
Prepared By Dr. N.THENMOZHI M.C.A., M.S., M.Phil., Ph.D.,

Govt, Arts College (Autonomous), Coimbatore-18
Department of Information Technology

OPEN SOURCE TOOLS (18MIT33C) -----II MSc
UNIT-I: Introduction to OSS :Introduction - Need for Open Source Applications - Advantages
of Free Open Source Software - Disadvantages of Free Open Source Software - History -
Meaning and Extraction of the Terms Free Software and Open Source Software - Free Software
Foundation and Open Source Initiative Presentation- Free Software and Open Source Software
Licenses Comparison - Licensing - Familiar Licenses - Free and Open Source Software (Game
Theory) - Security and Reliability - Economical Aspects and Adoption - Applications of Open
Source Software – Open source grid computing : Open Grid Service Architecture – OGSI –
Security Issues – Globus Toolkit – Open source cloud: Introduction-FOSS cloud software
environment.
UNIT-II: Open Source OS Linux: Linux Basics: Introduction - Kernel/User Mode – Process –
Advanced Concept-Scheduling – Personalities- Cloning - Signals - Development with Linux -
OSS Installation. Linux shell Commands – Vi Editor - Shell programming: Shell Syntax -
Variables – conditions – control structures – functions – commands – command execution.
UNIT-III: PHP: Introduction – Identifier -Variables - Constants – Data types – Operators -
Statements – loops. Advanced PHP –Arrays – Get and Post – Object oriented concepts –
Strings –File handling and data storage. MySQL Databases – Setting –Starting, terminating and
writing own SQL programs – record selection technology, strings functions, date and time –
starting query – generating summary – working with metadata – using sequences – PHP and
MySQL databases.
UNIT-IV: PERL: Introduction – advantages –working environment of Perl – variables –
strings –statements –subroutines – files –packages and modules – Object-Oriented PERL.
UNIT-V: Ruby on Rails: Welcome to Ruby –Conditions, methods, loops and blocks - classes
and objects. Welcome to rails: Connecting to databases – working with databases.

TEXT BOOKS
1. M.N. Rao, “Fundamentals of open source software”, PHI Learning Private Limited, 2015.
2. Neil Matthew and Richard Stones, “Beginning Linux Programming”, 4th Edition, WROX,
2011.

3. Steven Holzner, “Beginning ruby on rails”, Wiley publishing, Inc, 2007.

REFERENCE BOOKS
1. Chris DiBona, Danese Cooper and Mark stone O Reilly,”Open Sources 2.0 – The
Continuing Evolution”, First Edition, 2005.

2. Elliot White III, Jonathan.D.Eisenhamer, “PHP 5 in practice” pearson Education,2007.
3. Paul Du Bois,O Reilly Publishers,”My SQL- Cookbook”,Second Edition,2010.
4. Larry Wall, Tom Christiansen, Jon Orwart- O Reilly, “Programming PERL”,3rd Edition,
2010.

5.Yashavant P. Kanetkar,” Unix Shell Programming”, BPB publications, 2003. 2018-2019



UNIT-I: Introduction to OSS :Introduction - Need for Open Source Applications - Advantages
of Free Open Source Software - Disadvantages of Free Open Source Software - History -
Meaning and Extraction of the Terms Free Software and Open Source Software - Free Software
Foundation and Open Source Initiative Presentation- Free Software and Open Source Software
Licenses Comparison - Licensing - Familiar Licenses - Free and Open Source Software (Game
Theory) - Security and Reliability - Economical Aspects and Adoption - Applications of Open
Source Software – Open source grid computing : Open Grid Service Architecture – OGSI –
Security Issues – Globus Toolkit – Open source cloud: Introduction-FOSS cloud software
environment.

1. AN INTRODUCTION TO OSS
1.1 INTRODUCTION

Open Source Software’s (OSS) are user-friendly and are available as commercial and free
licensed software. Therefore, these are easy to use by anyone, anywhere. Open source is easily
modifiable as its core code is publicly accessible. As OSS is originated from the framework of
software devel Mathematics opment, it designates a set of values and initiatives, those that
embrace, celebrate open exchange, collaborative participation, rapid prototyping, clearness, and
community development. It is widely accepted by a number of people and organizations. The
software allows to outlook the code, but it does not allow the conversion or modification of the
code. In fact, this software is known as source-available or shared sources.

As mentioned earlier, OSS is software whose source code is accessible for alteration or
enrichment by other programmers. Source code is the part of software which is mostly used in
the development of the software package, and is accessed by the programmers. Programmers can
enrich the performance of that program by including features, or by modifying, or by fixing add-
on’s to make the system function more effectively than older versions.

Generally, OSS implements different levels of development which make them suitable
for building minor and comprehensive real-world systems. Simultaneously, the field of
knowledge-based systems has refined a huge frame of dynamic learning algorithms for distinct
purposes. Indeed, the possibility of these methods is not thoroughly utilized, and as a result,
current implementations are not freely pooled which results in the software with low usability
and feeble interoperability. This condition can be effectively enhanced by the rising motivation
for the investigators to broadcast their program covered by an open source model. In addition to
that, they outline the problems that the authors face when trying to publish algorithmic
implementations of learning methods, i.e., system, machine, etc. In this approach, to believe that
an analysis of software service is accompanied by some journals, can be extremely profitable to
both the system knowledge and the general scientific community.

