temp variable.

Example 4.35 Usage of subroutines:
sub square_root
{

my $element = shift;
$element **= 1/2;
return $element;

}
$element = “stanley”;
$n = square_root(16);
print “$element says the root is $n\n”;

The output generated by the program is:
Stanley says the root is 4 #this subroutine named square_root output is 4

Handling arguments in the subroutine are like this:
sub students_count
{

my $number_of_students = shift; #shift for pointing first value in an array my
($number_of_students, $number_of_faculty) = @_; # handling multiple arguments

}

Shift() function is used to move the entire array towards the left hand side. Therefore,
one can start reading the first element of an array from left. We can declare shift() function
explicitly.

my $number_of_students = shift @_;

The subroutine for making private in PERL use underscore (_) prefixed to the name of
the subroutine. This is useful when the subroutine is called by other codes, then they will realize
it as private.

4.6.3 Types of Subroutines
There are two types of subroutines, namely, nested subroutines and recursive subroutines.

Nested Subroutines It is possible to call a subroutine from other subroutines known as nested
subroutines since one subroutine is nested inside another subroutine.

Example 4.36 Usage of nested subroutines:
sub first { ...
}
sub second{
... }
sub third{

my ($arg) = @ARGV;
if ($arg == 1)
{

first();
}
elsif ($arg == 2)
{

second();
}

}

Recursive Subroutines
In addition to nested subroutines, there exists another category of subroutines which can

actually call themselves. The subroutine which calls itself can be defined as recursive
subroutines. A subroutine can be used as a recursive subroutine if the following conditions are
true. All the variables used by the subroutine are local. The subroutine should contain code that
determines when it should stop calling itself.

Example 4.37 Usage of recursive subroutines:
my $recfunc = sub
{

my ($recfunc, $paramt1, $paramt2) = @_;
do { -----lines of code here---};

$recfunc->($recfunc, $paramt1, $paramt2);
}

4.7 FILES
When the PERL program connects to the external data file, PERL names the connection

as a Filehandle. In simple words, a file handle can also be understood as a dummy name for the
files one wants to use in PERL scripts. A handle is nothing, but a temporary name assigned to a
file. All input and output to files are achieved with the help of Filehandling. Filehandles provide
a means for one program to communicate with another program. A variety of operators and
functions are used to read and update the data associated with the Filehandle. The three main file
handles are STDIN, STDOUT and STDERR.

4.7.1 Opening a File
Files in PERL are opened by using open and sysopen function. Both the functions may

take up to four arguments. The first argument is the Filehandle, second is the filename or the file
path, third argument is the mode and the last argument includes the permissions to be granted to
a particular file.
Open function

In general, the open function includes two arguments. The first argument is the file
handle which is returned by open function and the second argument is EXP which indicates the
expression having file name and the mode in which the file is opened. There exist mainly three
modes in which the file can be opened, namely, ‘read’ mode where the file is to be opened for
reading purposes, ‘write’ mode where the file is opened for writing purposes, and ‘append’ mode
where the file is opened to add the required contents to the end of file. The general form to open()
function is:

open (FILEHANDLE, “<filename”); here ‘<’ sign indicates file is opened for read mode.
open (FILEHANDLE, “>filename”); here ‘>’ sign indicates file is opened for writing mode.
open (FILEHANDLE, “>>filename”); here ‘>>’ sign indicates file is opened in append mode.

Example 4.38 To open a file in reading mode:

#!/usr/bin/PERL open(DATA, “<my file.txt”)
while(<DATA>)
{

print “$_”;
}

sysopen function
Sysopen function is similar to the open function except that it uses the arguments

supplied to it as the arguments to the system function. The sysopen() function takes three
arguments, such as, filehandle, filename and mode.