1.2 NEED FOR OPEN SOURCE APPLICATIONS

 The manipulators are well-maintained to have entry to the software source code.
Additionally, users are encouraged to submit add-ons, improvements, bug reports,
documentation, etc. to the software. When a number of programmers view the code, they
identify all the errors and recommend how to debug them. Generally, some programmers
have advanced programming skills and adding to this, the individual end-user’s machine



contributes an additional testing situation, which offers the ability to formulate new
applications and to fix some existing bugs.

 The earliest version of the software should be discharged as soon as possible, in order to
be followed in an iterative manner with version control. This eventually leads to a much
effective software package. Source code changes should be surely unified continuously,
to avoid the overhead of fixing a huge number of errors at the termination of the project
life cycle which leads to the software failure.

 Two versions of the software are present–one is the buggier version with more features
and the second is an additional constant version with lesser characteristics. The buggier
version is developed for end-users, who need the instant use of the current functionalities
and are amenable to obtain the hazard of using the code which is not tested intensely. The
end-users are also called co-developers, because they report errors and also suggest how
to fix those errors.

 End-user also takes part in developing the stable version. The regular software structure
should be standard. This standard software allows both, parallel and distributed
development of independent components of the software.

 On the basis of user needs, an essential decision-making structure may be either official
or relaxed.

1.2.1 Advantages of Free Open Source Software
 No royalty for licensing Free Open Source Software.
 Allow greater opportunities for software application architectures.
 Incorporate tools for any system in a real world environment.
 Easy to manage.
 Easy to understand for the developers.

1.2.2 Disadvantages of Free Open Source Software
 Free Open Source Software supports only single or multiple sources, but not parallelized

environments.
 The business logic should be known to modify the configuration or to generate code

modifications to compensate exclusive workflows.
 End-user considers ownership than proprietary licenses, which includes rising of

upgrades, enrichments, configuration and software service.
 Hard to employ vendor service with real time practice in guiding the application.
 Hard for smaller companies to maintain the services individually.
 Require developed professional support on licensing problems and in making of

agreements.
 Regular preparation and development of training information related to specific

applications.
 There are no measures at the time when the information is overloaded.

1.3 HISTORY
During its nascent stages, software was considered as a type of mathematics. After some

time, it became clear to improve mechanized pre-processing of data for governments and many



organizations. Firms started improving personal and proprietary systems. Opening the lock-in
cycle and frequent fall of technology asset continued for a number of decades.

The thought of Free Open Software started with the improvement in the beginning of the
1980’s, with the idea of ‘free software’ by Richard Stallman. Stallman wanted to build the GNU
project and also Free Software Foundation to advance his vision which took a number of decades
to achieve.

In the early 2000’s, many people realized that the free software was centralized by the
sharing of data all around the world. In the late 1990’s, Eric S. Raymond along with others
developed the term open source as a business-friendly word compared to free software. Open
source has a complete meaning if the licenses were not strict and allows modifications. The Open
Source Initiative (OSI) was launched to present a central certification organization for the several
types of licenses that satisfy the definition of open source. The commercial open source software
had preferred this term effectively, by leading the community to unite around the term Free Open
Source Software which will remind the primary visions of Stallman and Raymond together. The
term, Free Open Source Software was mentioned for the first time in the newsgroup.

1.4 MEANING AND EXTRACTION OF THE TERMS FREE SOFTWARE AND OPEN
SOURCE SOFTWARE

From the GNU project, the definition of the term free software has been evolved. Free
Software Foundation (FSF) maintained a competitive definition which determines the
appropriate means of understanding the sense of using the term free . Free software is an element
of freedom, but not the cost. According to FSF definition, if any program has four freedoms, then
that program is said to be a free software . The four freedoms are as follows:

Freedom 0: There should be freedom to execute the program for any idea.
Freedom 1: Entry to the source code is a prerequisite. There should be the freedom to

review the working procedure of the program.
Freedom 2: There should be liberty to redistribute models. Therefore, you can assist

others.
Freedom 3: Entry to the source code is a prerequisite. The liberty to enhance the

program and send your enhancements to the community. Therefore, the
community gets benefitted.

An additional frequently used term is Open Source Software (OSS), which is managed by
the Open Source Initiative (OSI). OSI declares that open source not only signifies the accessing
to source code, but also sharing words of Open Source Software must allow rights to redistribute
the software as a module. OSI states that modified source code must be an essential with the
primary source code and the licence cannot be particular to a software. In 1998, the term Open
Source Software was used by the free software community for the first time.

1.5 FREE SOFTWARE FOUNDATION AND OPEN SOURCE INITIATIVE
PRESENTATION

On September 27, 1983, Richard Stallman sent a primary declaration of the GNU project
to the newsgroups. The declaration consisted about clarification of writing GNU. GNU is
expressed as a UNIX-friendly method containing kernel, which needs additional services to write
and execute C programs, which will be prearranged at no cost that can utilize it.