The different modes available regarding to sysopen() function and their description are as
follows:

O_RDONLY − This is read only mode
O_WRONLY − This is write only mode

O_RDWR − This is read and write mode
O_CREAT − This mode helps to create the file
O_TRUNC − This mode helps to truncate the file
O_APPEND − This mode helps to append the file
O_NONBLOCK ... − This is non block mode
O_EXCL − This mode stops if the specified file already exists

Example 4.39 Program for reading operation:
#! /usr/bin/PERL
sysopen (FH, “/tmp/text”, O_RDONLY);
$lines=<FH>;
print $lines;

4.7.2 Reading From a File
Whatever the operation be–whether it is an input or output operation that is to be

performed by the file will go through Filehandle. It is allowed to read lines from files and input
them by using the input operator ‘< >’.

File permissions
Permissions are needed to assign to files in order to implement security and authorized

access to it. A PERL file (. pl) to function on the web server has executable file permissions. The
following list of things helps to pass to the open function as per the required operation.
Entity Meaning
< or r -This provides read only access permission to the file.
+< or r+ -This provides reads and writes permissions to the file.
> or w -This provides creates, writes and truncates permissions to the file.
+> or w+ -This provides reads, writes, creates and truncates permissions to the file.
>> or a -This provides writes, appends and creates permissions to the file.
+>> or a+ -This provides reads, writes, appends and creates permissions to the file.

close function
To close a Filehandle related to a corresponding file, this close function is used. The

close function indicates PERL to finish with that file. The general form of close() function is:

close FILEHANDLE;

It is also allowed to specify this function as simply close without specifying Filehandle. If
no Filehandle is mentioned, the currently selected Filehandle is closed. If the buffer flushes
correctly and closes the file then it returns true.

getc function
The getc function is used to return a single character from the given Filehandle. The

Filehandle does not return whatever it reads from STDIN. The function returns some undefined
value if there is any error, or if the Filehandle is at the end of the file. The general form of getc()
function is:

getc Filehandle;

read function
To read the information from the buffered Filehandle as a binary data one can use the

read function. The general form of read() function is:

read FILEHANDLE, SCALAR, LENGTH, OFFSET;
read FILEHANDLE, SCALAR, LENGTH;

It will read specified LENGTH data characters into the variable named SCALAR from
the given FILEHANDLE. It returns the number of characters actually read on success, returns
zero at the end of file and finally an undefined value if an error occurs.

Generally, an OFFSET is used to read when the data is stored in between other than the
beginning. The specified OFFSET can be either negative or positive. A positive OFFSET which
is greater than the SCALAR length with a size of “\0” bytes is padded before the result is
appended. A negative OFFSET represents characters backwards from the end of the string.

print function
This function is used to print a string or a list of strings. This will return true upon

success. The general form of print() function is:
print FILEHANDLE LIST
print FILEHANDLE
print LIST
print

The Filehandle may be a scalar variable name, where the variable may contain the name
or reference to the Filehandle, thereby introducing one level of indirection. The main thing which
needs to remember here is, if the Filehandle is a scalar variable. The following token is a term, it
may be misunderstood as an operator unless one specify a + or keep parentheses around the
arguments. If Filehandle is not specified, by default the print function prints to standard output or
to the output channel selected at last. If LIST is also not specified, it prints $_ to the currently
selected output channel. One can use the select operation to select the default output channel to
something else, but not to STDOUT. This function takes a LIST, in which anything in it is
evaluated in list context, including any subroutines whose return lists all passed to print. One
should remember, that print keyword should not be followed by left parentheses except when
one wants the right parenthesis to end the arguments for printing.

tell function
The general form of tell() function is:

tell FILEHANDLE
tell

This function returns the current position in bytes for Filehandle. If an error occurs it
returns −1. The Filehandle may be any expression. The value of the expression is the actual name
of the Filehandle. If Filehandle is not specified, it will assume the last file read. It is

recommended not to use the tell function on a Filehandle that has been manipulated by sysread(),
syswrite() or sysseek(). Those functions ignore the buffering, whereas tell() does not.

seek function
This function will place the file pointer to the specified number of bytes within a file. The

general form of seek() function is:
seek FILEHANDLE, POSITION, WHENCE

The Filehandle may be any expression whose value represents the name of the Filehandle.
The WHENCE can take any of the three values, namely, 0, 1, 2. If the value of the whence is
zero (0), set the new position in bytes to POSITION. If it contains the value one (1) it sets the
new position to the current position plus POSITION, and finally the new position is set to EOF
plus POSITION for the value two (2). It is also allowed to use the constants SEEK_SET
(represents the start of the file), SEEK_CUR (represents the current position) and SEEK_END
(represents the end of the file) for WHENCE.