Richard Stallman’s intention was to share any program with neighbors who are fond of it,
too. The term GNU was selected, since it met some of the needs. Before FSF was established by



Stallman, he prepared required steps to defend his upcoming work from his existing employer
demands. Then, he left his job in January, 1984 at MIT lab. Writing of non-proprietary software
was started by Richard Stallman. Later, the GNU manifesto was published by Stallman. The
GNU manifesto is a manuscript that strengthens the primary announcement. Stallman
supplemented the data on GNU, ways of granting the project and advantages from the project.

Free Software Foundation (FSF) was established in 1985 to support thoughts specified in
the Software (OSS). On non-proprietary software market, the OSI becomes an option to FSF
even though FSF challenger allows developers to utilize non-proprietary software.

1.5.1 Free Software and Open Source Software Licenses Comparison
The two slogans with different activities and philosophies are– free software and open

source. The aim is to distribute freely and cooperatively in case of free software movement. Non-
free software is unfriendly, because it does not allow the user to access the software at his/her
liberty. The open source movement encourages a technically superior improvement form that
regularly obtains technically superior results.

1.5.2 Licensing
The open source license allows the software to be freely usable, editable and sharable.

Freedom from the privileges is permitted to all the users by all the open software licenses. If the
software license is not consistent, then the association of coding, i.e., combining the source code
or straight connection of binaries is a risky task. This problem can be avoided by connecting
programs indirectly. Most of the software comes under the licenses which are discussed in this
chapter.

1.5.3 Familiar Licenses

 GNU General Public License
 GNU Lesser General Public License
 BSD 2-Clause Simplified, or FreeBSD licence
 BSD 3-Clause New, or Revised license
 Mozilla Public License
 MIT License
 Apache License
 Eclipse Public License

The FSF, i.e., Free Software Foundation and the OSI, i.e., Open Source Initiative both,
report set of licenses that they satisfy with their own definitions. The OSI list includes the
licenses that are submitted and authorized. All open source licenses that satisfy the Open Source
Definition are called Open Source Software. Licensed software that does not satisfy the free
software definition cannot be considered as free software.

1.5.4 Free and Open Source Software (Game Theory)
A software is a collection of ideas with architecture that designs the entire process. It is

possible to differentiate source code files and compiled files (binary). Any source code that
satisfies definite qualifications is copyrighted in most of the states. Copyright comprises the



privilege to utilize the software and to build this software accessible to others. It also promotes
the privileges to make imitative mechanisms and reallocate. In 90% of the states, the copyright
of a work is manageable. Therefore, it is achievable to differentiate between the author and the
copyright holder. The privileges are limited by default.

The authors can decide to maintain their work for themselves and not to share it with
others. The authors correspondingly the copyright holders can select to share their work. If a
software author developer desires to make his software accessible, then the author must
particularly allow him by giving permissions to do that task in the form of license. The authors
are differentiated by applying and obtaining copyright as copyright law. It is also achievable to
identify the number of individual users. The count of use cases by individual user is also being
calculated. Free and open source licenses are related to sharing. Therefore, we can make the
software available to specific people. The copyright grants two differentiable use cases:

 The author or the copyright holder, can trade licenses to utilize a software, i.e., allows the
privileges to utilize the software by the law of a state over a contract known as End-User
License Agreement (EULA). The EULA is also known as Software License Agreement
(SLA).

 The author or the copyright holder can distribute the software under a free software
license and/or open-source software license. The basic similarity between them is to
allow the irreversible right to utilize, reallocate, change and reallocate the change of
software in a definite version. To alter software, a duplicate source code is required. The
software is generally shared without any responsibilities. In fact, several recommend
extra support for fee. Free and open source licenses include the information about
software sharing.

Naming
Using of the term Open Source Software than using free software is prescribed by Free

Source Foundation (FSF). The FSF records that Open Source has definitely a particular
definition, i.e., you can view the source code. But, Stallman declares that the term free software
points towards two distinct meanings, in which the former meaning is persistent with the Free
Source Foundation definition of free software.

1.6 SECURITY AND RELIABILITY
Security is the capability of a structure to supervise, defend and share information. It is a

complex task. FOSS systems are frequently higher than proprietary software. As long as possible,
the general method used by developers is to hide the bugs. The bugs will not be determined even
by testers, if they hide the bugs. Therefore, all the systems are attacked. There is no difficulty, if
the software developers determine the attacks before the public who are fond of hacking. In most
of the cases, such attacks are detected after hacking. The tests are partial because the developer
and the tester are same. But, in case of FOSS, we cannot find such type of disadvantages because
the entire source code is accessible to all the users. Several people can inspect the code at a time.
Therefore, the bugs are identified more rapidly. Regularly bugs are reconstructed, even without
the assistance of developers’ team.

The level of excellence or quality of the developed software directly depends on the
experience, capability and skilled methodologies of the programmer. By performing testing, peer
reviews beta and alpha version; we can improve the security and reliability of the code. No
software is 100% resistant from security vulnerabilities, but free open source software delivers



better security performances. There are three reasons why FOSS offers better security. They are
as follows:

1. The source code is accessible to the entire community. This accessibility helps them to
discover and fix the security vulnerabilities.

2. The FOSS applications mainly focus on the functionality and the robustness rather than
ease of use. Before adding new features to these FOSS applications, the security
considerations are considered initially. If the security principles are not satisfied, then the
feature cannot be considered.

3. FOSS structures are more secured. They have well-permissioned structure, depending on
the UNIX form with well-structured network. These models are vital because several
users share one server.

1.7 ECONOMICAL ASPECTS AND ADOPTION

Free software played a vital role in the advancement of the networks, World Wide Web
and the framework of companies. Free software grants users to assist in improving the programs
they use. It is completely a public product rather than a private product. Companies that provide
free software can improve commercial novelty.

The economic feasibility of the free software has been accepted by huge corporations like
IBM, Sun Microsystems and Red Hat. Several companies which are in non-IT sector, select free
software for browsing information about sales because of the lesser primary asset and the
capability to freely adapt the application packages.

In the free software business model, dealers may charge a bill for allocation and support
through payment. Proprietary software uses a distinct business model where a proprietary
software customer has to pay bills for a license to utilize the software themselves. Frequently,
some level of assistance is included while buying the proprietary software, but additional
services are usually accessible for an extra payment. A number of proprietary software dealers
will also customize software for a payment.

Free software is regularly available at no cost and can affect permanently at lower costs
compared to the proprietary software. In free software, businesses can make software to their
specific requirements by modifying the software themselves or by employing programmers to
change it. Free software has no assurance and does not assign legal responsibility to anyone.
However, warranties are allowed between any two parties upon the condition and its utilization.
Such an agreement is made individually from the free license software.

A statement by Standish Group predicts that acceptance of free software has caused a fall
in income to the proprietary software industry. Irrespective of this, Eric S. Raymond disputes
that the term free software is unclear, and therefore, a threat to the business community.
Raymond popularizes the term Open Source Software as friendly which is an option for the
business.

1.8 APPLICATIONS OF OPEN SOURCE SOFTWARE

FOSS is applied in the fields of artificial intelligence, CAD (especially, in the field of
Electronic Design Automation), statistics, surveys, computer simulation, finance, integrated
library system, mathematics and sciences like bioinformatics, grid computing, molecular
dynamics, molecule viewer, nanotechnology, microscope image processing and plotting.



1.8.1 Science
We can examine and present the scientific investigation result under this group. These are

the free open source software under science category.
 Astronomy software
 Chemistry software
 GIS software
 Linguistic software
 Mathematics software
 Physics software
 Plotting software

Applications of FOSS in the Different Fields of Science

Nanotechnology: It includes the free open source software like Ninithi Software. It is a
software which is used for visualization and analysation of allotropes like
fullerene, carbon nanotube, graphene nanoribbons.

Bioinformatics: BioJava, BioPerl, BioPython, BioPHP, Visomics, EMBOSS , etc., are the freely
Available Bioinformatics software.

Grid computing (P-GRADE portal): It is a grid portal program that facilitates the creation of
workflows, execution of workflows and monitoring of workflows.

Molecular dynamics: GROMACS, NAMD and LAMMPS are the different freely available
software in the field of molecular dynamics.

Molecular viewer: Avagadro, Jmol, PyMOL, RasMol and BALLView are the different freely
available software in the area of molecular viewer.

Geographic Information Systems (GIS): The various GIS software that are available freely are
GeoServer, GeoTools, GeoNetwork open source, GeoMapping Tools,
Mapserver, MapWindow GIS and Whitebox Geospatial Analysis Tools.

1.8.2 Mathematics

The open source software included under mathematics is utilized for higher order calculations of
mathematics. This software plays a vital role in the area of mathematics.
Computer algebra systems: A computer algebra system is a kind of software that is utilized for

manipulating the mathematical formulae. It systematizes repeated
and occasionally challenging algebraic manipulating
responsibilities. An axiom is an all-purpose computer algebra
system.

Numerical Analysis: Numerical analysis is a field of mathematics using which we can create an
algorithm and analyzes an algorithm for getting numerical approximations
to the continuous variable problems.

Statistics: Collation and interpretation of numerical information from data can be studied using
statistics.

Multipurpose mathematics software:Multipurpose mathematics software was developed with
an intention of generating a math platform. This software is compared
with proprietary software like Matlab and Mathematica.



1.8.3 Computer Simulation

Blender: The code is written in python and C++. It is a 3D modelling software. Using Blender,
we can do different tasks, like gaming and animations.

SimPy: Based on Python, SimPy is developed. It is a simulator of event-based type.
Flightgear: Flightgear is developed for operating systems, like Windows, Mac and Linux. It is

an open source simulator.

1.8.4 Statistics
The free statistical software are as mentioned below:

 Free Bayesian software
 Free Econometrics software
 Free Data Analysis software
 R (programming language) software
 Plotting software
 Web Analysis software

1.8.5 Surveys
Lime Survey is a free open source online survey function, which is developed in PHP. It

permits users to create and publish online surveys without performing any coding.

1.9 RECAPITULATION
Open Source Software’s (OSS) are user-friendly and are available as commercial and free

licensed software. So, it is easy to use by anyone from anywhere. Open source can be easily
modifiable as its core code is publicly accessible. The regular software structure should be
standard. Standard software allows both parallel and distributed development on independent
components of the software. OSS is easily understandable for developers. The term Free Open
Source Software was mentioned for the first time in the newsgroup. According to FSF definition,
if any program has four freedoms, then that program is said to be free software.