Example 4.40 Usage of seek() function:

seek DATA, 250, 0;

Zero (0) indicates the position relative to the start of the file. The line in the file set the file
pointer of the file to the 250th byte.

4.7.3 Copying Files
File duplication can be done by using the copy function. This function takes two

arguments, the first argument is the URL of the file to be copied and the second argument is the
URL of the new file. If the same file name or the same URL is used, PERL will rewrite the file if
permissions allow.

Example 4.41 Copying of files:

#!/usr/bin/PERL
open (DATA1, “<my file1.txt”);
open (DATA2, “>my file2.txt”);

while (<DATA1>)
{

print DATA2 $_;
}
close (DATA1);
close (DATA2);

4.7.4 Moving Files
Move function will help in moving files. The difference between copying and moving

files is while copying files two copies will exist, whereas in the case of moving files only one
copy will exist and only the location of the file will change. While moving a file from one

location to another location, the file in the old location has been completely removed and placed
in the new location. The general form to move the files is:

move (old location, new location)

Example 4.42 Moving of files from one location to another location:

#!/usr/bin/PERL
$oldlocation= “file1.html”;
$newlocation= “folder1/file1.html”;
move($oldlocation, $newlocation);

4.7.5 Renaming Files
The file name can be changed to another name using a rename function. It takes two

parameters, one is the old file name, second is the new file name. The general form to rename a
file:

rename (old file name, new file name)

Example 4.43 Renaming of files:

#! /usr/bin/PERL
rename (“/usr/test/filename1.txt”, “/usr/test/filename2.txt”);

4.7.6 Deleting Files
An existing file in PERL can be deleted by using unlink function. The best option to

delete a file is to set a variable name equal to the URL of the file to be deleted. It is also possible
to remove multiple files at once by first creating an array of files to be deleted and then looping
through each one. The general form to delete a file is:

unlink (file-name or filepath).

Example 4.44 Deletion of files:

#! /usr/bin/PERL
unlink (“/usr/test/myfile1.txt”);

4.8 PACKAGES AND MODULES
Packages and modules are related to each other, but they are independent concepts.

4.8.1 Packages
It is essential to know about namespace before package. The collection of unique variable

names can be called a namespace. It will prevent variable name collisions between packages. A
package defines a namespace where a module’s functionality or data resides. A namespace can
also be called symbol tables. PERL files with .pm extension can be called packages and can also
be considered as a separate namespace. It is possible to have many packages in a single file and

also a single package that spans several files. In simple, we can also say that packages are
namespaces where the functions and variables can be placed.

Package Declaration
To declare that a code belongs to a particular namespace, the package directive should be

used. Package statement helps in switching the current context to the mentioned namespace. If
the specified namespace does not exist, a new namespace is first created. The package statement
will be in effect until either another package statement is invoked or until the end of the current
block or file. The variables can be referred explicitly within a package using the :: package
qualifier.

4.8.2 Modules
A module is a file which contains related functions and variables. Other modules and

scripts can re-use these modules. At Run time we can load these modules and can call their
functions also. A module can contain several packages. A module can be loaded by calling any
one of the two functions, namely, use and require.

use function
The use function is called to load a module. The syntax is to write the ‘use’ function

followed by the name of the module. The use statement will be evaluated at compile time. The
general form of ‘use’ function is:

use MODULE
use MODULE LIST
use VERSION

This use function will import all the functions exported by specifying MODULE or only
those referred to by giving LIST into the namespace of the current package. The VERSION
argument can also be specified in between the MODULE and LIST. If so, then the VERSION
method by the use functions in class MODULE with the specified version as an argument. If
simply VERSION is specified as an argument, VERSION may be either a positive decimal
fraction or a v-string of the form v5.6.1. An exception may be raised if the specified VERSION
is greater than the version of the current PERL interpreter, and then PERL will not try to parse
the rest of the file.