Richard Stallman on September 27, 1983 has sent a primary declaration of GNU project
to the newsgroups. The GNU manifesto is a manuscript that strengthens the primary
announcement. Stallman has supplemented the data on GNU, ways of granting to project and
advantages from the project. The two slogans with different activities and philosophies are free
software and open source. Open Source license allows the software to be freely usable, editable
and sharable. A collection of ideas with architecture that is going to design the entire process is
said to be software. Using of the term Open Source Software than using Free Software is
prescribed by the FSF.

Security is the capability of a structure to supervise, defend and share information. It is a
complex task. Free software played a vital role in the advancement of the networks, World Wide
Web and the framework of companies. Free software is regularly available at no cost and can
affect permanently at lower costs compared to proprietary software. FOSS is applied in the fields
of artificial intelligence, CAD (especially in the field of Electronic Design Automation), statistics,
surveys, computer simulation, finance, integrated library system, mathematics and sciences, like



bioinformatics, grid computing, molecular dynamics, molecule viewer, nanotechnology,
microscope image processing and plotting.

REVIEW QUESTIONS
1. Explain the needs of open source applications.
2. List the advantages and disadvantages of free open source software.
3. Explain the origin of free open source software.
4. Elucidate the meaning and extraction of the term free software and open source software.
5. Compare and contrast the free software and open source software licenses.
6. What is meant by licensing? List all the familiar licenses.
7. Define game theory and discuss it.
8. Explain the security and reliability of free open source software.
9. List and explicate the applications of open source software in the following fields: (a)

Science (b) Mathematics (c) Statistics (d) Surveys

1.10 Open Source Grid Computing

1.10.1 INTRODUCTION
Grid computing integrates computers from several administrative domains to execute

some specific task. Grids are a part of distributed computing in which the ‘super virtual
computer’ is the combination of multiple networked loosely coupled systems which act together
to execute huge tasks. Open source grid computing offers hardware and software development
services for the customers who design, build and deploy high performance computing
applications on an open source systems. It includes device driver development, firmware
development, kernel modification, distributed file system development, and system software
design.

1.10.2 OPEN GRID SERVICE ARCHITECTURE (OGSA)
Open Grid Service Architecture (OGSA) is a collection of standards that defines the

approach in which the information is distributed among different components of huge, and
heterogeneous Grid systems. In this perspective, a Grid system is an extensible Wide Area
Network (WAN) that maintains resource sharing. OGSA illustrates a service oriented
infrastructure for a Grid computing platform designed for business and scientific purpose. OGSA
is a trademark of the Open Grid Forum. OGSA was enhanced within the Open Grid Forum
(OGF). It is also called the Global Grid Forum (GGF).

1.10.2.1 OGSA Definition
Based on OGSA standards, it is defined as follows:

 An architectural method in which the GGF’s working group assembles requirements and
manages a group of informational documents that explains the architecture.

 A group of normative requirements which outlines the document that contains exact
requirements for satisfying hardware or a software component.

 Software components that hold the OGSA requirements and outlines.
 Facilitates the deployment of Grid solutions that are interoperable irrespective of the the

dependency on the handling of multiple resources.



1.10.2.2 Capabilities of an OGSA
 Information services
 Data services
 Infrastructure services
 Security services
 Execution management services
 Self-management services
 Resource management services

In late 2006, a modernized version of OGSA and different related documents were
published. The OGSI, i.e., Open Grid Services Infrastructure is associated to OGSA, as it was
basically intended to form the basic OGSA plumbing layer. It was outdated by a Web Services
Resource Framework (WSRF) and WS-Management. Figure 10.1 shows the open grid services
architecture.

Figure 1 : Open Grid Service Architecture.

1.10.2.3 Description
OGSA is a shared communication and computing architecture based service which

assures interoperability of heterogeneous systems. Therefore, dissimilar resources can
communicate and distribute information. OGSA is based on different web service technologies
such as the WSDL, i.e., Web Service Description Language and SOAP, i.e., Simple Object
Access Protocol. But, it targets to be fundamentally independent of transport level management
of data. It can be defined as a fine-tuning of web service architecture, exclusively designed to
maintain Grid requirements. The idea of OGSA has resulted from the work presented in the
Globus Alliance paper related to the Grid Physiology by Ian Foster in 2002. It was enhanced by
Global Grid Forum (GGF) working groups which results in a document, named ‘The Open Grid
Service Architecture’. The GGF made some use case scenarios to be available.

1.10.3. OPEN GRID SERVICE INFRASTRUCTURE (OGSI)



The Global Grid Forum (GGF) reported Open Grid Services Infrastructure (OGSI) in
June, 2003. It was planned to offer an infrastructure layer for the Open Grid Service Architecture
(OGSA). OGSI obtains the statelessness problems into account by necessarily extending web
services to hold Grid computing resources. Establishing on both Grid and web service
technologies, the OGSI describes the procedure for creating, managing and exchanging data
among entities known as Grid services.