require function
In addition to use function, a module can also be loaded over required scripts by using

require function. The subroutine names with respect to a module which is mentioned using
require function must be fully qualified. The require statement will be evaluated at execution
time. The general form of ‘require’ function is:

require
require EXPR

If the EXPR is specified as numeric, it represents that the script requires the given version
of PERL in order to execute the script. If both EXPR or $_ are not numeric, then it includes the
given name of a library file to process the script. It is not allowed to include the same file with
this function twice. Whatever the file is included, it must return a true value as the last statement.

Table 4.1 shows the difference between use and require function. Even though there exist
differences and they behave differently, but they achieve the same goal.

Table 4.1 Differences Between use function and require function
use function Require function

This is used only for the modules, ie., only to
include ,pm type file.

This is used for both libraries and modules

The included objects will be verified at
compilation time.

The included objects will be verified at
Runtime,

There is no need to give file extension here, ie.,
only file name is required

There is a need to give file extension.

This function will implicitly call the import
method of the module being loaded.

This function does not implicitly call the
import method of the module being loaded.

use does not behave like a function Requires behavior like a function

BEGIN and END Blocks
The BEGIN and END blocks are the two special code blocks for PERL modules. When a

module is loaded, the BEGIN block gets executed and when the interpreter of the PERL is about
to unload the module, the END block is executed. The BEGIN and END blocks act as
constructors and destructors respectively. The BEGIN and END blocks are written as follows:

BEGIN
{
. .
}
END
{
. .
}

4.9 OBJECT-ORIENTED PERL
In general, Object-Oriented Programming also called OOP is a software design paradigm

helps in writing more re-usable and elegant code by declaring classes which define the
functionality of their various instances called objects. In procedural programming, the main
criteria are on splitting a project into smaller and smaller tasks, using subroutines to define a
single task and so on, whereas in the case of object-oriented programming the main focus is on
data. Objects which include data will have various properties and can interact with each other in
various ways. Object-oriented programming is mainly concerned with groups of actions and
interactions between data. The basic unit of operation in object oriented programming is the
object.

4.9.1 Objects
An object is that which contains data on its attributes or properties, and can perform

actions through methods. The object is a way of accessing data and can be referred as an instance
of a class. An object in PERL can simply be called a reference.

4.9.2 Classes

A class in PERL can be treated as an ordinary package which contains methods required
for creation and manipulation of objects. Classes define the methods an object can have, and how
those methods work. In general, a class can also be understood as a description of the attributes
of an object and the manner of accessing and modifying those objects. To create a class in PERL,
it is necessary to build a package first. A package is defined as a unit of self-contained user-
defined variables and subroutines, which can be re-used. To declare a class in PERL the general
form is as follows:

package class-name

4.9.3 Methods
Methods in PERL can be referred as subroutines defined in a package. In PERL, the

arrow operator (−>) is used to call a method. The general form to call a method is:

$object->method (@arguments).

Example 4.45 Sample method:

package emp;
sub printnames
{

my ($self)=@_;
printf(“full-name:%s %s\n \n”, $self->empfirstname, $self->emplastname);

}

If suppose for any variable $var1 contains an emp(employee) object, this method print
names can be called on that object by writing following statement: $var1- >printnames();

4.9.4 Constructors
For creating an object which is an instance of a class, it is necessary to have an object

constructor. It is a method which has been defined in a package. The majority of the
programmers will name this object constructor method as new, but whereas in PERL no rules
exist to name this method. The constructor is that which constructs and returns a new object. So,
that is why it is usually called new() . It is allowed to pass arguments to this constructor, which it
can then use to do the initial setup of the object.