1.10.3.1 Grid Service
In brief, a Grid service is described as a web service that adapts to a set of interfaces and

behaviors which defines the client interaction with a Grid service. These interfaces, behaviors
and other OGSI mechanisms coupled with the Grid service creation and discovery, presents a
fault-resilient, secured management and long lived state which is usually required in
sophisticated distributed applications. It introduces a set of Web Service Definition Language
(WSDL) conventions that we apply in Grid service specification. These conventions are
incorporated in WSDL 1.2. The Grid service defines the service data which offers a standard
way of presenting and querying Meta data along with state data from a service instance. It
introduces a series of Grid service core properties, such as:

 Defines a Grid service description and instance, as an organizational principle.
 Defines the way of modeling time by OGSI.
 Defines the Grid Service Handle (GSH) and Grid Service Reference (GSR) constructs

which are used to refer Grid service instances.
 Defines a general approach for transferring fault information from operations. This

procedure defines a fundamental XML schema definition and related semantics for
WSDL error messages to support a regular analysis. The method basically defines the
basic format for fault messages, without altering the WSDL fault message model.

 Define the Grid service instance life cycle.

1.10.3.2 WSDL Extensions and Conventions
OGSI depends on the web services. In specific, it uses WSDL as the procedure to define

the Grid service public interfaces. However, WSDL 1.1 is incomplete in two critical areas as
follows:

1. Lack of interface (portType)
2. Lack of open-content

These deficiencies have been referenced by the W3C Group because WSDL 1.2 is ‘work
in development’. OGSI cannot directly integrate the entire WSDL 1.2. Instead, OGSI defines
WSDL 1.1 extension, separated to the wsdl:portType element which provides the minimal
essential extensions to WSDL 1.1. We can define an individual namespace with the prefix gwsdl,
to isolate the adaptations to WSDL 1.1. In specific, gwsdl adds the following new constructs to
the wsdl:portType element to maintain the open content model and portType extension.

1.10.3.3 Service Data
The procedure for stateful web services initiated in OGSI recognized the need for a

regular process to reveal state data to service requestors of a service example for querying,
updating and change notification. As this concept is applicable to the entire web services,
including those that are used in the external context of Grid applications, a common approach is
proposed to expose web service state data called ‘service data’.



1.10.4. SECURITY ISSUES
Security issues related to traditional and Grid systems are as follows:
Traditional systems: The security issues include defending a system from its users and specific
user from negotiation.
Grid systems: The security issues for a Grid system are as follows:

1. Defending applications and data from the system where computations are executed.
2. Stronger verification is necessary.
3. Defend local implementation of remote systems.
4. Dissimilar admin domains/security policies.

1.10.4.1 Authentication
Authentication is a procedure of validating the uniqueness of a participant to perform a

function or request. A principal is an entity whose identity is verified by the restricted user or
user who has logged into a remote system. Traditional systems validate client to defend server.
In case of Grid system, a mutual authentication is needed to ensure that resources and data
should not be supplied by an attacker.

Authentication Methods

Password-based authentication: There are two methods in case of password-based
authentications which are as follows:

 Send unencrypted passwords: It is suitable only when the messages cannot be read by
entrusting processes while on the network.

 Prove knowledge of a password: In place of sending a password over the network, send
password as an encryption key. Encryption should be done for a known value which
should be non-repeating.


Kerberos authentication : It is well-suited for frequent authentication. It is centrally
administered and requires trusted, online certification.

Secure Sockets Layer (SSL) : SSL can be deployed in any browser, i.e., widely deployed. In
this, client authenticates the server identity and sends a session key from client to server for
setting up an encrypted connection. The server consists of a certificate with a public key. If the
client has a certificate, then it can authenticate itself to the server.

Symmetric crypto system: It uses the same key for both encryption and decryption. Data
Encryption Standard (DES), RC4, RC5 and triple-DES are the examples. With static keys, user
needs dissimilar key for every service provider. Service provider maintains key for every user.

Asymmetric cryptography: It is also called as Public Key Cryptography (PKI). Digital
signature algorithm is an example for asymmetric cryptography. It uses a pair of keys for both
encryption and decryption. The public key is published and available to anyone, whereas the
private key is a secret key and known to only single party. It has an advantage of disseminating
public key freely and a disadvantage of worse performance compared to symmetric encryption.



Authentication and key distribution protocol: It is applied to symmetric encryption systems
and performs better when compared to the systems which are using public key or asymmetric
cryptography.

1.10.4.2 Additional Security Issues

Assurance: It is a form of authorization which is used to validate service provider. It will check
whether the requirements of the client, such as performance, security and reliability are met or
not.
Accounting: It is a means of tracking, limiting or charging for consumption of resources. It is
critical for fair allocation of resources. Accounting is critical because it needs a payment and
incentives to make use of resources.

Audit: It records operations performed by a system and integrates actions with principals. In the
Grid, the audit mechanism must be distributed.

1.10.4.3 Security Technologies

IPSec and IPv6: IPSec and IPv6 act as a transport layer protection for confidentiality and
integrity. When communication is established between the two network hosts, it uses key
distribution to exchange keys for symmetric encryption. Key distribution may use kerneros. The
keys are connected to hosts, but not with applications or users.

Virtual Private Networks (VPNs): VPNs operate at the transport layer. It provides
communication only between participating nodes. It uses transport layer confidentiality and
integrity. The features of VPNs are as follows:

1. Authenticate end users
2. Recognize application level objects that need protection
3. Maintain security policies that differentiate users and application objects

Firewalls: Firewalls prevent several attacks on hosts within the organization. It provides an
obstacle at the organizational network boundary. Grid application often requires communication
through the firewall. Firewalls need to combine IPsec along with VPN technologies at network
boundaries with firewalls.

1.10.5. GLOBUS TOOLKIT
Grid computing has an open source Toolkit known as a Globus Tool Kit which is offered

by the Globus Alliance. The standard implementation of the Globus Toolkit is performed on the
basis of specific standards which are as follows:

 Job Submission Description Language (JSDL)
 Open Grid Services Architecture (OGSA)
 Grid Security Infrastructure (GSI)
 Distributed Resource Management Application API (DRMAA)
 Open Grid Services Infrastructure (OGSI) which is fundamentally planned to produce the

central ‘plumbing’ layer for OGSA, but has been outdated by WSRF as well as WS
management.



 Web Services Resource Framework (WSRF)

The open source Globus Toolkit is a central technology for the ‘Grid’ which allows the
people to distribute the computing resources, databases and other tools in the online securely
across commercial and geographic boundaries. The toolkit comprises software services and
libraries for resource supervision, discovery, security and file management.

The Globus Toolkit includes software for the purpose of security, resource management,
data management, fault detection, portability and communication. The toolkit is packed as a
group of components that can be utilized either individually or combined to extend the
applications. All the organizations have individual operational modes and association between
multiple organizations is delayed by incompatible resources, such as, networks, computers and
data archives. The toolkit was considered to eliminate complexities that stop the collaboration.
Its central services, protocols and interfaces facilitate the users to access remote resources.

The Globus Toolkit has developed on the basis of open source strategy analogous to the
Linux operating system and different from proprietary effort in resource sharing software. This
promotes wider and faster adoption which leads to better technical innovations, as the open
source community offers persistent improvement to the product.

1.10.5.1 Versions
The Globus Toolkit version plan is analogous to the technique used for the Linux kernel

prior to 3.0 versions of the Globus Toolkit which are labeled with a version number, comprises
three parts, i.e., major, minor and point.

 The major release number stands for the main state of the Globus Toolkit. It is increased
when the considerable architectural shifts take place in Toolkit development.

 The change in the minor release number specifies that several new features have been
included in the Globus Toolkit. API changes along with binary incompatibility may occur
linking minor releases.

 The point release number alters when the Globus Toolkit components have been renewed.
Public interfaces may be supplemented, but not detached between point releases of the
constant release version. An installation can be promoted to a new point release through
native packages with the prospect that all services along with libraries should persists to
work as earlier versions, unless innovative features are enabled.

1.10.5.2. Stable and Development Releases
Stable and development are the two series in the Globus Toolkit release streams. Stable

distributions include a minor version number as even number, whereas development distributions
include an odd version number. Globus-4.0.1, Globus-4.0.0, Globus-3.2.1 are the examples for
stable releases. Globus-3.9.5, Globus-3.9.4, Globus-3.3.0 are the development releases. Releases
including under development series are used to distribute novel features in a timely approach.
Development distributions can act in irregular ways and should not be applied in production
settings. Unlike stable releases, there is no declaration of binary compatibility between point
versions of development releases.

1.10.5.3. Globus Toolkit Version
Globus Toolkit version includes the following:

 Version 1 is essentially a research prototype which is not broadly used.



 Version 2 is extensively used in non-web-based services.
 Version 3 is a web-based service. But it is not widely accepted.
 Version 4 is a web-based service and widely used to acquire new software difficulties.
 Version 5 returns to a non-web-based approach of version 2.

1.10.5.4. Globus Toolkit4 (GT4) Architecture

Globus Toolkit 4 is a collection of many software components which are divided into
following five categories.

1. Security: The connections should be secured based on the Grid Service Infrastructure
(GSI). Information services:

2. The information services are also called as Monitoring and Discovery Services (MDS),
comprises a collection of components to discover and supervise resources in a virtual
organization. GT4 also comprises a non-web service version of MDS2 for legacy
purposes. This component will be disappearing in forthcoming releases of the Toolkit.

3. Execution management: It deals with the initiation, monitoring, coordination and
management of executable programs in a Grid.

4. Data management: The Common Runtime components present a set of basic libraries and
tools which are required to build web services along with non-web services.

5. Common runtime: The Common Runtime components offer a set of fundamental
libraries along with tools which are necessary to construct both web services and non-
web services.

Figure 2 : GT4 Architecture



1.10.5.5 Globus Toolkit Programming Model
In the Globus Toolkit, the library functions are actually used. The truth that we use an

asynchronous programming model regularly seems strange to people rising C applications with
the Globus Toolkit. It includes the following:

Include Headers
The entire code that formulates calls to functions in the GridFTP client library must

include the following header: #include _client globus_ftp.h

Module Activation/Initialization
In every Globus Toolkit C code, you must call the module activate/deactivate for all the

modules that perform direct calls. The module determines the activation and deactivation of its
own dependencies.

Handle Setup
Every function call is an entirely encapsulated GridFTP session. In a GridFTP session,

the control connection is created, and authentication is performed. If necessary, a data channel is
set in a GridFTP session, and then the required data will be transferred.

Check Features
Verification of the server compatibility related to the feature is a good practice.