4.9.5 bless Function
The bless function tells the entity referenced by REF which is an object in the

CLASSNAME package, if CLASSNAME is omitted. Usage of the two-argument form of bless
is recommended. The general form of ‘bless’ function is:

bless REF, CLASS-NAME
bless REF

This function specifies the entity referenced by REF, and specifies an object in the
CLASSNAME if the CLASSNAME is given. If the CLASSNAME is omitted it uses the current
package.

Example 4.46 shows the constructor creation for sample employee class using PERL
hash reference. While creating an object, a constructor is supplied that returns an object reference.
The creation of object reference provides a reference to the class in the package.

Example 4.46 Constructor creation for sample employee class using PERL hash reference:

package emp;
#emp1.pm
use warnings;
use strict;
sub new
{

my $self={};
bless($self, “emp”);
return $self;

}

The emp(employee) class can be used to create an object:

#/usr/bin/PERL
use warnings;
use strict;
use emp1;
my $emp=emp->new();

4.9.6 Inheritance
Inheritance allows reusability of code across various classes. The methods and attributes

defined in one class can be used in another class through this property without rewriting the code
again. The class from which the methods and attributes are inherited can be called a parent class
and the class which inherits and uses those methods can be called a child class . PERL includes a
special variable @ISA, which represents the relationship between classes. Classes which have
just one item in their @ISA array comes under the category of single inheritance. Classes which
have more than one element in @ISA indicate multiple inheritance.

Example 4.47 Usage of inheritance:
package dept1;
#dept.pm
use warnings;
use strict;
our @ISA=qw(emp);

4.9.7 Polymorphism
Polymorphism is a situation in which a single object exhibits many forms. Polymorphism

is defined as the ability for objects to respond differently to the same message depending on their
class. Polymorphism in object-oriented programming allows a single method to do different
tasks depending on the class of the object that calls it. Generally, there are mainly two types of

polymorphism, namely, inheritance polymorphism and interface polymorphism. In inheritance
polymorphism, all the objects share a common set of methods, whereas in interface
polymorphism polymorphic behavior exists with objects that do not share anything in common.
In this objects are not related, but they share some common interface which allows them to be
treated in a polymorphic way.

4.9.8 Destructor
Destructor deallocates the memory allocated to the object of the class when one stops

using it. PERL automatically destroys a variable when an object is no longer in use. There exists
a method known as DESTROY which can be called on the object before de-allocating the
memory allocated to the object by PERL. In general, a destructor method can be viewed as a
subroutine named DESTROY called automatically under any of the four circumstances, such as,
when the object reference variable is undefined, when the variables of object reference’s goes
out of scope, when the script terminates or when the PERL interpreter terminates.

Example 4.48 Usage of destructor:
package class1;
.
.
sub DESTROY
{

print “class1: :DESTROY called now”;
}

4.9.9 Method Overriding
If the implementation of the inherited method in the child class is modified, the process is

known as method overriding. Using the SUPER constructor override allows you to call an
overridden superclass method without actually knowing where that method is defined. The
SUPER: construct is meaningful only within the class.

REVIEW QUESTIONS
1. Define parsing with examples using PERL.
2. Explain PERL parsing rules and advantages.
3. Define variable and explain about different variable types.
4. Write a program for swapping of two numbers using two variables.
5. Explain about local scope and global scope of variables with examples.
6. Explain about different variables (i.e., Integer variable, float variables, etc.) with syntax

in PERL.
7. Explain about array operations in PERL (i.e., Adding elements, deleting elements).
8. Explain about statements and write a program to tell younger, middle and old depending

on a age.
9. Write a PERL program by using different conditional statements.
10. What are the different types of iterative statements in PERL? Explain each of them with

an example.
11. Write a PERL program to print Fibonacci series.
12. Explain about various object-oriented concepts in PERL.

13. Explain different object methods in PERL.
14. Explain different concepts of polymorphism in PERL.
15. Explain the concept of modularization in PERL.
16. Explain about modules and packages.
17. Explain about subroutines with suitable examples.
18. Explain different operations on files with an example.