Verification of a feature comprises four steps. In the first step, init function is called. The second
step, requires to invoke the feature function which sends the FTP FEAT command to the server
and loads the structure along with the results. The third step includes accessing the results by
means of is_feature_supported by listing the features of interest. In the fourth step, call
features_destroy to free the structure memory is needed.

Set Operation Attributes
After knowing that what are all the features that are supported by the server’s one is

using, one can configure any essential attributes. The file system functions may not use attributes,
however the data movement operations often use attributes. For a data movement operation, if
one does not denote any attributes, the default will be the standard RFC959 stream mode.

The operation attributes can be divided into two rough categories. The first category is
the data movement and the second category is the security. All the function calls enclose the
same form

The set variant changes the attribute value and the get variant returns the or image. Mode:
GridFTP supports two modes. The first mode is the stream mode and the second mode is the
extended block mode. In stream mode, the file is navigated by sending the bytes as an ordered
sequence of bytes. An extended block mode is a GridFTP extension which sends the data in
blocks with eight bits of the flag and 64-bit offset. This format allows out-of-order reception of
the data since the transmitting offset is specified. With out-of-order data, we can now send the
data in multiple paths. In the existing version of the server, the parallelism is invoked. It involves
only a single source and destination network endpoint but includes multiple TCP streams.

Parallelism



Parallelism indicates the number of TCP streams that should be opened between every
network endpoint.

Module Deactivation and Clean Up
Once the work is completed, the cleanup remains. One should remind about the cleaning

of the buffer that have utilized by means of the statement as follows: globus_error_get()
globus_print_friendly() These statements destroy all the tasks that have initiated and then
deactivate all the modules by means of the statement as follows: globus_module_deactivate_all()

REVIEW QUESTIONS
1. Define OGSA and explain its features.
2. Sketch and explain the OGSA architecture.
3. Explain OGSI and its services.
4. What are all the security issues in Grid computing?
5. What is meant by authentication and explain the different authentication methods used

for verification?
6. Explain the additional security issues in Grid computing.
7. List and explain the security technologies in Grid computing.
8. What is meant by Globus Toolkit and explain its standards?
9. Mention the Globus Toolkit versions.
10. Explain the stable and development releases of a Globus Toolkit.
11. Sketch and explain the GT4 architecture.
12. List and explain the GT4 components.
13. Explain the Globus Toolkit programming model.

1.11. Open Source Cloud
1.11.1 INTRODUCTION

Cloud computing is generally defined as a computer network which includes, computing
hardware machine or group of computing hardware machines commonly referred as a server or
servers connected to a network , such as the Internet , an intranet , a Local Area Network (LAN)
or Wide Area Network (WAN) . Any user who has a license to access the server can use the
server’s processing power to run an application, store data, or perform any other computing task.
Previously users use to run their applications on their own computers, but these days the
individual runs the application from anywhere in the world, as the network of servers provides
the processing power to the application and the servers are also connected to the Internet or other
connection platforms to be accessed from anywhere.

The relationship between open source and cloud computing is symbiotic. Open source
presents a fundamental foundation for cloud computing. Software as a Service (SaaS) providers,
such as Google depends profoundly on the operating systems (open source), such as Linux to
execute their functions. Linux machines were first offered by the Amazon cloud which persists
to present new services on Linux first. Moreover, Open Source Software has low-friction
licensing which is a usual fit for cloud computing. Business dealers often hesitate to completely
support their products in a cloud computing platform. Placing up free piles of open source
software and formulating them accessible is a powerful model for computational advancements.

The significant cloud computing vendors, such as Amazon, Microsoft and Google have
not encouraged open standards for their own services. These vendors do not discharge the code



for their services. Therefore, it is a complex task to set up an accurate equivalent code. For
example, Open Stack and Eucalyptus has made some efforts to build an open cloud standard but
they have not achieved wide acceptance yet.

1.11.2 FOSS CLOUD SOFTWARE ENVIRONMENTS
Cloud computing is the ability to execute a program on several computers at the same

time. It illustrates distinct theories, which involves a huge number of computers linked through a
network.

1.11.2.1 Characteristics of a Cloud
 Self-service based on requirement
 A wide network access
 Resource sharing
 Rapid elasticity

1.11.2.2 Why Open Source?
 User driven solutions to the existing difficulties.
 Fewer obstacles for participation.
 User dependent, i.e., one user helps another user.
 Open data, standards and APIs.

1.11.2.3 Open Source Clouds
The open source cloud is a software that facilitates to construct virtualization and services

of cloud in a private or a public cloud. The open source cloud is a shared server design that offers
virtualization and cloud services, terminal server, Virtual Desktop Infrastructure (VDI) and
Software as a Service (SaaS) based on Windows or Linux. The open source cloud makes the
virtual machines to be accessed internally or from the internet. The FOSS Cloud envelops all the
characteristics of an open source IT platform. An open source cloud is licensed under the
European Union Public License (EUPL). OVF, i.e., Open Virtualization Format is an open
pattern for wrapping and sharing virtual applications or more generally software to work on
virtual machines. Eucalyptus, Open Nebula and Open Stack are the open source clouds.

REVIEW QUESTIONS
1. Define and explain open source cloud platform.
2. List and explain the characteristics of a cloud.
3. List all the open source clouds and explain.


